
POSITIVITY OF HOCHSTER THETA

MOHAMMAD REZA RAHMATI

Abstract. M. Hochster defines an invariant namely Θ(M,N) associated to two
finitely generated module over a hyper-surface ring R = P/f , where P = k{x0, ..., xn}
or k[X0, ..., xn], for k a field and f is a germ of holomorphic function or a polyno-
mial, having isolated singularity at 0. This invariant can be lifted to the Grothendieck
group G0(R)Q and is compatible with the chern character and cycle class map, ac-
cording to the works of W. Moore, G. Piepmeyer, S. Spiroff, M. Walker. They
prove that it is semi-definite when f is a homogeneous polynomial, using Hodge
theory on Projective varieties. It is a conjecture that the same holds for general
isolated singularity f . We give a proof of this conjecture using Hodge theory of
isolated hyper-surface singularities when k = C. We apply this result to give a
positivity criteria for intersection multiplicty of proper intersections in the variety
of f .

Introduction

One of the important ways to generalize known facts about smooth algebraic
varieties in algebraic geometry, is to try to extend them over singular varieties. Most
of the valid methods in the smooth category are hard to be worked out in the singular
category. An example of this is the definition of intersection multiplicity as the Tor-
formula in algebraic geometry as an Euler characteristic. The Riemann-Roch formula
provides a definition of this characteristic class by the chern character map on the
K-group. The useful observation here is the intersection theory is in fact a theory on
K-groups. In the singular set up both of the definitions of K-groups and the chern
character become very complicated in the first glance. although trying to generalize
the homology theory over singular varieties provides some type of solution for this
case, trying to extend the natural concepts from the smooth category to the singular
one remains still complicated and difficult.

In this short note we provide a very basic example of this situation and try to
approach to the solution using asymptotic Hodge theory. In this way we employ
some standard methods in the extensions of polarized mixed Hodge structure to
answer questions about singularities in algebraic geometry. Thus the reader may
divide the text into three part, the first is a singular set up in algebraic geometry,
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the second is on variation of mixed Hodge structures, and the third is an application
of the results mentioned in part 2.

1. Modules over Hypersurface rings

A hyper-surface ring is a ring of the form R := P/(f), where P is an arbitrary ring
and f a non-zero divisor. Localizing we may assume P is a local ring of dimension n+
1. As according to the title we assume P = C{x0, ..., xn} and f a holomorphic germ,
or P = C[x0, ..., xn] and then f would be a polynomial. Then we are mainly interested
to study finitely generated modules over these rings. A matrix factorization of f in
P is a pair of matrices A and B such that AB = BA = f. id. It is equivalent to the
data of a pair of finitely generated free P -modules

d0 : X0 � X1 : d1, d0d1 = d1d0 = f. id

It is a basic fact, discovered by D. Eisenbud, that the R-modules have a minimal
resolution that is eventually 2-periodic. Specifically, In a free resolution of such a
module M , we see that after n-steps we have an exact sequence of the following form.

(1) 0→M ′ → Fn−1 → Fn−2 → ...→ F0 →M → 0

where the Fi are free R-modules of finite rank and depthR(M ′) = n. If M ′ = 0
then M has a free resolution of finite length., If M ′ 6= 0, then M ′ is a maximal
Cohen-Macaulay module, that is depthR(M ′) = n. So ”up to free modules” any R-
module can be replaced by a maximal Cohen-Macaulay module. If M is a maximal
Cohen-Macaulay R-module that is minimally generated by p elements, its resolution
as P -module has the form

0 → P p A→ P p → M → 0

↓
B

↙ ↓ ↓ 0

0 → P p A→ P p → M → 0

where A is some p × p matrix with det(A) = f q. The fact that multiplication by f
acts as 0 on M produces a matrix B such that A.B = B.A = f.I, where I is the
identity matrix. In other words we find a matrix factorization (A,B) of f determined
uniquely up to base change in the free module P p, by M . This matrix factorization
not only determines M but also a resolution of M as R-module.

....→ Rp → Rp → Rp →M → 0

So a minimal resolution of M looks in general as follows

...→ G→ F → G→ Fn−1 → ...→ F0 →M → 0

As a consequence all the homological invariants like TorRk (M,N), ExtkR(M,n) are
2-priodic, [BVS], [EP].
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2. Hochster Theta Function

Definition 2.1. (Hochster Theta pairing) The theta pairing of two R-modules M
and N over a hyper-surface ring R/(f) is

Θ(M,N) := l(TorR2k(M,N))− l(TorR2k+1(M,N)), k >> 0

This definition makes sense as soon as the length appearing are finite. This certainly
happens if R has an isolated singular point.

Example 2.2. [BVS] Take f = xy−z2,M = C[[xyz]]/(x, y). A matrix factorization
(A,B) associated to M is given by

A =

(
y −z
−z x

)
, B =

(
x z
z y

)
And TorRk (M,M) is the homology of the complex

.....→ C[[y]]2 → C[[y]]2 → C[[y]]→ 0

where

α =

(
y 0
0 0

)
, β =

(
0 0
0 y

)
So we find that Θ(M,M) = 0.

Hochster theta pairing is additive on short exact sequences in each argument,
and thus determines a Z-valued pairing on G(R), the Grothendieck group of finitely
generated R-modules. One loses no information by tensoring with Q and so often
theta is interpreted as a symmetric bilinear form on the rational vector space G(R)Q.
It is basic that Theta would vanish if either M or N be Artinian or have finite
projective dimension [MPSW], [BVS].

Theorem 2.3. [BVS] When M = OY = R/I,N = OZ = R/J , where Y, Z ⊆ X0

are the sub-varieties defined by the ideals I, J respectively, then

Θ(OY ,OZ) = i(0;Y, Z)

in case that Y ∩Z = 0. Here i(0; , ) is the ordinary intersection multiplicity in Cn+1.

By additivity over short exact sequences and the fact that any module admits a
finite filtration with sub-quotients of the form R/I, knowing Θ(OY ,OZ) determines
Θ(M,N) for all modules M,N .

Theorem 2.4. [BVS] Assume f ∈ C[[x1, ..., x2m+2] is a homogeneous polynomial of
degree d, and X0 = f−1(0) ∈ C2m+2 and T = V (f) ∈ P2m+1 the associated projective
cone of degree d. Let Y and Z be also co-dimension m cycles in T . If Y, Z intersect
transversely, then

Θ(OY ,OZ) = −1
d
[[Y ]].[[Z]]
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Where [[Y ]] := d[Y ] − deg(Y ).hm is the primitive class of [Y ], with h ∈ H1(T ) the
hyperplane class.

The primitive class of a cycle Y is the projection of its fundamental class [Y ] ∈
Hm(T ) into the orthogonal complement to hm with respect to the intersection pairing
into H2m(T ) = C. As hm.hm = d = deg(T ) and [Y ].hm = deg(Y ) the description of
the primitive class follows. Substituting the claim can be reformulated

Θ(OY ,OZ) = −1
d
[[Y ]].[[Z]] = −d[Y ].[Z] + deg(Y )deg(Z)

Where [Y ].[Z] denotes the intersection form on the cohomology of the projective
space, [BVS].

When f in consideration is a homogeneous polynomial of degree d, such that
X := Proj(R) is a smooth k-variety, the Theta pairing is induced, via chern character
map, from the pairing on the primitive part of de Rham cohomology

H(n−1)/2(X,C)

C.γ(n−1)/2
× H(n−1)/2(X,C)

C.γ(n−1)/2
→ C

given by

(a, b)→ (
∫
X
a ∪ γ(n−1)/2)(

∫
X
a ∪ γ(n−1)/2)− d(

∫
X
a ∪ b)

where γ is the class of a hyperplane section and theta would vanish for rings of this
type having even dimensions. When n = 1 by γ0 we mean 1 ∈ H0(X,C), [MPSW].

Theorem 2.5. [MPSW] For R and X as above, if n is odd there is a commutative
diagram

(2)

G(R)⊗2
Q ←−−− (

K(X)Q
α

)⊗2

Θ

y y(chn−1/2)⊗2

C ←−−−
θ

(
H(n−1)/2(X,C)

C.γ(n−1)/2
)⊗2

If However f is not quasi-homogeneous, there no longer will be a projective variety
to do intersection theory on.

Theorem 2.6. [BVS] Let f ∈ P = C[[x0, ..., xn]] define an isolated singularity and
let M,N be R = P/(f)-modules.

(1) If n is even then Θ(M,N) = 0
(2) If n = 2m+ 1 is odd, then

Θ(OY ,OZ) = lk(ch(M), ch(N))

Here ch : K0(L) → Hev(L) is the chern character. Only the m-component chm ∈
H2m(L,Q) contributes to linking form so, θ(OY ,OZ) = lk(chm(M), chm(N)).

Remark 2.7. The linking form is a restriction of the Seifert form of the singularity,

L : Hn(Xt)×Hn(Xt)→ Z, (α, β)→ l(α, h1/2(β))
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where h1/2 is half monodromy rotation.

Theorem 2.8. [MPSW] For R and X as above and n odd the restriction of the
pairing (−1)(n+1)/2Θ to

im(ch
n−1
2 ) : K(X)Q/α→

H(n−1)/2(X,C)

C.γ n−1
2

is positive definite. i.e. (−1)(n+1)/2Θ(v, v) ≥ 0 with equality holding if and only if
v = 0. In this way θ is semi-definite on G(R).

Proof. [MPSW] Define

W = Hn−1(X(C),Q) ∩H n−1
2
,n−1

2 (X(C))

It is classical that the image of ch(n−1)/2 is contained inW . Define e : W/Q.γ(n−1)/2 ↪→
Hn−1(X,Q) by

e(a) = a−
∫
X
a ∪ γ(n−1)/2

d
.γ(n−1)/2 ∈ W

We know that θ(a, b) = −d.Icoh(e(a), e(b)) Now the theorem follows from the polar-
ization properties of cup product on cohomology of projective varieties. �

3. Hodge theory and Residue form

Asuume f : Cn+1 → C is a germ of isolated singularity. We choose a representative
f : X → T over a small disc T according to the milnor fibration theorem. It is
possible to embed the Milnor fibration f : X → T into a compactified (projective)
fibration fY : Y → T such that the fiber Yt sits in Pn+1 for t 6= 0. The projective
fibration fY has a unique singularity at 0 ∈ Y0 over t = 0. Then, there exists a short
exact sequence

(3) 0→ Hn(Y0,Q)→ Hn(Yt,Q)
i∗→ Hn(Xt,Q)→ 0, t 6= 0.

We have Hn(Y0,Q) = ker(MY − id), by the invariant cycle theorem, where MY is
the monodromy of fY . The form SY := (−1)n(n−1)/2IcohY : Hn(Yt,Q)×Hn(Yt,Q)→ Q
is the polarization form of pure Hodge structure on Hn(Yt,C), t ∈ T ′ (the punctured
disc). W. Schmid (resp. J. Steenbrink) has defined a canonical MHS on Hn(Yt,Q)
(resp. on Hn(Yt,Q)) namely limit MHS, which make the above sequence an exact
sequence of MHS’s.

In the short exact sequence, the map i∗ is an isomorphism on Hn(Yt,Q)6=1 →
Hn(Xt,Q)6=1 giving S = (−1)n(n−1)/2Icoh = (−1)n(n−1)/2IcohY = SY on Hn(Xt,Q)6=1.

The above short exact sequence restricts to the following one,

(4) 0→ ker{NY : Hn(Yt,Q)1 → Hn(Yt,Q)1} → Hn(Yt,Q)1 → Hn(Xt,Q)1 → 0
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So a, b ∈ Hn(Xt,Q)1 have pre-images aY , bY ∈ Hn(Yt,Q)1 and

(5) S(a, b) = SY (aY , (−NY )bY )

is independent of the lifts of aY , bY , by the fact that NY is an infinitesimal isometry
for SY . The equation (10) defines the desired polarization on Hn(Xt,Q)1. The po-
larization form S is M -invariant, non-degenerate, (−1)n-symmetric on Hn(Xt,Q)6=1

and (−1)n+1-symmetric on Hn(Xt,Q)1, [H1].
Suppose,

Hn(X∞,C) =
⊕
p,q,λ

Ip,qλ

is the Deligne-Hodge bigrading, and generalized eigen-spaces of vanishing cohomol-
ogy, and also λ = exp(−2πiα) with α ∈ (−1, 0]. Consider the isomorphism obtained
by composing the three maps,

(6) Φp,q
λ : Ip,qλ

Φ̂λ−→ Grα+n−p
V H ′′

pr−→ Gr•VH
′′/∂−1

t H ′′
∼=−→ Ωf

where

Φ̂p,q
λ := ∂p−nt ◦ ψα|Ip,qλ

Φ =
⊕

p,q,λ Φp,q
λ , Φp,q

λ = pr ◦ Φ̂p,q
λ

where Ip,q stands for the bigrading, ∂t is the Gauss-Manin connection and ψα is
the nearby map cf. [1]. The map Φ is obviously an isomorphism because both of the
ψα and ∂−1

t are isomorphisms, cf. [H1], [V].

Definition 3.1. (MHS on Ωf) We define a mixed Hodge structure on Ωf using the
isomorphism Φ. This means that all the data of the Steenbrink MHS on Hn(X∞,C)
such as the Q or R-structure, the weight filtration W•Ωf,Q and the Hodge filtration
F •Ωf,C is defined via the isomorphism Φ. Specifically; in this we obtain a conjugation
map

(7) .̄ : Ωf,Q ⊗ C→ Ωf,Q ⊗ C, Ωf,Q := Φ−1Hn(X∞,Q)

defined from the conjugation on Hn(X∞,C) via this isomorphism.

Recall that the limit (Steenbrink) mixed Hodge structure, is defined by

F pHn(X∞,C)λ = ψ−1
α (GrαV ∂

n−p
t H ′′)

This justifies the power of ∂−1
t applied in the definition of Φ.

Theorem 3.2. [1] Assume f : (Cn+1, 0) → (C, 0), is a holomorphic germ with
isolated singularity at 0, with f : X → T the associated Milnor fibration. Embed
the Milnor fibration in a projective fibration fY : Y → T of degree d (with d large
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enough), by inserting possibly a singular fiber over 0. Then, the isomorphism Φ
makes the following diagram commutative up to a complex constant;

(8)

R̂esf,0 : Ωf × Ωf −−−→ Cy(Φ−1,Φ−1)

y×∗
S : Hn(X∞)×Hn(X∞) −−−→ C

∗ 6= 0

where,

R̂esf,0 = resf,0 (•, C̃ •)
and C̃ is defined relative to the Deligne decomposition of Ωf , via the isomorphism
Φ. If Jp,q = Φ−1Ip,q is the corresponding subspace of Ωf , then

(9) Ωf =
⊕
p,q

Jp,q C̃|Jp,q = (−1)p(d−1)/d

In other words;

(10) S(Φ−1(ω),Φ−1(η)) = ∗ × resf,0(ω, C̃.η), 0 6= ∗ ∈ C

Remark 3.3. Let G be the Gauss-Manin system associated to a polarized varia-
tion of Hodge structure (LQ,∇, F, S) of weight n, with S : LQ ⊗ LQ → Q(−n) the
polarization. Then we have the isomorphism

(11)
⊕
k∈Z

GrkFG →
⊕
k∈Z

HomOX (Grn−kF G,OX)

given by (up to a sign factor) λ→ S(λ,−), for λ ∈ GrkFG.

Theorem 3.4. Assume f : Cn+1 → C is a holomorphic isolated singularity germ.
The modified Grothendieck residue provides a polarization for the extended fiber Ωf ,
via the aforementioned isomorphism Φ. Moreover, there exists a unique set of forms

{R̂esk} polarizing the primitive subspaces of GrWk Ωf providing a graded polarization
for Ωf .

Corollary 3.5. (Riemann-Hodge bilinear relations for Ωf) Assume the holomorphic
isolated singularity Milnor fibration f : X → T can be embedded in a projective
fibration of degree d with d >> 0. Suppose f is the corresponding map to N on
Hn(X∞), via the isomorphism Φ. Define

Pl = PGrWl := ker(fl+1 : GrWl Ωf → GrW−l−2Ωf )

Going to W -graded pieces;

(12) R̂esl : GrWl Ωf ⊗C Gr
W
l Ωf → C
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is non-degenerate and according to Lefschetz decomposition

Ωf =
⊕
r

frPl−2r

we will obtain a set of non-degenerate bilinear forms,

(13) R̂esl ◦ (id⊗ fl) : PGrWl Ωf ⊗C PGr
W
l Ωf → C,

(14) R̂esl = resf,0 (id⊗ C̃. fl)

where C̃ is as in 3.2, such that the corresponding hermitian form associated to these
bilinear forms is positive definite. In other words,

• R̂esl(x, y) = 0, x ∈ Pr, y ∈ Ps, r 6= s
• If x 6= 0 in Pl,

resf,0 (Clx, C̃. f
l.x̄) > 0

where Cl is the corresponding Weil operator, and the conjugation is as in
(7).

Note that the map

Af =
OX
∂f
→ Ωf , f 7→ fdx0...dxn

is an isomorphism. Thus, the above corollary would state similarly for Af .

4. Hochschild homology and Matrix factorization

The category of matrix factorizations of f over R, namely MF (R, f); is defined
to be the differential Z/2-graded category, whose objects are pairs (X, d), where
X = X0 ⊕ X1 is a free Z/2-graded R-module of finite rank equipped with an R-
linear map d of odd degree satisfying d2 = f. idX . Here the degree is calculated in
Z/2. Regarding to the first definition

d =

(
0 d0

d1 0

)
, d2 = f. id

The morphisms MF (X,X ′) are given by Z/2-graded R-module maps from X to
X ′ (or equivalent between the components X0 and X1) provided that the differential
is given by

(15) d(f) = dX′ ◦ f − (−1)|f |f ◦ dX .
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Here dX or d′X may be considered as the matrix given above or to be separately
d0 and d1, and also it is evident that d(f)2 = 0. By choosing bases for X0 and X1

we reach to the former definition, [EP].

Remark 4.1. There exist exotic versions of the definition of matrix factorization
which allows the free modules to be of infinite ranks, denoted MF∞(R, f). Another is
the definition may be shifified to be stated for sheaves and schemes rather than rings.
Then, we would begin with a scheme X, noetherian, separated of finite dimension,
and f would be a function in the structure sheaf OX locally a non-zero divisor, and
X0, X1 would be coherent sheaves (or analogously in other set up be quasi-coherent
sheaves). Also the derived version of the definition, that is to consider the object up
to homotopy equivalences, in order to study the categories of matrix factorization,
[D], [PV], [EP].

The Hochschild homology ofMF (R, f) is equivalent to the Hochschild homology of
the commutative ring R = P/f . The Hochschild chain complex ofMF (R, f) is quasi-
isomorphic to the Koszul complex of the regular sequence ∂0f, ..., ∂nf . In particular
the Hochschild homology (and also the Hochschild cohomology) of 2-periodic dg-
category MF (R, f) is isomorphic to the module of relative differentials or the Jacobi
ring of f , [D].

Theorem 4.2. (T. Dykerhoff) [D], [PV] The canonical bilinear form on the Hochschild
homology of category of matrix factorizations C = MF (P, f) of f , after the identifi-
cation

(16) HH∗MF (P, f) ∼= Af ⊗ dx[n]

coincides with

(17) 〈g ⊗ dx, h⊗ dx〉 = (−1)n(n−1)/2resf,0(g, h)

5. Chern character (Denis trace map) for isolated hypersurface
singularities

The chern character or Denis trace map is a ring homomorphism

(18) ch : K0(X)→ HH0(X) ∼= Ωf

where K ′ is free abelian group on the isomorphism classes of finitely generated
modules modulo relations obtained from short exact sequences. The construction of
chern character map or chern classes is functorial w.r.t flat pull back. In the special
case of i : X ↪→ Y the compactification, the following diagram commutes,
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(19)

K ′0(Y0)
chY−−−→ HH0(Y0) ∼= ΩY

f

Φ−1
Y−−−→ Hn(Y∞)

i∗

y yi∗ yi∗
K ′0(X0) −−−→

chX
HH0(X0) ∼= ΩX

f −−−→
Φ−1
X

Hn(X∞).

Given a matrix factorization (A,B) for a maximal Cohen-Macaulay M , one can
find de Rham representatives for the chern classes. Consider C[[x0, ..., xn]] as a C[[t]]-
module with t acting as multiplication by f . Denote by Ωp the module of germs of
p-forms on Cn+1, and let Ωp

f = Ωp/(df ∧ Ωp−1). One puts ω(M) = dA ∧ dB. The
components of the chern character

(20) chM := tr(exp(ω(M))) =
∑
i

1

i!
ωi(M)

are well-defined classes

(21) ωi(M) = tr((dA ∧ dB)i) ∈ Ω2i
f /(df ∧ Ω2i−1)

There are however odd degree classes

ηi(M) := tr(AdB(dA ∧ dB)i) ∈ Ω2i+1
f /Ω2i

f

The group Ω2i+1
f /dΩ2i

f can be identified with the cyclic homology HCi(P/C{t}).
They fit into the following short exact sequence such that dηi−1 = ωi(M).

0→ Ω2i−1
f /Ω2i−2

f → Ω2i/(df ∧ Ω2i−1)→ Ω2i/Ω2i−1 → 0

If the number of variables n+ 1 is even, then a top degree form sits in the Brieskorn
module

H(0)
f = Ωn/(df ∧ dΩn−1)

a free C[[t]]-module of rank µ. The higher residue pairing

K : H(0)
f ×H

(0)
f → C{{∂−1

t }}
of K. Saito can be seen as the de Rham realization of the Seifert form of the

singularity, [BVS].

Proposition 5.1. [PV], [CW] The Hochster Θ-pairing of two maximal Cohen-
Macaulay modules M,N is given up to a sign by the local residue of their chern
classes as elements in Ωf . That is

Θ(M,N) = (−1)n(n−1)/2resf,0(ch(M), ch(N))

only for M,N maximal Cohen-Macaulay.
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Remark 5.2. There always exists a change of coordinates such that the natural map

i∗ : Hn(Y∞,C)→ Hn(X∞,C)

becomes surjective. We can regard the chern character as an element of Hn(X∞,C)
via the map Φ in section 3. In this way functoriality of chern classes implies that
a chern class corresponded to ch(M) is always in the image of another chern class
in projective space, and it must be a Hodge class, i.e of type (p, p) in the pure HS of
Hn(Y∞,C).

6. Positivity of Theta pairing-Main Result

The following theorem was conjectured in [MPSW].

Theorem 6.1. Let S be an isolated hypersurface singularity of dimension n. If n is
odd, then (−1)(n+1)/2Θ is positive semi-definite on G(R)Q.

Proof. By additivity of Θ on each variable, we may replace M,N by maximal Cohen-
Macaulay modules. According to this, determination of the sign of Θ amounts to
understanding how the image of chern classes look like in the MHS of Ωf . By theorem
3.2 it amounts to the same things for the image in Hn(X∞) under the isomorphism Φ.
The following diagram is commutative by the functorial properties of chern character.

(22)

K ′0(Y0)
Φ−1
Y ◦chY−−−−−→ Hn(Y∞)

i∗

y yi∗
K ′0(X0) −−−−−→

Φ−1
X ◦chX

Hn(X∞).

We are assuming that i∗ is surjective. By what was said, the chern class we are
concerned with, is a Hodge cycle. The commutativity of the above diagram allows
us to replace the pre-image of the chern character for X, with similar cycle upstairs.
Because the polarization form SX was defined via that of SY . Thus, if

Hn(Y∞) = ⊕p+q=nHp,q

be the Hodge decomposition, the only non trivial contribution in the cup product
will be for the Hn/2,n/2, and the polarization form is evidently definite on this sub-
space (Hodge cycles). Note that here the corresponding chern class should lie in Hn

6=1.
Because the map NY is of type (−1,−1) for the Hodge structure of Hn(Y∞) and the
polarization SY (Hn/2,n/2, Hn/2−1,n/2−1) = 0 for obvious reasons. In this way one only
needs to prove the positivity statement for Hochster Θ when the chern character is
in HY, 6=1, and this is the content of Theorem 2.8. �
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7. Application to Serre Multiplicity Conjecture

The intersection multiplicity of finitely generated modules over a regular ring has
been defined by J. P. Serre, as

(23) χR(M,N) :=
dimR∑
i=0

(−1)il(TorRi (M,N))

where R is a regular ring, and M,N are finitely generated R-modules. He conjectured
that this invariant is 0 in non-proper intersections, and positive when the intersection
is proper, i.e dimM + dimN = dimR. This conjecture is still open for positivity.

Theorems 6.1 and 2.3 together recover a very special case of Serre multiplicity
conjecture, for intersections at the isolated singularity (proved in general by O. Gab-
ber).

Theorem 7.1. The Serre intersection multiplicity χ(M,N) is always non-negative
for proper intersections at 0, where M and N are regular R = P/(f)-modules essen-
tially of finite type over C.
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