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Abstract. This chapter introduces copula functions and the use of the
Gaussian copula function to model probabilistic dependencies in super-
vised classification tasks. A copula is a distribution function with the
implicit capacity to model non linear dependencies via concordance mea-
sures, such as Kendall’s τ . Hence, this chapter studies the performance
of a simple probabilistic classifier based on the Gaussian copula function.
Without additional preprocessing of the source data, a supervised pixel
classifier is tested with a 50-images benchmark; the experiments show
this simple classifier has an excellent performance.
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1 Introduction

In Pattern Recognition applications many algorithms and models have been
proposed for many tasks, specially for clustering, regression and classification.
Applications in which a training data set with categories and attributes is avail-
able and the goal is to assign a new object to one of a finite number of discrete
categories are known as supervised classification problems [2, 12, 15]. In this work
we present the use of the Gaussian copula function as an alternative for modeling
dependence structure in a supervised probabilistic classifier.

Copula functions are suitable tools in statistics for modeling multiple de-
pendence, not necessarily linear dependence, in several random variables. For
this reason, copula functions have been widely used in economics and finance [5,
7, 9, 25, 26]. More recently copula function have been used in other fields such
as climate [22], oceanography [6], hydrology [10], geodesy [1], reliability [17],
evolutionary computation [20, 21] and engineering [11]. By using copula theory,
a joint distribution can be built with a copula function and, possibly, several
different marginal distributions. Copula theory has been used also for model-
ing multivariate distributions in unsupervised learning problems such as image
segmentation [4, 8] and retrieval tasks [16, 19, 24]. In [13], the bivariate copula
functions Ali-Mikhail-Haq, Clayton, Frank and Gumbel are used for unsuper-
vised classification. These copulas are well defined for two variables but when
extended to three or more variables several complications arise (for instance,
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undefined copula parameters), preventing their generalization and applicability.
For the Gaussian copula however, there exist a simple “general formula” for any
number of variables. This work introduces the use of Gaussian copula in super-
vised classification, and compares an independent probabilistic classifier with a
copula-based probabilistic classifier.

The content of the chapter is the following: Section 2 is a short introduction
to copula functions, Section 3 presents a copula based probabilistic model for
classification. Section 4 presents the experimental setting to classify an image
database, and Section 5 summarizes the conclusions.

2 Copula Functions

The copula concept was introduced 50 years ago by Sklar [23] to separate the
effect of dependence from the effect of marginal distributions in a joint distribu-
tion. Although copula functions can model linear and nonlinear dependencies,
they have been barely used in computer science applications where nonlinear
dependencies are common and need to be represented.

Definition 1. A copula C is a joint distribution function of standard uniform

random variables. That is,

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud) ,

where Ui ∼ U(0, 1) for i = 1, . . . , d.

For a more formal definition of copula functions, the reader is referred to [14,
18]. The following result, known as Sklar’s theorem, states how a copula function
is related to a joint distribution function.

Theorem 1 (Sklar’s theorem). Let F be a d-dimensional distribution func-

tion with marginals F1, F2, . . . , Fd, then there exists a copula C such that for all

x in R
d
,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)) ,

where R denotes the extended real line [−∞,∞]. If F1(x1), F2(x2), . . . , Fd(xd)
are all continuous, then C is unique. Otherwise, C is uniquely determined on

Ran(F1) × Ran(F2) × · · · × Ran(Fd), where Ran stands for the range.

According to Theorem 1, any joint distribution function F with continuous
marginals F1, F2, . . . , Fd has associated a copula function C. Moreover, the as-
sociated copula C is a function of the marginal distributions F1, F2, . . . , Fd. An
important consequence of Theorem 1 is that the d-dimensional joint density f
and the marginal densities f1, f2, . . . , fd are also related:

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) ·
d∏

i=1

fi(xi) , (1)
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where c is the density of the copula C. The Equation (1) shows that the product
of marginal densities and a copula density builds a d-dimensional joint density.
Notice that the dependence structure is given by the copula function and the
marginal densities can be of different distributions. This contrasts with the usual
way to construct multivariate distributions, which suffers from the restriction
that the marginals are usually of the same type. The separation between marginal
distributions and a dependence structure explains the modeling flexibility given
by copula functions.

2.1 Gaussian Copula Function

There are several parametric families of copula functions, such as Student’s t
copula and Archimedean copulas. One of these families is the Gaussian copula
function.

Definition 2. The copula associated to the joint standard Gaussian distribution

is called Gaussian copula.

According to Definition 2 and Theorem 1, if the d-dimensional distribution
of a random vector (Z1, . . . , Zd) is a joint standard Gaussian distribution, then
the associated Gaussian copula has the following expression:

C(Φ(z1), . . . , Φ(zd);Σ) =

∫ z1

−∞

· · ·

∫ zd

−∞

e−
1
2 t′Σ−1t

(2π)(n/2)|Σ|1/2
dtd · · · dt1 ,

or equivalently,

C(u1, . . . , ud;Σ) =

∫ Φ−1(u1)

−∞

· · ·

∫ Φ−1(ud)

−∞

e−
1
2 t′Σ−1t

(2π)(n/2)|Σ|1/2
dtd · · · dt1 ,

where Φ is the cumulative distribution function of the marginal standard
Gaussian distribution and Σ is a symmetric matrix with main diagonal of ones.
The elements outside the main diagonal of matrix Σ are the pairwise correlations
ρij between variables Zi and Zj , for i, j = 1, . . . , d and i 6= j. It can be noticed
that a d-dimensional standard Gaussian distribution has mean vector zero and
a correlation matrix Σ with d(d − 1)/2 parameters.

The dependence parameters ρij of a d-dimensional Gaussian copula can be
estimated using the maximum likelihood method. To do so, we follow the steps
of Algorithm 1.

Due to Equation (1), the d-dimensional Gaussian copula density can be cal-
culated as:

c(Φ(z1), . . . , Φ(zd);Σ) =

1
(2π)(d/2)|Σ|1/2 e−

1
2 z′Σ−1z

∏d
i=1

1
(2π)1/2 e−

1
2 z2

i

=
1

|Σ|1/2
e−

1
2 z′(Σ−1−I)z . (2)
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Algorithm 1 Pseudocode for estimating parameters

1: for each random variable Xi, i = 1, . . . , d, estimate its marginal distribution func-
tion F̂i using the observed values xi. The marginal distribution function can be
parametric or nonparametric

2: determine ui = F̂i(xi), for i = 1, . . . , d

3: calculate zi = Φ−1(ui) where Φ is the cumulative standard Gaussian distribution
function, for i = 1, . . . , d

4: estimate the correlation matrix Σ̂ for the random vector (Z1, . . . , Zd) using pseudo
observations (z1, . . . , zd)

Given that a Gaussian copula is a distribution function it is possible to simu-
late data from it. The main steps are the following: once a correlation matrix Σ
is specified, a data set can be generated from a joint standard Gaussian distribu-
tion. The next step consists of transforming this data set using the cumulative
distribution function Φ. For random vectors with a Gaussian copula associated
to their joint distribution, the first step is to generate data from the copula and
then determining their quantiles by means of their cumulative distribution func-
tions. Algorithm 2 and Figures 1, 2 and 3 illustrate the sampling procedure for
different correlations.

Algorithm 2 Pseudocode for generating data with Gaussian dependence struc-
ture
1: simulate observations (z1, . . . , zd) from a joint standard Gaussian distribution with

matrix correlation Σ

2: calculate ui = Φ(zi) where Φ is the cumulative standard Gaussian distribution
function, for i = 1, . . . , d

3: determine xi using quasi-inverse F−1

i
(ui), where Fi is a cumulative distribution

function, for i = 1, . . . , d

Figure 1-(a) shows 500 bivariate data with correlation ρ = −0.5 drawn from
a bivariate standard Gaussian distribution (step 1, Algorithm 2). The histogram
on the vertical axis and the histogram on the horizontal axis illustrate that
both marginals are univariate standard Gaussian distributions. This data set
is used to obtain a sample from a Gaussian copula, as shown in Figure 1-(b)
(step 2, Algorithm 2). Both histograms illustrate that marginals are uniform,
according to Definition 1. Figure 1-(c) shows a sample from a joint distribution
with Gaussian copula and Beta marginals (step 3, Algorithm 2). This sample
is obtained using the data set of Figure 1-(b). Figure 1-(d) shows a sample
from a joint distribution with Gaussian copula, Student’s t marginal distribution
and exponential marginal distribution (step 3, Algorithm 2). This sample is
also obtained from the data set of Figure 1-(b). In order to appreciate how the
correlation parameter modifies the dependence structure, Figures 2 and 3 show
the same information as Figure 1 with ρ = −0.7 and ρ = −0.95, respectively.
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Fig. 1. (a) A sample of 500 points from a standard Gaussian distribution with parame-
ter ρ = −0.50. (b) The corresponding sample for a Gaussian copula. (c) The associated
sample for a joint distribution with marginal Beta distributions with parameters (1, 2)
(histogram on the horizontal axis) and (0.5, 0.5) (histogram on the vertical axis). (d)
The associated sample for a joint distribution with marginal t-Student distribution
with 8 degrees of freedom (histogram on the horizontal axis) and marginal exponential
distribution with mean 4 (histogram on the vertical axis).
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Fig. 2. (a) A sample of 500 points from a standard Gaussian distribution with parame-
ter ρ = −0.70. (b) The corresponding sample for a Gaussian copula. (c) The associated
sample for a joint distribution with marginal Beta distributions with parameters (1, 2)
(histogram on the horizontal axis) and (0.5, 0.5) (histogram on the vertical axis). (d)
The associated sample for a joint distribution with marginal t-Student distribution
with 8 degrees of freedom (histogram on the horizontal axis) and marginal exponential
distribution with mean 4 (histogram on the vertical axis).
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Fig. 3. (a) A sample of 500 points from a standard Gaussian distribution with parame-
ter ρ = −0.95. (b) The corresponding sample for a Gaussian copula. (c) The associated
sample for a joint distribution with marginal Beta distributions with parameters (1, 2)
(histogram on the horizontal axis) and (0.5, 0.5) (histogram on the vertical axis). (d)
The associated sample for a joint distribution with marginal t-Student distribution
with 8 degrees of freedom (histogram on the horizontal axis) and marginal exponential
distribution with mean 4 (histogram on the vertical axis).
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Although the correlation is used to generate data from a Gaussian copula,
it is not necessary the same for joint distributions with Gaussian copula and
non-Gaussian marginals. However, the data sets in Figure 1 have the same con-
cordance value measured in Kendall’s τ . This important result for parametric
bivariate copulas (see [18]) is explained through the equation:

τ(X1,X2) = 4

∫ 1

0

∫ 1

0

C(u1, u2; θ)dC(u1, u2; θ) − 1 , (3)

which relates the dependence parameter θ of a copula and Kendall’s τ . For a
bivariate Gaussian copula, Equation (3) can be written as

τ =
2

π
arcsin(ρ) . (4)

Given that is well established how to estimate correlation matrixes, evaluate
densities, and calculate integrals for the multidimensional Gaussian distribution,
the Gaussian copula function is relatively easy to implement.

3 The Probabilistic Classifier

As noted, the aim of this work is to introduce the use of Gaussian copula func-
tions in supervised classification. According to Theorem 1, we can employ a
copula function in a probabilistic classifier, such as a Bayessian classifier. In
this section we present a three dimensional probabilistic model based on three
empirical distribution functions and a trivariate dimensional Gaussian copula
function.

The Bayes’ theorem states the following:

P (K = k|E = e) =
P (E = e|K = k) × P (K = k)

P (E = e)
, (5)

where P (K = k|E = e) is the posterior probability, P (E = e|K = k) is the
likelihood function, P (K = k) is the prior probability and P (E = e) is the data
probability.

The Equation (5) has been used as a tool in supervised classification. A
probabilistic classifier can be designed comparing the posterior probability that
an object belongs to class K given its attributes E. The object is then assigned
to the class with the highest posterior probability. For practical reasons, the
data probability P (E) does not need to be evaluated for comparing posterior
probabilities. Furthermore, the prior probability P (K) can be substituted by an
uniform distribution if the user does not have an informative distribution.

3.1 The Probabilistic Classifier based on Gaussian Copula Function

For continuous attributes, a Gaussian copula function can be used for modeling
the dependence structure in the likelihood function. In this case, the Bayes’
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theorem can be written as:

P (K = k|e) =
c(F1(e1), . . . , Fn(en)|k,Σ) ×

∏n
i=1 fi(ei|k) × P (K = k)

f(e1, . . . , en)
, (6)

where Fi and fi are the marginal distribution functions and the marginal densi-
ties of attributes, respectively. The function c is a d-dimensional Gaussian copula
density defined by Equation (2). As can be seen in Equation (6), each category
determines a likelihood function.

3.2 The Probabilistic Classifier based on Independent Model

By considering conditional independence among the attributes in Equation (6),
or equivalently, an independent structure in the likelihood function given a cat-
egory, a probabilistic classifier can use the following expression in order to cal-
culate posterior probabilities:

P (K = k|e) =

∏n
i=1 fi(ei|k) × P (K = k)

f(e1, . . . , en)
. (7)

Equation (7) uses an independent structure given by a copula density equals to
one. This independent copula density can be also obtained by a Gaussian copula
function when matrix Σ is the identity matrix I.

3.3 An Application Example

Consider the following specific classification problem: assign a pixel to a certain
class according to its color attributes. If we have information about the color dis-
tribution of each class, then we can use this information and the Bayes’ theorem
in order to classify new pixels. This is an example of supervised classification.
For a red-green-blue (RGB) color space and two classes, a Gaussian copula based
classifier can be written as

P (k|r, g, b) =
c(FR(r), FG(g), FB(b)|k,Σ)fR(r|k)fG(g|k)fB(b|k) × P (k)

f(r, g, b)
, (8)

where c is a trivariate Gaussian copula density.

In order to classify a pixel, we use in Equation (8) a prior probability P (K =

k) based on the uniform distribution, nonparametric marginal densities f̂ based
on histograms to approximate fR(r|k), fG(g|k) and fB(b|k), and nonparametric
marginal distributions F̂ based on empirical cumulative distribution functions
to approximate FR(r), FG(g) and FB(b). For modeling the dependence structure
of the likelihood function f(r, g, b|k) we present the use of a trivariate Gaussian
copula function.
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4 Experiments

We use two probabilistic models in order to classify pixels of 50 test images. The
first model is an independent probabilistic model (I-M) based on the product of
marginal distributions. The second model is a copula-based model (GC-M) that
takes into account a dependence structure by means of a trivariate Gaussian cop-
ula. The image database was used in [3] and is available online [27]. This image
database provides information about two classes: the foreground and the back-
ground. The training data and the test data are contained in the labelling-lasso
files [27], whereas the correct classification is contained in the segmentation files.
Figures 4, 5 and 6 show the description of three images from the database. Table
3 shows a description for each image. Although the database is used for segmen-
tation purposes, the aim of this work is to introduce the use of the Gaussian
copula function in supervised color pixel classification. We use the information
for supervised color pixel classification, without taking into account the spatial
information.

(a) (b) (c)

(d) (e)

Fig. 4. (a) The color image. (b) The labelling-lasso image with the training data for
background (dark gray), for foreground (white) and the test data (gray). (c) The correct
classification with foreground (white) and background (black). (d) Classification made
by I-M. (e) Classification made by GC-M.

Two evaluation measures are used in this work: accuracy and Tanimoto co-

efficient. The accuracy is described in Figure 7. We define the positive class as
foreground and the negative class as background.

The Tanimoto coefficient (TC) is also known as Jaccard similarity measure.
This measure, TC, is defined as:

TC(k) =
Vm∩g(k)

Vm∪g(k)
,
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(a) (b) (c) (d) (e)

Fig. 5. (a) The color image. (b) The labelling-lasso image with the training data for
background (dark gray), for foreground (white) and the test data (gray). (c) The correct
classification with foreground (white) and background (black). (d) Classification made
by I-M. (e) Classification made by GC-M.

(a) (b) (c)

(d) (e)

Fig. 6. (a) The color image. (b) The labelling-lasso image with the training data for
background (dark gray), for foreground (white) and the test data (gray). (c) The correct
classification with foreground (white) and background (black). (d) Classification made
by I-M. (e) Classification made by GC-M.

Truth

Positive Negative

Model
Positive tp fp

Negative fn tn

accuracy =
tp + tn

tp + fp + fn + tn

(a) (b)

Fig. 7. (a) A confusion matrix for binary classification, where tp are true positive, fp

false positive, fn false negative, and tn true negative counts. (b) Definition of accuracy
used in this work.
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where Vm∩g(k) denotes the number of pixels classified as class k by both the
model and the ground truth and Vm∪g(k) denotes the number of pixels classified
as class k by either the model or the ground truth.

4.1 Numerical Results

In Table 1 we summarize the measure values reached by the independent prob-
abilistic model (I-M) and the copula-based model (GC-M). The information
about the number of pixels well classified for each class is reported in Table 3.
We include in Table 4 the performances of I-M and GC-M for each image.

Table 1. Descriptive results for all evaluation measures. BG stands for the background
class and FG stands for the foreground class.

Measure Minimum Median Mean Maximum Std. deviation

I-M

Tanimoto coefficient – BG 0.369 0.690 0.695 0.955 0.143

Tanimoto coefficient – FG 0.341 0.633 0.638 0.953 0.168

Accuracy 0.571 0.792 0.795 0.976 0.107

GC-M

Tanimoto coefficient – BG 0.450 0.816 0.797 0.976 0.118

Tanimoto coefficient – FG 0.375 0.780 0.758 0.972 0.141

Accuracy 0.587 0.889 0.871 0.987 0.083

To properly compare the performance of the probabilistic models, we con-
ducted a hypothesis test based on a Bootstrap method for the differences between
the means of accuracy and Tanimoto coefficients, for both probabilistic models.
Table 2 shows the confidence interval for the means, and the corresponding p-
value.

Table 2. Results for the difference between evaluation measure means in each model.
A 95% confidence interval and a p-value are obtained through a Bootstrap technique.
BG stands for the background class and FG stands for the foreground class.

Measure 95% Interval p-value

Tanimoto coefficient – BG -1.52E-01 -5.18E-02 2.67E-04

Tanimoto coefficient – FG -1.80E-01 -5.96E-02 3.67E-04

Accuracy -1.14E-01 -3.94E-02 2.67E-04

4.2 Discussion

According to Table 1, the GC-M shows the best behaviour for all evaluation
measures. For instance, the mean accuracy for the I-M, 79.5%, is less than the
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mean accuracy for the GC-M, 87.1%. This means that using a I-M approximately
has 8% more error rate than using a GC-M.

The average of the Tanimoto coefficient for the background class is greater
than the average of the Tanimoto coefficient for the foreground class, for both
I-M and GC-M (see Table 1). These coefficients are shown for each image in
Figure 8-(a) and Figure 8-(b). Notice the Tanimoto coefficients for GC-M on
the background and foreground are very similar, denoting a better classification
than I-M. In most of the images and for each class, we can see in Figure 8-(c)
and 8-(d) (also in Table 4) that GC-M outperforms I-M. In average, according
to Table 1, the GC-M improves the I-M in both classes. For the foreground class
from 63.8% to 75.8%, and for the background class from 69.5% to 79.7%.
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Fig. 8. Tanimoto coefficient for the supervised pixel classification on the 50 images of
[3]. Image order is the same as in Table 4. (a) Background (dashed line) and foreground
(solid line) for the I-M. (b) Background (dashed line) and foreground (solid line) for
the GC-M. (c) I-M (dashed line) and GC-M (solid line) for the background class. (d)
I-M (dashed line) and GC-M (solid line) for the foreground class.



14 Salinas-Gutiérrez, Hernández-Aguirre, Rivera-Meraz, Villa-Diharce

Table 1 also shows information about the standard deviations for each evalu-
ation measure. For all cases, the standard deviation indicates that using a GC-M
in pixel classification is more consistent than using an I-M.

In order to statistically compare the performance of the probabilistic models,
Table 2 shows confidence intervals and p-values that confirm differences between
the models. None of confidence intervals include the 0 value and all p-values are
less than α = 0.05.

5 Conclusions

In this work we introduce the use of Gaussian copulas in supervised pixel classi-
fication. According to numerical experiments the selection of a Gaussian copula
for modeling structure dependence can help achieve better classification results.
An specific example is the image 227092, which appears in Figure 5, its accuracy
for the I-M classifier is 57.1%, whereas its accuracy for the GC-M classifier is
89.5%. For this image, the Gaussian copula improves its accuracy.

Although we model the dependence structure for each image with the same
copula function, this is not necessary. There are many copula functions and
the Gaussian copula has been chosen due to its practical usefulness and easy
implementation. However, having more than one copula at hand may improve
the performance of the copula-based classifier. In such case, a copula selection
procedure is necessary. The evaluation results are the consequence of the selected
dependence structure and marginals. For instance, on the image 106024, Figure
4, the performance of the I-M classifier is 57.6% accurate (accuracy), whereas
the GC-M classifier is 58.7% accurate. For most applications better results can
be obtained by selecting the best fitted copula function from a set of available
copulas. For example, in the experiment reported, the performance of the I-M
classifier is better than GC-M for image fullmoon, Figure 6. However, the GC-M
is expected to improve the performance of the I-M classifier if we used the proper
copula.

Acknowledgments. The first author acknowledges support from the National
Council of Science and Technology of México (CONACyT) through a scholarship
to pursue graduate studies in the Department of Computer Science at the Center
for Research in Mathematics.
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Appendix

Table 3: Description of images used in this work. BG stands for the
background class and FG stands for the foreground class. Columns 3
and 4 give the size of test data. The last 4 columns give the number of
pixels well classified for each class and for each probabilistic classifier.

Image name Image size Test pixels I-M GC-M

BG FG BG FG BG FG

21077 321 × 481 4322 3353 3648 2551 3144 2763
24077 321 × 481 11529 10983 6577 8399 6348 10000
37073 321 × 481 8260 6642 6404 6187 7115 6014
65019 321 × 481 9853 8398 9181 3317 9099 4061
69020 321 × 481 25203 22634 17561 16813 22798 20421
86016 321 × 481 3271 2215 2765 2166 2937 2179
106024 321 × 481 9093 7368 5528 3961 5574 4087
124080 321 × 481 18286 18773 16487 16924 16307 18653
153077 321 × 481 13851 12098 11072 7774 10806 10638
153093 321 × 481 12027 11809 7617 8699 11414 9615
181079 481 × 321 23845 23110 18650 15320 22494 18705
189080 481 × 321 23363 23523 20726 21020 19722 20707
208001 481 × 321 10227 9530 9994 7669 10064 7914
209070 321 × 481 6696 4075 5117 2447 5894 2874
227092 481 × 321 19656 17321 12869 8229 19129 13966
271008 321 × 481 10909 9216 8934 7967 8800 8795
304074 481 × 321 7239 4794 5017 2591 5534 2810
326038 321 × 481 10781 7680 8730 4952 9488 5571
376043 481 × 321 13654 13485 12022 6094 13072 9343
388016 481 × 321 17800 15592 15633 11248 17596 12929

banana1 480 × 640 29983 24052 17120 23964 20285 23601
banana2 480 × 640 27433 21518 17063 20378 25373 18698
banana3 480 × 640 26205 20164 25588 12405 26035 14115

book 480 × 640 26087 21474 15689 20699 19852 21325
bool 450 × 520 20123 16850 19500 13279 18726 14373
bush 600 × 450 32513 22099 21072 12504 27734 14870

ceramic 480 × 640 30549 25709 24809 25069 27328 24791
cross 600 × 450 34602 25733 32824 25703 32918 25132
doll 549 × 462 18866 15106 12976 13269 17947 14960

elefant 480 × 640 27858 22787 20918 22656 23158 22540
flower 450 × 600 16125 13246 14612 12977 15036 13225

fullmoon 350 × 442 1580 1043 1498 1043 983 1026
grave 600 × 450 12294 12832 11977 11567 12219 10889

Continued on next page
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Table 3 – continued from previous page

Image name Image size Test pixels I-M GC-M

BG FG BG FG BG FG

llama 371 × 513 8930 8445 7783 5322 7547 7287
memorial 600 × 450 14853 12598 12900 6902 10936 10964

music 480 × 640 23945 19494 20457 18723 21794 19112
person1 450 × 600 19092 16384 16452 10041 18831 15372
person2 450 × 600 12796 9595 11492 5358 12465 9219
person3 600 × 450 14649 11450 13494 8122 14022 10112
person4 450 × 600 19250 16631 15230 10691 18197 11653
person5 600 × 450 13990 11332 13009 8327 13025 10377
person6 600 × 450 19015 15645 16753 9038 16071 11732
person7 600 × 450 12110 9634 9934 6998 11795 8093
person8 480 × 640 16684 12741 6740 11157 14690 9534
scissors 480 × 640 30768 23335 28152 19910 30181 19960
sheep 600 × 450 5331 3733 4750 3098 5243 3415
stone1 480 × 640 18716 15635 16087 15525 18376 15528
stone2 480 × 640 22002 18489 21556 16315 21788 17692
teddy 398 × 284 13892 13739 13790 13191 13426 13466
tennis 472 × 500 19471 13129 18054 8673 18322 8613

Table 4: Evaluation measures for each image. TC stands for the Tani-
moto coefficient, BG stands for the background class and FG stands for
the foreground class. Columns 2, 3 and 4 give the results for the inde-
pendent probabilistic model. The last 3 columns give the results for the
Gaussian copula-based probabilistic model.

Image name I-M GC-M

TC-BG TC-FG Accuracy TC-BG TC-FG Accuracy

21077 0.712 0.633 0.808 0.640 0.610 0.770
24077 0.466 0.527 0.665 0.507 0.619 0.726
37073 0.735 0.728 0.845 0.801 0.772 0.881
65019 0.615 0.366 0.685 0.641 0.444 0.721
69020 0.566 0.555 0.719 0.832 0.816 0.903
86016 0.833 0.796 0.899 0.888 0.855 0.933
106024 0.442 0.362 0.576 0.450 0.375 0.587
124080 0.819 0.823 0.902 0.886 0.899 0.943
153077 0.609 0.523 0.726 0.706 0.703 0.826
153093 0.503 0.536 0.685 0.803 0.774 0.882
181079 0.590 0.541 0.723 0.796 0.765 0.877
189080 0.801 0.804 0.890 0.753 0.762 0.862
208001 0.827 0.786 0.894 0.850 0.816 0.910
209070 0.615 0.433 0.702 0.746 0.589 0.814
227092 0.448 0.341 0.571 0.831 0.782 0.895
271008 0.735 0.712 0.840 0.777 0.777 0.874
304074 0.531 0.369 0.632 0.600 0.432 0.693

Continued on next page
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Table 4 – continued from previous page

Image name I-M GC-M

TC-BG TC-FG Accuracy TC-BG TC-FG Accuracy

326038 0.646 0.509 0.741 0.736 0.621 0.816
376043 0.571 0.403 0.668 0.735 0.664 0.826
388016 0.706 0.633 0.805 0.860 0.818 0.914

banana1 0.569 0.649 0.760 0.667 0.699 0.812
banana2 0.597 0.639 0.765 0.839 0.793 0.900
banana3 0.753 0.597 0.819 0.807 0.694 0.866

book 0.584 0.649 0.765 0.757 0.770 0.866
bool 0.823 0.760 0.887 0.829 0.788 0.895
bush 0.500 0.373 0.615 0.698 0.553 0.780

ceramic 0.795 0.797 0.887 0.868 0.857 0.926
cross 0.948 0.934 0.970 0.935 0.917 0.962
doll 0.627 0.632 0.773 0.944 0.934 0.969

elefant 0.747 0.762 0.860 0.824 0.820 0.902
flower 0.891 0.879 0.939 0.931 0.923 0.962

fullmoon 0.948 0.927 0.969 0.616 0.626 0.766
grave 0.883 0.880 0.937 0.858 0.844 0.920
llama 0.646 0.555 0.754 0.748 0.741 0.854

memorial 0.628 0.474 0.721 0.663 0.664 0.798
music 0.828 0.815 0.902 0.896 0.883 0.942

person1 0.647 0.528 0.747 0.937 0.924 0.964
person2 0.675 0.492 0.753 0.946 0.929 0.968
person3 0.751 0.644 0.828 0.877 0.837 0.925
person4 0.605 0.518 0.722 0.751 0.659 0.832
person5 0.765 0.676 0.843 0.872 0.844 0.924
person6 0.654 0.505 0.744 0.701 0.631 0.802
person7 0.674 0.593 0.779 0.864 0.813 0.915
person8 0.369 0.492 0.608 0.739 0.647 0.823
scissors 0.823 0.767 0.888 0.884 0.834 0.927
sheep 0.796 0.718 0.866 0.928 0.894 0.955
stone1 0.855 0.850 0.920 0.976 0.972 0.987
stone2 0.892 0.862 0.935 0.956 0.946 0.975
teddy 0.955 0.953 0.976 0.948 0.948 0.973
tennis 0.755 0.596 0.820 0.764 0.603 0.826


