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ABSTRACT

We present an extension to the Diffusion Basis Function
Model for fitting the in vivo brain axonal orientations from
Diffusion Weighted Magnetic Resonance Images. The stan-
dard Diffusion Basis Functions method assumes that the
observed Magnetic Resonance signal at each voxel is a linear
combination of a static set of basis functions with equally
distributed orientations into the 3D unitary sphere. Our pro-
posal, overcomes the limited angular resolution of the original
model by adapting the basis orientations using a sophisticated
non-linear optimization procedure. The improvements over
the standard Diffusion Basis Functions model estimation by
our proposal are demonstrated on the synthetic data-sets used
on the 2012 HARDI Reconstruction Challenge.

Index Terms— DW–MRI, Diffusion Tensor, Diffusion
Basis Functions, Self–orientation.

1. INTRODUCTION

Nowadays, the water diffusion estimation in cerebral tissue
is a non–invasive method for infering axon fiber pathways
and connectivity patterns on in vivo brains, which are ones
of the most challenging goals in neuroimaging. For this aim a
special Magnetic Resonance Imaging (MRI) technique named
Diffusion Weighted MRI (DW-MRI) is used. The most popu-
lar model for representing and analyzing DW-MRI signals is
the Diffusion Tensor Magnetic Resonance Images (DT–MRI).

DT–MRI consists of a tensor field that indicates the lo-
cal orientation of fiber bundles. The tract brain orientation
is locally estimated from the eigenvector associated with the
largest eigenvalue (main eigenvector) of the estimated ten-
sor. This orientation is known as the Principal Diffusion Di-
rection (PDD). The main limitation of the Diffusion Tensor
model is its failure for correctly modeling the signal at voxels
with fiber crossings or bifurcations (partial volume effects).
To better explain the diffusion phenomenon for two or more
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fibers, Tuch et al. [1] proposed the Gaussian Mixture Model
(GMM):
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T is an unitary vector
which indicates the direction in which the DW-MR signal S
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= 1. J indicates the number of tensors used to
explain the signal. In this way, the j-th local fiber orienta-
tion (j-th PDD) is estimated from the orientation of the main
eigenvector of T

j

. For J = 1 the model (1) is reduced to the
Stejkal–Tanner’s equation [2].

In this work, we present a new method to improve the es-
timation of the PDDs based on the Diffusion Basis Function
model for the multi-fiber case. In the following, Section 2 de-
scribes the standard Diffusion Basis Function model. Section
3 presents our approach. Section 4 shows the experimental
results, followed by our conclusion in Section 5.

2. BRIEF REVIEW OF THE DIFFUSION BASIS
FUNCTION MODEL

The solution of (1) is computationally expensive and numer-
ically unstable because requires of the joint estimation of
the number of tensors, J , and the solution of a constrained
nonlinear optimization problem. For these reasons, Ramirez-
Manzanares et al. [3] proposed a strategy to solve the inverse
problem stated in (1). They avoided the non-linear opti-
mization problem by using a predetermined set of Diffusion
Basis Functions (DBF). The basis function are generated
from fixed orientations equally distributed on the 3D unitary
sphere. Thus, they proposed to model the DW–MR signal as
a linear combination of DBFs:
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The coefficient �
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is the diffusion weighted signal value as-
sociated to the gradient g
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(note that although in this work we use the model in
(3) to set the DBFs, it is possible to use others diffusion mod-
els, e.g., cylinder restricted diffusion); see for more details in
[3]. Hence, by using the DBFs it is possible to solve (1) via a
non-negative least-squares (NNLS) problem:
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is the unknown vector of the linear system. By solving (4),
the ↵

i

coefficients associated to the DBFs closer to the axon
fiber orientations should be nonzero. Since the DBF basis
orientations are incomplete in the 3D unity sphere, the num-
ber of nonzero ↵

k

values do not always correspond with the
actual number of compartment and their associated orienta-
tions can be different from the actual ones. Thus, a post-
processing is necessary: to transform the solution from the
discrete space (the DBF set) to the continuous 3D orienta-
tional space. For this aim, the authors use a heuristic clus-
tering based on the closeness of the fixed basis orientations
[3]. It has been reported that this NNLS based DBF approach
(hereinafter called standard DBF) is prone to overestimate the
number of fibers [4]. Although, other successful methods that
use basis functions have also been reported (e.g., see [5, 6])
that the standard DBF approach is an efficient and accurate
procedure: it was ranked 3rd best method among the partici-
pants of the HARDI reconstruction Challenge in the context
of the 2012 IEEE International Symposium on Biomedical
Imaging.

As mentioned before, the DBFs are generated from fixed
orientations equally distributed into the 3D orientation space
and they do not necessary correspond to the actual fiber ori-
entation. For this reason, in next section, we present an ex-
tension to reorient the diffusion basis orientations.

3. SELF–ORIENTED DBF MODEL

We define the new DBF formulation as follow:
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where R is a 3D reorientation (rotation) matrix defined by
the angles ✓

k
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= [0, 0, 0] this
formulation corresponds to eq. (3). In this way, we want to
find the angular displacement ✓

k

to align the PDD of ¯

T
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with

the actual fiber orientation according to the DW-MRI signal.
For this aim, we propose to compute the angular displacement
by extending the model (4) with (5):
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The direct minimization of (6) can be complicated because of
the constraint on R to be a rotation matrix. Thus, we propose
an alternate minimization approach in next subsection.

3.1. Surrogate Model

To simplify the problem stated in (6), we propose to itera-
tively solve a quadratic program for ↵ and three non-linear
programs for ⇥ until convergence. Solving for ↵ is to re-
solve the problem in (4), but, to solve for ⇥ is more compli-
cated. However, we can simplify the problem rewriting R as
the product of three rotation matrices around each axis:
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where X , Y and Z are the corresponding rotational matrix for
the axes x, y and z, respectively. Then, we write each rotation
matrix in terms of the cosine directors:
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Moreover, if we constrain such rotational angles in ✓

k

to be
small, then we can use the following approximations:
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Thus, we can write (5) as
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Now, if only one of the rotations X , Y or Z is applied at each
time, then the problem is reduced to three problems easier-to-
solve. For instance, to solve the angular displacement in X

k

,
we fix the values for Y
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, Z
k

. Thus, let ⇥
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be the set of angular rotations in the w (with w = z, y or z)
axis for the basis functions. Then, the cost function associated
to the angular displacement ⇥
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where the ↵
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’s values are the solution of (4) and they are fixed
at this stage, cw
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is a constant vector that depends on the se-
lection of w and results of applying algebraic factorization on
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. For instance, if w = x the
others parameters ✓
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are considered constant val-
ues. Hence, the reorientation angles are computed by the joint
solution of:
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where the upper bound u constrains the rotations to be small
such that the approximations of the sines and cosine in
(11),(12) and (13) are valid; we set u = 8 degrees.

Through experimentation, we note that a MRI signal cor-
responding with a tensor with large diffusivity profile causes
an activation of two or even three DBF signals in order to have
the best fitting. Also, we observed that the diffusion profile of
the basis is important to compute the optimal solution; i.e.,
basis functions with small radial diffusivity, �

r

, are prone to
be trapped on local minimum. As was reported by [7], we also
noted that a more isotropic DBF result in sparser representa-
tions. For these reasons, after a local minimum is reached,
we augment the DBF set by adding a new DBFs aligned with
the normalized vectorial addition of each pair or triad of dif-
fusion directions such that ↵ > 0. Further, we increase �

r

for
all the DBF set by using a factor µ > 1. Algorithm 1 resumes
our self–oriented DBF model. Note that, although we allow
only small orientation changes at each iteration of the internal
loop, the effect of several iterations can produce large orien-
tation changes. Also, note that we solve (16)–(18) only for
the ✓

w,k

such that ↵
k

> 0 and not for the complete DBF set.

4. RESULTS

Here, we compare the performance of our proposal vs. the
standard DBF model reviewed in section 2. The experi-
ments were conducted on the publicly available data set
used in the 2012 HARDI Reconstruction Challenge (for
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more details visit http://hardi.epfl.ch/static/
events/2012_ISBI/index.html). We show the re-
sults using the data set called Testing IV. The set consists of
9100 synthetic independent signals, that is to say, spatially
unstructured with 100 voxels with only one compartment
and 9000 voxels with two compartments crossing at different
degrees [see Figure 1(a)]. We used an acquisition scheme of
64 diffusion orientations and a b-value = 2000 with different
Signal-Noise-Ratios (SNR). For the standard DBF 129 base
tensors were used and for our approach 256. These values
were set according to the best performance of each method.

To evaluate the results, we take into account two crite-
ria: the angular error and the number of wrongly estimated
compartments. To compute the angular error we match esti-
mated PDDs with the actual PDDs such that we have the best
possible assignment. We assume that only p assignments are
performed, where p is the minimum between the estimated
number of compartments and the actual number of compart-
ments. Thus, the angular error is computed as the average
angular error between paired PDDs. Figure 1(b) compares
the angular errors of our approach versus the errors of the
standard DBF. One can see that our proposal effectively re-
duces the average and variance of the angular error w.r.t. the
standard DBF. By the other hand, the number of wrongly es-



(a) (b) (c)

Fig. 1. (a) Percentage of crossing compartments by angles. (b) Boxplot of all angular errors for the Testing IV data with
different SNR values. The white point in boxplots depicts the average angular error. (c) Average compartment estimation error
on the Testing IV data for different SNR values.

timated compartments equals 1 if the estimated number of
compartments in a voxel is different from the actual num-
ber of compartments and zero otherwise. This error measure
includes both underestimations and overestimations. Figure
1(c) shows the average of the wrongly estimated compart-
ments for all the voxels. Note that our proposal consistently
reduces the number of wrongly estimated compartments. One
disadvantage of our proposal is the computational cost: stan-
dard DBF takes around 10 minutes for processing the Test-

ing IV data set (9100 voxels), our method takes around 3

hours.

5. CONCLUSIONS

We presented an algorithm that reorients the diffusion direc-
tions of a DBF set. Our method overcomes the limitation of
the standard DBF model: the orientations are fixed, and thus
they do not necessarily correspond to the actual fiber orien-
tation. To adjust the diffusion orientations can be compli-
cated, for this reason, we simplified the problem by propos-
ing an alternate minimization approach that consists of iter-
atively solving a sequence of a quadratic program and three
non–lineal programs. Our proposal improves one of the best
methods for analyzing DW-MRI data (according to the 2012
HARDI Reconstruction Challenge) by reducing the variabil-
ity and the average of the angular error, as well as the error
in the estimated number of compartments per voxel. Addi-
tionally, in our experiments we noted that in most cases of
solutions with large angular error, the actual fiber orientation
can be parallel to the vectorial addition of every pair or triad
of the resulting DBF orientations. For this reason, we added
those new diffusion directions to the BDF set and we heuristi-
cally increase the radial diffusivity for each tensor in the DBF
set in order to improve the model fitting. As a future work,
we are studying alternative approaches to estimate better the
diffusivity profile and, accordingly, the diffusion orientations.
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