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Abstract. We present a method for foreground-background video segmentation
in real time that may be used in applications as Background Substitution, Anal-
ysis of Surveillance Cameras, Highway Cars Detection and so on. Our approach
implements a probabilistic segmentation based on the binary Quadratic Markov
Measure Fields models (QMMFs). That framework regularizes the likelihood of
each pixel to belong to each one of the models (foreground and background).
Then our proposal consists of a model for the likelihood that takes into account:
an estimation of the static background, motion of the foreground, illumination
changes and casted shadows. In order to fulfill the real-time requirement we im-
plement a parallel version of our algorithm in CUDA using a NVIDIA GPU.

1 Introduction

Images are one of the more richer information sources for humans. Then image process-
ing methods has been extensively developed in order to improve the images quality and
to obtain more information about this perceptive source. The variates image processing
methods have also developed many new applications: for instance video segmentation.
This task consists into partition the video in space-time regions that are homogeneous
in their spatial characteristics [1]. The video segmentation requires of selecting appro-
priate characteristics (intensity, color, texture or movement) and to use proper distance
measures for comparing those selected characteristics. Different characteristics and ho-
mogeneity criteria usually lead to different segmentations of the same video. On the
other hand, there is no guarantee that some of these automatic segmentation results are
significantly good in a practical sense. Specific methods for video segmentation need
be evaluated in context of the application for which they are developed.
A common problem in the analysis of video sequences is the Foreground/Background
segmentation in real time. There are different cases that may occur when we process a
video sequence (see table 1). The solution of each case requires of a specific method that
rely on assumptions about how to solve the problem. Our research focuses primarily on
the problem of replacing the background of a video sequence in real time (see Fig 1d),
this problem has been studied for a wide variety of applications in which the objective is
to compare an image with a background model and then identifying the regions where
changes occur. Many algorithms developed that integrate spatial-temporal information
to improve the robustness, some of the techniques in the state of the art are based on
Conditional random field (CRF) [2], Temporal Foreground Probability Model (TFPM)
[3], Kalman Filter [4], Codebooks [5] (robust to illumination changes), Invariant Color
Models [6], Low Pass Filter [7] (robust to shadows) and methods that using GPU [8, 9].
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Space Case I Case II Case III Case IV
Foreground Mobile Mobile Static Static
Background Static Mobile Mobile Static

Table 1: Cases of the video segmentation problem.

We use a binary segmentation model based on Markov Random Field (MRF) models,
which uses a priori knowledge on the two classes we want to segment. Such a knowl-
edge is obtained through a Background Model Likelihood (BML). In order to make
robust our approach, our BML uses: a Tonal Transference Operator, a Casted Shadows
Detection and Correction of Camouflage Situations. In the following sections we ex-
plain our proposal for Foreground-Background (F/B) Segmentation. Our method was
implemented in Visual Studio 2008 using CUDA and runs 47 f/s (frames per second) in
a NVidea 8800GT GPU. The method performance is demonstrated by experiments in
real video and using different situations of F/B segmentation.

2 Foreground-Background Segmentation

Similarly to the methods reported by [3], [8], our method for video sequence segmen-
tation requires of an confident estimate of the background model. We estimate that
background model as the average of a few initial frames of the scene, assuming that
foreground is to yet present (Fig 1a). Then we compute the likelihood of each pixel in
consecutive frames to belong to the background (see Fig 1c). Here we note that a simple
segmentation based on the maximal likelihood (ML) estimation fails in general because
of the following reasons:

1. Illumination changes. Lighting changes in the scene product of unstable lamps,
changes on external illumination condition (as clouds) may generate large differ-
ences between statics images of a single scene.

2. Objects’ shadows. Objects in the foreground can cast shadow in the background
that can erroneously be classified.

3. Camouflage situation. Objects in the scene may have regions with similar color
than the occluded region in the background.

4. Video artifacts and noise. Video compression algorithms as MPEG introduces
artifacts at high frequency regions (i.e. at edges) that result in false detected changes
with respect the background model; image’s noise have a similar effect.

In the following subsections we described the binary segmentation method used in our
proposal, then we present a background model and three important approaches in order
to obtain a robust method to the problems outlined above.



2.1 Binary Probabilistic Segmentation

Let f be an RGB video sequence such that f(x, t) = [f1(x, t), f2(x, t), f3(x, t)]T is
the RGB-vector value of the pixel at x = [x1, x2]T and time (frame) t. Let F (x, t) =
T [f(x, t)] be a tonal transference operation that stabilize the pixel values to illumina-
tion changes and/or camera’s automatic photometric gain control (we detail this trans-
formation in subsection 2.3). Then in order to construct a segmentation method ro-
bust to the above listed problem, we use the Quadratic Markov Measure Field Mod-
els (QMMFs) framework. In particular our method is based on the two classes vari-
ant named Quadratic Markov Probability Field Models (QMPFs). In this framework a
smooth (with reduced granularity) binary segmentation is computed from the solution
to the quadratic programing problem

arg min
p
U
(
p(x, t)

)
s. t. p ≥ 0, (1)

where

U
(
p(x, t)

)
=

1
2

∑
x

(
p2(x, t)dB(x, t) + [1− p(x, t)]2dF (x, t)

+ λ
∑
<x,y>

(
[p(x, t)− p(y, t)]2Wγ(x, y)

))
(2)

with

dB(x, t) = − log[VM (x, t)],
dF (x, t) = − log[1− VM (x, t)],

Wγ(x, y) =
γ

γ +
∥∥F (x, t)− F (y, t)

∥∥2 ,

and VM (x) ∈ [0, 1] is the likelihood of the pixel x to belong to the background class.
This likelihood is defined in subsection 2.2. Finally, the weights Wγ promotes that the
probability edges corresponds with gradient edges. Then in the QMMF framework, p
can be computed with the Gauss-Seidel scheme

p(x, t) =
dF (x, t) + λ

∑
<x,y>

(
p(y, t)Wγ(x, y)

)
dB(x, t) + dF (x, t) + λ

∑
<x,y>Wγ(x, y)

(3)

Since VM (x, t) and 1−VM (x, t) > 0, the resulting energy is convex and the iteration of
(3) converges to the non-negative global minimum [10]. The Gauss-Seidel iteration pro-
duces an improved partial solution at each iteration and converges quickly if a “good”
initial point is provided. Following we enlisted our benefits from last properties of the
segmentation algorithm:

1. We focus in compute a good background likelihood that correctly classify, as much
as possible, the pixels in the two mentioned classes. Then our initial guess is the
likelihood itself: p0(x, t) = VM (x, t),



Fig. 1: Proposal to Foreground-Background segmentation. (a) take N frames of background and
calculate µ(x). (b) Read the following frames f(x, t). (c) Calculate the likelihood function
VM (x, t). (d) Segmentation with QMPF method.

2. We implement a multigrid algorithm with a fast convergence. Note that the update
formula (3) is proper for being implemented in Graphics Processing Units (GPUs),
our particular implementation is in CUDA [11].

3. In the implementation of our real time applications we compute a good partial
solution by iterating the algorithm just few iterations (we use 10 iterations in our
experiments).

2.2 Background model likelihood

We estimate the background model from a short images sequence of the static scene (in
our experiments we use 10 frames), so we can compare each of the following frames
in the video sequence with the background model, and to label the major differences as
foreground. Since we are using MPEG codified video, then the noise and artifacts intro-
duced by the compression algorithm cannot be modeled with a Gaussian distribution.
We empirically found that a reliable classification of the pixels into the foreground of
the background classes can be computed with:

VM (x, t) =
{

1 ‖F (x, t)− µ(x)‖ ≤ θ1
0 otherwise (4)

where we set θ1 = 0.01×dynrange×numchannels, where dynrange is the dynamic
range of the image (255 in our experiments), and numchannels is the number of image
channels (3 in RGB images). Finally, µ is the background model computed with the
simple average of the first N frames:

µ(x) =
1
N

N∑
t=0

f(x, t). (5)

Note that µ(x) = [µ1(x), µ2(x), µ2(x)]T are the corresponding means to the RGB
color channels. Now we explain haw we adapt the for being robust to lighting changes
in the scene, shadows, noise and camouflage situations.



Fig. 2: Frames badly acquired from a WebCam.

2.3 Tonal Transference Operator

There may be many factors that cause a change of lighting in the scene, some of them
are: unstable lamps, external illumination and passing cloud, or the camera’s automatic
gain control (see for instance Fig. 3). In our experiments, it is common that after a
few seconds appear lighting changes in the acquired video which cause that the new
frames are very different from our background model, resulting in a wrong segmenta-
tion. For this reason we include a lighting correction process based on the one proposed
in Ref. [12]. They implement a robust segmentation method for moving objects using
a background update process, the difference is that in our method does not update the
background but the current frame. We update the current frame because occasionally
the frames acquired from a WebCam are defective, as are shown in figure (2). Follows
we present the procedure for controlling the illumination changes at the frame f(x, t).
Let µ be the image average computed with (5), f(x, t) be the RGB value of the pixel x
at the current frame and p(x, t− 1) be the probability in the previous frame of the same
pixel to belong to the background class. Then, by assuming that the previous frame
f(x, t− 1) was correctly segmented then we do the following:

1. We estimate the photometric gain for each channel (RGB) at each pixel that was
classified as background in the previous frame, this is (for i = {1, 2, 3}):

Di(x, t) =

µi(x)/fi(x, t)
p(x, t− 1) ≥ 1/2 and

0 < fi(x, t) < dynrange
1 otherwise

(6)

2. Since the last pixelwise photometric gain is prone to be contaminated by noise, we
compute its average for each intensity pixel value in the current frame:

D̄[bij , t] =
1

]Rij

∑
x∈Rij

Di(x, t) (7)

whereRij = {x | f(x, t) = bij} is the set of the sites (pixels) that have a jth value
in the ith channel, ]Rij is its cardinality and {bij}i=1,2,3;j=1...n are the (n) values
of intensity that can take a pixel for each channel.

3. Now we define the tonal transference operator as

T [f(x, t)] def= βD̄[f(x, t), t]f(x, t) + (1− β)f(x, t), (8)

where β is a free parameter (0.75 for our experiments). Then F (x, t) = T [f(x, t)].



Fig. 3: Effect on VM of the Tonal Transference Operator, T , under an illumination change. (a)
Previous frame. (b) Current frame. VM using (c) F = f . and (d) F = T [f ] .

In figure (3), we can see a best result of the VM (x, t) with the modification of intensity
under a change of lighting in the scene.

2.4 Casted Shadows Detection

Other error source are shadows casted by foreground objects. We note that casted shad-
ows do not affect the foreground but generates that background pixels are misclassified.
Then casted shadows need only be detected in the region that is likely foreground,
VM (x, t) < 1/2. Hence, the next procedure will update the likelihood model, VM com-
puted with (4), by setting VM (x, t) = 1 for these pixels that corresponds to shadows.
Recent reported articles have focused on solving the shadow detection problem, see for
instance Refs. [6, 7, 13, 12, 14]. Those procedures are based on transforming the original
image in the RGB color space to another color space that better separate the luminance
and chrominance components. Thus they implement a series of thresholds for classify
the pixels as background, object or shadow. Based on the article [13], where the goal is
to detect shadows associated with a moving object. In our proposal we use a maximum
likelihood approach for detecting casted shadows. Our procedure is only apply at pixels
such that VM (x, t) < 1/2 and is described as follows:

1. First we calculate in each space (Luminance, Chrominance and Gradient magni-
tude) the likelihoods of a pixel to be in shadow:

– Luminace channel, VL(x, t) = exp
(
−
∥∥F (x, t)− µ(x)

∥∥2
)
.

– Chrominance channel,

VC(x, t) = exp
(
−
(
|F̃ 1(x, t)− µ̃1(x)|

+ |F̃ 2(x, t)− µ̃2(x)|+ |F̃ 3(x, t)− µ̃3(x)|
))
, (9)

where F̃ = [F̃1, F̃2, F̃3] and µ̃ = [µ̃1, µ̃2, µ̃3] are the corresponding F and µ
transformed into the invariant color space c1c2c3, see [6] for more details.

– Gradient magnitude, VG(x, t) = exp
(
−
∥∥FG(x, t)− µG(x)

∥∥2
)

where

FG(x, t) = ‖∇F‖ and µG(x, t) = ‖∇µ‖ are the smoothed gradient magni-
tude (with a box filter of 3× 3 pixels) of F (x, t) and µ(x), respectively.



Fig. 4: Likelihoods and function S(x, t) applying the SD. (a) Background model. (b) f(x, t). (c)
Likelihood in the domain of luminance VL(x, t). (d) Likelihood in the domain of chrominance
VC(x). (e) Likelihood in the domain of smoothing gradient magnitude VG(x). (f) Combination
of likelihoods S(x, t) and threshold applied.

Note that our formulas for calculating these probabilities are parameters–less, dif-
ferently to the proposed in Ref. [13] that needs four parameters.

2. Next, by assuming independence, we combine the three previously calculated like-
lihoods:

S(x, t) = VL(x, t)× VC(x, t)× VG(x, t). (10)

3. Finally, we update VM (x, t) by applying a threshold (θ2 = 0.92 for our experi-
ments) to the function S(x, t):

VM (x, t)←
{

1 if S(x, t) > θ2
VM (x, t) other case. (11)

In Figure 4, we show maximum likelihood estimator on the original VM and the up-
dated one with the shadow detection. In spite of the evident improve in the likelihood,
there is another possible error source: the similarity between the color of a pixel in the
foreground and the color of its corresponding occluded region. In next subsection we
focus in to reduce such a problem.

2.5 Correction of Camouflage Situation

Static objects (or regions) in the foreground occluding background regions with a simi-
lar color can not be detected with the simple model-frame difference. Any visual system
(biological or computational) will have similar problems in that camouflage situations.
However, if the object is in motion, then the optical flow can provide important clues
for detecting camouflaged objects. We propose a camouflage detection procedure to re-
solve this problem. Our prior is that the probability that each pixel does not undergo
a sudden change from one frame to the next one. To introduce this knowledge in our
method we do the following:

1. We calculate the Optical Flow using the method proposed by [15] in order to detect
moving pixels between consecutives frames.



Fig. 5: Improvement in the calculation of VM (x, t) apply the CCS. (a) Background model. (b)
f(x, t). (c) VM (x, t) without CCS. (d) VM (x, t) with CCS.

2. Given the displacement field, d(x, t), and the the background probability i the pre-
vious frame, p(x, t − 1), then we modify the likelihood of belonging to the back-
ground, VM (x, t), as follows:

VM (x, t)←


1/2 p

(
x− d(x), t− 1

)
< 1/2

and VM (x, t) > 1/2

VM (x, t) other case.

(12)

This is, using the color based likelihood, we change the value of VM (x, t) if the pixel
x in the last frame, t − 1, was more like to be foreground, p(x, t − 1) < 1/2, and
now is more like to be background. Then we express this uncertainty by updating its
likelihood to 1

2 . Figure (5) show the VM (x, t) using this procedure for correcting the
color similarity (CCS). We note that there is an improvement on the inner regions of the
object to segment. However, we can see that there are some errors in the contour, those
errors depend speed of the foreground in the scene.

3 Experiments and Results

To compute the VM robust to lighting changes in the scene, shadows and camouflage
situations, we have the algorithm 1, which was implemented in Visual C++ 2008, us-
ing an architecture GPU (Nvidia GeForce 8800 GT 512 MB, programming language
CUDA (Compute Unified Device Architecture)), OpenCV (free software that contains
a computer vision library), PC Pentium 4 CPU 3.40 GHz and 512 MB RAM and Win-
dows XP Operating System. This hardware can be considered modest. The experiments
were performed with images of 320x240 pixels, acquired in real time from a WebCam
and from video files. We used the same set of parameters for all the presented experi-
ments, those values are:

[θ1, λ, γ,MaxIter, β, θ2] = [0.01, 300, 0.01, 10, 0.75, 0.92].

We present the results that we obtain in our scenario (work cubicle), proving that our
method is robust to lighting changes, camouflage situations and shadows, the complete
method (applying the Tonal Transference Operator (TTO), the Casted Shadows Detec-
tion (CSD) and the Correction of Camouflage Situation (CCS). Our system processing



Algorithm 1 Calculate the robust VB
1: Calculate the background model (equation 5) with the first N frames.
2: For the next frame, calculate VM with the equation (4) and apply the segmentation with

QMPF method (3) {simple approach}
3: while frame <> NULL do
4: Apply the Tonal Transference Operator (8) {robust to lighting changes}
5: Detect casted shadows (11) {robust to shadows}
6: Correct of Camouflage Situation (12) {robust to color similarity}
7: Segment with QMPF method (3)
8: end while

rate equals 47 frames per second. This time includes the image acquisition, image pro-
cessing (GPU/CPU) and display of the frame.

Figure (6) is designed to illustrate the process, this shows the behavior of our method,
step by step, under: camouflage situations, lighting changes and shadows. In Panel (a)
shows (at time t) the frame to be segmented, Panel (b) the simple likelihood between
the model and the current frame. Panel (c) shows the VM after applying the TTO. Panel
(d) presents the VM after applying the TTO and the CCS. Next, Panel (e) shows VM
after applying the TTO, CSD and CCS. Panel (f) shows the final segmentation with our
method. Finally, we illustrate the background substitution application in Panel (g).

For the (indoor/out–door) surveillance applications we used the videos of the research
team Computer Vision and Robotics UCSD [16], t. In Figure (7) shows some results
using the files “intelligentroom raw” and “highway raw” I and II. Column (b) shows
the results of our method before the QMPF binary segmentation (the detected shadows
are shown in red). For some applications, the background image can be captured previ-
ously, but in other cases it is impractical to wait for a moment in which only show the
background of the scene. Note that in highway videos are detected false casted shad-
ows. Those are product of a corrupted background model that averages moving cars.
However, our method has not problem in the car detection task. The final segmentation
is shown in column (c).

We compare qualitatively our method with other state of the art. In Ref. [17] is presented
a comparison of two statistical methods (SNP and SP) and two deterministics (DNM1
and DNM2) for the detection of shadows and objects. They conclude that for a gen-
eral purpose shadow detection system, the better results was using the method DNM1.
For the whole sequence of the file “intelligentroom raw” we note that our method de-
tects fewer shadows that the methods mentioned above, however, our method have less
mistakes in the segmentation of the person. In Figure (8) we show one of the results
reported in [17] and the results that we obtain with our method. Note that compared
methods are prone to overestimate the person at the feet region and their solution are
not compact.



Fig. 6: Background substitution in our scene. (a) f(x, t). (b) VM (x). (c) VM (x) applying the
TTO. (d) VM (x) applying the TTO and CCS. (e) VM (x) applying the TTO, CSD and CCS. (f)
Applying the method QMPF to the robust VM (x). (g) Background substitution.

Fig. 7: Surveillance camera and Highway cars detection. (a) f(x, t). (b) Method with TTO and
CSD, without QMPF. (c) Complete method. Red is Shadow. Blue is Object.



Fig. 8: Comparison with others methods using the “intelligentroom raw” file. (a) f(x, t). (b)
SNP method. (c) SP method. (d) DNM1 method. (e) DNM2 method. (f) Our method with TTO and
CSD, without QMPF. (g) Our Complete method. Red is Object. Blue is Shadow.

4 Conclusions

We propose a robust method for binary segmentation of video sequences. The method
is designed for foreground-background video segmentation and may be used several ap-
plication applications as Background Substitution, Analysis of Surveillance Cameras,
Highway Cars Detection and so on. Our approach implements a probabilistic segmen-
tation based on the binary Quadratic Markov Measure Fields models (QMMFs). That
framework regularizes the likelihood of each pixel to belong to each one of the mod-
els (foreground and background). Then our proposal consists of a model for the like-
lihood that takes into account: an estimation of the static background, motion of the
foreground, illumination changes and casted shadows.

Our method address the problems of lighting changes, shadows and camouflage situa-
tions. The change lightning produces scene variation respect a background model. Our
solution consists of an estimation of the photometric gain for each pixel color value and
to adjust the current frame colors. Shadows are detected by adapting the proposal in
[]. That consist on combine likelihoods of the model and the current frame in a feature
vector composed by the luminance, chrominance and gradient magnitude. Different to
the original proposal in [] that requires of 4 parameters, our adaptation is parameter-
less. The camouflage problems (color similarity of the foreground and background) is
palliated using optical flow information, this solution assumes the foreground motion is
smooth and larger in magnitude than the background motion.

Our implementation runs in real time (47 f/s) using a video card NVIDIA and the pro-
gramming language CUDA, a modest hardware.
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