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Abstract. This paper presents a particle filter-based approach for mul-
tiple target tracking in video streams in single static cameras settings.
We aim in particular to manage mid-dense crowds situations, where, al-
though tracking is possible, it is made complicated by the presence of
frequent occlusions among targets and with scene clutter. Moreover, the
appearance of targets is sometimes very similar, which makes standard
trackers often switch their target identity. Our contribution is two-fold:
(1) we first propose an estimation scheme for motion priors in the cam-
era field of view, that integrates sparse optical flow data and regularizes
the corresponding discrete distribution fields on velocity directions and
magnitudes; (2) we use these motion priors in a hybrid motion model
for a particle filter tracker. Through several results on video-surveillance
datasets, we show the pertinence of this approach.

1 Introduction

Visual target tracking has been the object of intense research in the last years,
in a parallel trend to the huge development of visual surveillance (VS). If VS
systems have invaded our daily lives, it is remarkable that many of its features
still rely on human monitoring of up to dozens video screens. Computer vision
techniques, such as motion detection and tracking, have started to be integrated
in these systems, but we are still far to have a completely automatic system that
would understand how people are moving, give high-level interpretation of the
scene, or trigger alerts in case of suspect activities. The present work lies in this
context of automatization of video surveillance systems, and in particular in the
robust estimation of target trajectories, among mid-dense crowds. In that case,
visual tracking is generally possible, but it is made difficult by frequent occlusions
between targets and with scene clutter. Multiple, overlapping cameras settings
may help to disambiguate among targets identities, but it is expensive, as more
hardware is required. Here, instead, we focus on a cheap, monocular scheme and
aim at tracking as many human targets as possible, in spite of the occlusions
they may undergo. To reach that goal, we rely (1) on a probabilistic approach
based on an observation model that can cope with partial occlusions, and (2) on
a representation of the prior distributions of targets velocities, integrated as a
proposal distribution in a particle filtering scheme. This second element, the use
of motion prior, is the main contribution of this work, and to our knowledge it
had not been proposed before in this form.



The organization of this paper is as follows: first, in Section 2, we give a
short glance on the – huge – existing literature of monocular target tracking; we
explain in Section 3 how velocities distribution are estimated, and in Section 4,
we propose a particle filter-based scheme that uses these priors as a proposal
distribution and motion model. Finally, in Section 5, we present experimental
results on standard datasets of video-surveillance and in Section 6, we balance
the pros and cons of our approach.

2 Related work

Target tracking in monocular video streams has generated a great amount of
approaches, so that making an overview of the literature is a difficult exercise.
Most early works have focused on coping with binary blobs detected from a
background modeling algorithm [1], and with using stochastic processes tools
imported from the radar community, i.e. by considering objects in motion as
undistinguishable “dots”. Then standard approaches have made extensive use
of object appearance, such as color, geometric moments, spectral properties or,
simply, shape.

Seminal appearance-based works include in particular the one of Comani-
ciu [2], who proposed the concept of Mean Shift tracking, i.e. of tracking the
modes of the object likelihood, given its appearance. After the work of [3], in
which particle filters were introduced for the first time in computer vision, in
the context of active contours tracking, Monte-Carlo methods have taken the
lead in the literature. Pérez et al. [4], on the one hand, and Nummiaro et al. [5],
on the other hand, have proposed the first particle filter trackers based on color
histograms, in the context of face tracking. It has proven to be particularly ro-
bust, e.g. in video-conferencing applications. The idea, which is still used in this
paper, is to use a probabilistic observation model based on the color content of
the target to track. Many more extensions have been proposed later on to the
original principle of Sequential Monte-Carlo techniques, based on the combina-
tion of sampling strategies, probabilistic observation models and probabilistic
motion models. On sampling mechanisms (which will be recorded briefly in this
paper), novel ideas have been introduced from the statistics community [6], or
from the machine learning community [7], among the others. On probabilistic
observation models, many works have shown that particle filtering was flexible
enough to integrate image-based information of very different nature [8]. On
probabilistic motion models, on the contrary, few novel models have been pro-
posed to enhance tracking algorithms, and most systems rely on very simple
ones (constant velocity or acceleration, for example). Our work focuses on this
part, and studies the use of motion priors learnt from the video monitoring of a
scene to improve the motion model.



3 Motion priors

We build a regularized representation of the distribution of image velocities
v = (vm, vθ) in a monitored scene, where vm is the velocity magnitude and vθ

its direction, given the position r = [x, y] in the image, i.e.

p(v|r) = p(vθ|r)p(vm|r, vθ). (1)

We model p(vm|r, vθ) as a Gaussian distribution, as, when considering one
motion direction at one point, people tend to walk at similar velocity magnitudes.
We use a discrete distribution for the more complex p(vθ|r). For estimating both
distributions, we use motion data samples from video-sequences recorded in the
same conditions as encountered during tracking, except that we use a much
rougher information than precise, individual target tracking, namely optical flow.
The optical flow algorithm to use can be either dense [9] or sparse [10]. In both
cases, recollected velocity orientations are integrated into motion orientation
histograms, whereas magnitudes are used to estimate the Gaussian conditionals.

From optical flow to velocity orientation histograms. For each frame t of the
video sequence, we are given a motion field vt(r) = (vmt (r), vθt (r)), computed by
an optical flow algorithm. Histograms h(r) of instantaneous velocity directions
at an image point r = [x, y] are incremented at the bin corresponding to the
observed orientation vθt (r), by the quantity

vmt (r)/(κ+ vmt (r)), (2)

where κ serves as a velocity magnitude threshold, in order for static pixels
(e.g. from the background) not to be taken into account. Moreover, to limit noisy
contributions due to aperture effect, we exclude points for which the minimal
value of the eigenvalue of the auto-correlation matrix is inferior to a thresh-
old, as described in [11]. This avoids accumulating incorrect orientations from
textureless moving areas.

Regularization of velocity orientation distributions. Let h(r) be the normalized
histogram of instantaneous velocity directions observed in the video-sequence
at an image point r = [x, y], belonging to some image region Ω. Let B be the
number of bins in the histogram, and h(r)i the value of the i-th bin in this
normalized histogram. We define log h(r) as the histogram made of the logs of

the entries of h(r), i.e. [log h(r)]i
def
= log [h(r)i].

We estimate a smooth version d of the log of the histogram field, through the
following optimization scheme in the manifold D = {d ∈ RB s.t.

∑
i e

di = 1}:

min
d∈D

U(d) =
1

2

∑
r∈Ω

∑
i,j

Wij([di(r)− log hj(r)]2 + λ
∑

s∈N(r)

[di(r)− dj(s)]2). (3)

The first term is the data term, fitting the d’s to the collected data. The
second one is a smoothness constraint, that makes the histogram at one point r



(a) (b)

Fig. 1. Velocity map. (a) Velocity orientations histogram for pixel (560, 220). (b) The
highest two local maxima in the velocity orientations histogram, for each 20th pixel.

similar to the ones of its neighbourhood N(r). Terms Wij encodes the similarity
between some different, but close histograms bins, i.e. if the histograms are a bit
shifted, they are somewhat similar; moreover, it includes the particular fact of
our histograms to be angle histograms, i.e. for which bins are cyclic.

By developing the expression of U(d), and after regrouping terms,

U(d) = C +
1

2

∑
r∈Ω

(d(r)TW(1) log h(r) +
∑

s∈N(r)

d(r)TW(2)d(s)), (4)

with C a constant, and

W
(1)
ij = −2λWij , (5)

W
(2)
ij =


−2λWij if s 6= p{

(1 + 2V λ)
∑
l

Wil − 2λWii if i = j

−2λWij otherwise.
if s = p.

(6)

Expressed this way, the problem of Eq. 3 can now be solved with classical
optimization approaches. Here we adopted a Gauss-Seidel scheme in RB , in which
after each iteration the new estimate for d is projected on the manifold D (i.e.
re-normalization). In our experiments, some 40 to 60 iterations were necessary
to ensure convergence, depending on the chosen value for λ (we set it to 0.5 in
ours experiments).

Last, we used the regularized field to fill in image areas where not enough
information was available. Typically, this occurs in zones where physical occlu-
sions occur: an example in the datasets we used (see Fig. 2) is the pole at the
center of the image. As most people pass behind it, no information is recollected
here. However, we can infer the velocity fields in these regions as follows:



(a) (b)
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Fig. 2. Velocity orientation histogram fields, for two directions i (below and above).
(a) and (c) Value in the raw histograms (vk). (b) and (d) Regularized histograms after
convergence (edi). For clarity, data are shown every 20th pixel.

1. Form a binary image with data with not enough information and decompose
it into convex regions.

2. Get the median axis of each shape and sample pairs of points on the borders,
on each side of the median axis.

3. Sample orientations on each of the sampled point pairs.
4. Interpolate between these two positions/orientations by a cubic polynomial

and generate histogram entries whenever the polynomial curvature stays
below a threshold.

With the process above, we can fill in holes in the velocity field, and, as we
will show in Section 5, this helps preserving the trajectories continuity.

Results of the histogram calculation and regularization are shown in Fig. 1.
We computed the regularized velocity orientation map using > 3000-frames from
different sequences of the PETS’2009 dataset [12]. The left image is an example
of a histogram for a single pixel, while the right image shows the main two local
maxima for the orientation histogram, at each pixel. To speed up the process,
we also discarded from the process image regions where no significative motion
was observed. In Fig. 1, these are the regions where no arrow is displayed, its
complement being Ω. In Fig. 2, we show the regularization results for a particular



direction (the one of the arrows), and the lengths of each arrow represent the
value of the bin in the histogram. On the left side are the raw histograms, and we
can appreciate how, because of the sparseness of the input data in some areas, we
may have quite discontinuous orientation distributions around neighbour pixels.
For this reason, regularization is critical to provide a smoother, more consistent
map.

4 Tracking with particle filters and motion priors

This section details our particle filter-based tracker and the way it takes benefit
from the motion priors computed beforehand.

4.1 Trackers: definition

As done classically, trackers are defined here as stochastic filters that estimate a
state relative to the objects of interest, observed through the image. This state
includes all the information about the targets needed to predict their posterior
state. This could involve their position in the image (i.e. their bounding box
center [x, y]), their apparent size ([h,w]) or their velocity ([vm, vθ]). However,
as we use particle filtering to perform the inference, it is important to limit
the dimensionality of state vectors, to avoid an escalation in the number of
required particles. Hence, we opted to set [h,w] as a deterministic function of
the position [x, y], which is possible when a partial knowledge of the scene is
available, as explained for example in [13]. In a few words, to estimate this
mapping from [x, y] to target sizes [h,w], we make the assumptions (1) that the
objects of interest are pedestrians and (2) that the observed scene is planar.
We also suppose that the camera-scene geometry is roughly known, so that an
estimate of the projection matrix is available. Hence, the state for a single target
is reduced to the target position and its velocity, Xt = [xt, yt, v

m
t , v

θ
t ]T .

To detect new targets and initialize the corresponding trackers, we use a per-
pixel statistical background model from a background modeling algorithm [1].
The most likely foreground pixels are grouped into connected components of a
binary image (blobs). To manage exclusively pedestrians, we use several heuris-
tics, e.g. a threshold on the size of the connected component (proportionally to
the above position-to-scale mapping). We also avoid to validate new targets close
to the predicted position of an existing tracker. If the blobs may correspond to
a group of people, we use the heuristic of [14], based on the profile of the upper
part of the binary region to separate it into individuals. After these filtering
steps, we initialize a pedestrian tracker. As for the removal of trackers, e.g. when
the corresponding target leaves the camera field of view, we maintain a quality
coefficient γ (defined in the next sub-section) for each filter. Whenever γ stays
below a threshold for a given period of time, we remove the tracker from the
pool of trackers.



4.2 Tracking pedestrians with particle filters

Our trackers are implemented as variants of sequential importance resampling
particle filters [15]. They require three main elements: a probabilistic observation
model, a probabilistic motion model, and a proposal distribution. We explain the
three of them in the following.

Observation model. As in [8], the targets appearance model uses color and mo-
tion. For each object k to track, we define and update color and motion reference
histograms, so that in all frames, we can evaluate the likelihood of a possible
target state Xt,k by comparing the histograms hfk , computed at Xt,k for feature

f , with the reference one, hf∗k . We use seven features in total: color histograms in
the H, S, V channels on the upper and lower regions of the target1 (6 features)
and a motion histogram (1 feature). This motion histogram indexes absolute
differences between consecutive images.

For each feature f , the comparison with the reference histogram relies on the
Bhattacharya distance, referred to as D, between the reference histogram hf∗k
and the current one hfk(Xt,k). The corresponding likelihood is defined as

P (Zt|Xt,k) ∝
∏
f

exp

(
−
D2(hfk(Xt,k),hf∗k )

2(σf )2

)
, (7)

where σf is the expected standard deviation on the Bhattacharya distance
for feature f . Setting a large value on the histograms related to the V channel
allows for example more robustness to illumination changes. Note that reference
histograms are updated regularly in order to cope with changes in the image
acquisition process (see for example [8] for details on the update mechanism).

Motion model(s). The probabilistic motion model encapsulates the a priori
knowledge on how targets move p(Xt+1,k|Xt,k). A very simple and common
motion model is a constant velocity model

Xt+1,k =

[
I2×2 I2×2

0 I2×2

]
Xt,k + Sx,y(X̄t,k)νA, (8)

where νA ∼ N(0,ΣA) is a zero-mean Gaussian additive noise with variance
ΣA and Sx,y(X̄t,k) is a scale factor deduced from the mapping from [x, y] to
target size, described in 4.1. We will refer to this first model as p(1)(Xt+1,k|Xt,k).

A second model is defined with the prior on velocities (Section 3), as

p(2)(Xt+1,k|Xt,k) = γp(1)(Xt+1,k|Xt,k) + (1− γ)p(v)(Xt+1,k|Xt,k), (9)

where p(1)(Xt+1,k|Xt,k) is the motion model in Eq. 8, and p(v)(Xt+1,k|Xt,k)
a model relying on the estimated velocity prior:

1 The use of several histograms on different sub-regions is a common method to have
some spatial information taken into account.



Xt+1,k =

[
I2×2 I2×2

0 0

]
Xt,k +

[
0

v
(p)
t+1,k

]
, (10)

where v
(p)
t+1,k ∼ p(vt+1,k|rt+1,k). The idea is to use this prior as a proposal

whenever the filter undergoes difficulties, e.g. because of occlusions, which makes
the prediction from the constant velocity model risky, since the state estimation
is poor. Hence, the coefficient γ weighting the two distributions is precisely the
aforementioned quality measure evaluating the current estimation.

Proposal distribution. The third fundamental brick of the particle filter is the
proposal distribution q(Xt+1,k|X1:t,k,Z1:t), i.e. the distribution from which sam-
ples are generated at each step from the previous one. We chose its “boot-
strap” form, where the proposal distribution is the same motion model, i.e.
q(Xt+1,k|X1:t,k,Z1:t) = p(Xt+1,k|Xt,k).

The particle filter in action. Given the previous three ingredients, the particle
filter tracker is extremely simple to implement. It maintains a set of weighted

particles {(X(n)
t,k , ω

(n)
t,k )n} and iterate the following steps

1. From the previous set of particles, generate a new set of particles from the
proposal distribution, i.e. for all n

X
(n)
t+1,k ∼ q(Xt+1,k|X(n)

1:t,k,Z1:t+1); (11)

In our case, we will evaluate all the motion models described above as pro-
posal distributions (i.e. p(1), p(2), p(3));

2. Update particle weights with the particle state likelihood, the motion model
and the proposal, i.e. for all n:

ω
(n)
t+1,k ∝

p(Zt+1|X(n)
t+1,k)p(X

(n)
t+1,k|X

(n)
t,k )

q(X
(n)
t+1,k|X

(n)
1:t,k,Z1:t+1)

ω
(n)
t,k = p(Zt+1|X(n)

t+1,k)ω
(n)
t,k ; (12)

3. Compute a quality measure associated to the tracker as the average likeli-
hood among particles.

γk =
∑
n

p(Zt+1|X(n)
t+1,k)ω

(n)
t,k ; (13)

4. Normalize weights and compute the average state; test the weights variance,

approximately
∑
n[ω

(n)
t+1,k]2; if it is superior to some threshold, the particle

set is degenerate; then proceed to re-sample the particles with replacement.
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Fig. 3. A few frames of tracking in sequence S2.L1. The tracks as estimated by our
tracker and the ground truth tracks are superimposed.

5 Experimental results

We present some results of using our approach in real tracking situations. We
employed public datasets such as PETS’2009. Since ground truth data is not
available, we have manually generated one considering a rectangle around each
target in the sequence. The two flavours of the particle filter we propose here
(that differ by using or not the motion priors in the probabilistic motion model)
are evaluated with a common methodology that has been used to evaluate the
trackers performance [12]. Moreover, we also evaluate how the process of filling
incomplete prior data improves tracking results.

Illustrations on multiple target tracking with motion prior are presented in
Fig. 3. In the represented frames, we draw the feet position of the tracked pedes-
trian in the 20 previous frames. Thicker lines represent the ground-truth (GT)
and thinner lines are our tracking estimation (TE). As it can be noticed, both
are very close.

To evaluate our tracking results quantitatively, we used several metrics from
the aforementioned evaluation scheme: (1) Normalized Multiple Object Detec-



Method SFDA ATA N-MODP MOTP

PF - Linear 0.40 0.42 0.51 0.51
PF - Motion Prior 0.42 0.46 0.51 0.52

PF - Motion Prior Fill 0.45 0.46 0.54 0.54

Table 1. Results for the S2.L1 sequence. The first row shows the result with different
quality indicators for a classic SIR particle filter. The third row shows the results taking
into account a motion prior and the last tracking results are obtained with motion priors
and the strategy mentioned above of filling zones with incomplete information. Note:
All results are the median value of 30 experiments.

tion Precision (N-MODP), which reflects the target detection rate and precision;
(2) Multiple Object Tracking Precision (MOTP), that measures the tracks preci-
sion; (3) Sequence Frame Detection Accuracy (SFDA), and (4) Average Tracking
Accuracy (ATA), which measures tracks precision but takes more into account
the shortening of trajectories. These four indicators take values between 0 and
1 (1 being for the best tracker).

In table 1, we evaluate our tracking system with those metrics. Each row
represent the average results obtained in different setups. The first one uses a
traditional SIR particle filter tracker with a linear motion model. The second
one is a SIR particle filter using the motion prior in the proposal. And the final
experiment considers a motion prior with the strategy explained above of filling
zones with incomplete information. When comparing the three rows, one can
observe that N-MODP and MOTP have similar values but that SFDA and ATA
increases substantially when incorporating motion priors. This means that the
estimated trajectories, if not more precise, are longer, i.e we can keep the ID
of a given pedestrian on longer periods of time. This is what we expected from
using priors: in presence of occlusion from other targets or clutter (in which case
the estimation of the velocity may be quite noisy) or in situations where the
target undergoes non linear motion (i.e. in a zone where pedestrians tend to
make sharp turns), the prediction step of the particle filter using motion priors
sample particles in a way much closer to what people tend to do at this place
than what would generate a too simple or too noisy motion model.

Last, in Fig. 4, we have compared the results of our own tracking strategies
with the results obtained by several other authors as reported in [12]. For all
indicators, the obtained results are quite competitive, and as we can see the most
important result is the ATA metric (green column) which reflect the continuity
of trajectories, in other words we can follow all targets using less trackers as
other approaches.

6 Conclusion

We have described an original enhancement to color and motion-based particle
filer tracking that relies on the use of motion priors. We showed how to estimate



Fig. 4. Performance evaluation of tracking proposed by other authors and our proposal
in set S2.L1 (view 1) of PETS 2009 dataset, for the four quality indicators. The last
three results use our tracking system with linear motion model, motion prior model and
a motion prior model with the strategy of filling zones with incomplete information.
Other authors results have been reported in [12].

these prior distributions from optical flow computed on video-sequences grabbed
by the same camera from which the camera is done. As in general few data are
available for evaluating these distributions, we have proposed a regularization
scheme for estimating them and filtering out artifacts. Then we have shown that
the use of these priors in the probabilistic motion model of the tracker particle
filter allows improvements in the tracker performance, in particular in terms of
trajectory targets lengths.

Among our ongoing and future works, we aim at learning higher level informa-
tion about not only local motion in the scene, but also on long-term information
about trajectory, i.e. goals, interactions. . . based on low-level image information
such as optical flow.
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