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Abstract. Evolutionary algorithms have been very successful at solving global 
optimization problems. Two competing goals govern the performance of evolu-
tionary algorithms: exploration and exploitation. This paper proposes a new 
heuristic to keep population diversity: the shake and the regicide. The shake 
heuristic improves the exploration by perturbing the whole population. The 
regicide heuristic (kill the leader) reduces the risk of being, early, trapped by a 
local minimum. Experiments demonstrate that the Shake-Regicide heuristic im-
proves significantly the precision of the results (in about 3 orders of magnitude) 
of standard differential evolution, genetic algorithm and evolution strategy. 

1   Introduction 

The problem of computing the global optimum arises in almost every field of busi-
ness, engineering, and sciences. For example, engineers need to optimize the configu-
ration parameters of a production process. An enormous effort has been applied to 
solve global continuous problems [1].  We consider the following unconstrained 
global continuous optimization problem: 

, (1) 

where ƒ:  ℜn to ℜ is a real-valued function defined on x ∈ ℜn, and it can be non dif-
ferentiable function.  A significant problem faced during optimization occurs when  ƒ 
is non-convex, perhaps with many local minima.  The problem becomes a major chal-
lenge when local minima are present.  Evolutionary algorithms (EA) [2, 3] have been 
used to solve global optimization problems, and proved very robust. For example: 
Genetic Algorithms (GA) [4], Evolution Strategy (ES) [5] and Differential Evolution 
(DE) [6]. EA analogized the species evolution process manifested in the biological 
adaptation to changing environments; such process is emulated by EAs for finding the 
optimum through the evolution of a synthetic population of candidate solutions.  

Two competing goals govern the design of EA [7]: the exploration and the exploi-
tation. Exploration is needed to ensure that the entire search space is thoroughly ex-
amined resulting in a reliable global optimum estimation. On the other hand, exploita-
tion is important since the refinement of the current solution will often produce a 
better solution. Different mechanisms to improve exploration have recently been 
discussed in the literature.  Mutation operators based on physic phenomenon, such 



like electromagnetic theory [8], and statistical properties of the population [9, 10]  
have proved some success. Hybrid algorithms that combine DE and GA with an Es-
timation Distribution Algorithm (EDA) [11, 12] to promote exploration are used suc-
cessfully in low dimensional space (dimension 5 and 10). This paper, however, pro-
poses a new heuristic that promotes exploration by spawning new individuals in 
promissory neighborhoods of the search space, named here Shake–Regicide Heuristic 
(SRH). The goal of this paper is to introduce the new heuristic, and to asses the per-
formance of three EAs modified with SRH. The dimensionality of the problems tested 
is 30, 50 and 100. The SRH promotes the diversity (Shake) and, at the same time, 
eliminates hegemonic individuals (Regicide).  SRH is inspired by the behavior of 
social individuals [13] and economy laws [14, 15]. 

Standard genetic or evolution inspired algorithms promote the reproduction and 
replication of individuals with better fitness value with respect to the average fitness 
of the population (hegemonic individuals). Even at initial generations, when the 
search space is not well explored yet, the selection operator favors the fittest individu-
als. In the absent of additional diversity to balance the selection pressure, the search 
suffers of premature convergence, generally ending at a local minima. The regicide 
strategy removes hegemonic individuals from the population; they can only reproduce 
or inherit their genetic material during a few generations. This reasoning is based on 
the guess that at initial stages the population has low probability of being near the 
global optimum when high exploration is recommendable. 

Shake strategy consists of a hybrid technique inspired by the Differential Evolution 
algorithm and a procedure for estimating the population distribution. The Shake heu-
ristic generates new random individuals in a neighborhood of the population. The new 
individuals can explore neighborhoods of the space which the reproduction or muta-
tion operators have difficulties to identify. A neighborhood is identified by statistical 
means (explained later). We evaluate the proposed combined SRH in a benchmark 
functions set included in the Appendix. Our results show that the heuristic is competi-
tive and robust to avoid local minima (with high probability).    

 
This paper is organized in the following way. Section 2 introduces the Shake – Regi-
cide Heuristic. Section 3 lists the pseudo-code of the Genetic Algorithm, Evolution 
Strategy, and Differential Evolution algorithms modified with the Shake - Regicide 
Heuristic. The experimental results are reported in Section 4. Conclusions and final 
remarks are provided in Section 5.  

2   Shake – Regicide Heuristic   

The Dynasty Period (DP), Shake Heuristic (SH) and Regicide Heuristic (RH) are 
presented in this section. The context of these heuristics is the framework of Evolu-
tionary Algorithms. However, the SRH could be straightforward generalized to other 
evolutionary or distribution-estimation based algorithms, as our experiments illus-
trate.  

Firstly, we introduce our notation. Let   be the vector of m 
individuals (population) at the k-th iteration, where the vector 



, in n dimension, denotes the i-th individual. Then, ƒ:ℜn�ℜ 

defines the fitness function and    the fitness vector 

with  as the best individual in the k-th iteration, i.e.  

2.1 Dynasty or Hegemonic Periods 

Although hegemonic individuals are, implicitly, promoted in the naturist evolution, 
the societies, no necessarily humans, have implemented mechanisms for its control. 
For instance, legal frameworks forbid economical monopolies and dictators are 
commonly eliminated in conspiracies developed at corridors of power. The Sherman 
Act [9] is an example of a legal mechanism for preventing the consolidation hege-
monic individuals in economy. The Sherman Act provides: "Every contract, 
combination in the form of trust or otherwise, or conspiracy, in restraint of trade or 
commerce among the several States, or with foreign nations, is declared to be illegal" 
and "Every person who shall monopolize, or attempt to monopolize, or combine or 
conspire with any other person or persons, to monopolize any part of the trade or 
commerce among the several States, or with foreign nations, shall be deemed guilty of 
a felony”. The Sherman Act promotes the elimination of monopolies (Hegemony 
individuals in economy) because monopolies constrain the free competence between 
independent companies and decrease the capability decision of consumers. 

Moreover, a dynasty is a continuous succession of rules that belong to the 
same family (or group, for our purposes). The dynasty period describes the era during 
which that family reigned. A long dynasty period produces a government with high 
hegemony [13], thus the local economy and social situation decrease for the popula-
tion. Examples of long dynastic periods are the Chinese dynasty between I to X cen-
tury, the Ming and Quing dynasties, the Romanov dynasty in Russia, and the Ottoman 
dynasty in Turkey.  

In EA, we call “leader” or “king” the best individual of the population. A 
dynasty period is the number of generation during which a king or a king’s son is the 
best individual in the population. In the SRH, a dynasty period is regulated by the λ 
parameter. The Regicide heuristic is applied to the population in order to emulate the 
dead or decline of dynastic periods. Thus, the fittest individual is systematically 
eliminated every λ generation. The Shake heuristic emulates convulsionary periods, 
those like revolutions. Regicide is applied immediately after a Shake. 

2.2 Shake Heuristic 

The Shake heuristic generates a new candidate population with larger variance in a 
neighborhood of the space around the mean of population. There is only one candi-
date for each individual in the population. A candidate replaces the current individual 
if it gets better fitness value. The first step of the Shake is the computation of the 
mean, µ, and standard deviation, σ, for each dimension of the population. If σ is less 



than a given threshold ρ, the candidate population  is generated with uniform dis-

tribution in the interval [µ-σ,µ+σ]. Next, X  and  are compared, individual to indi-
vidual,  preserving the best one of every pair. The Shake heuristic is formally defined 
in the next algorithm: 
 

Shake Heuristic 
1. Assign ρ=0.1 and compute the parameters µj and σj. 

 
(2) 

 

(3) 

2. If σj < ρ then σj = ρ. 

3. Generate a new vector , where  is    

randomly generated with an uniform distribution.  

∼  ,  (4) 

4. If  i=1,…, m, then .   

2.3 Regicide Heuristic  

Regicide Heuristic eliminates the fittest individual . Next, a substitute  is 
generated close to the centroid of the population (a more democratic individual). 
Finally,   substitutes (or murders, in social terms) the best of the population ( ).   
The regicide strategy is defined in the next algorithm: 

Regicide Heuristic 
1. Assign ε = 0.01. 

2. Compute the individual , where 

,  (5) 

and , µj and σj are computed by equations(2) and 
(3). 

3. Perform .      

3   Evolutionary Algorithms    

The pseudo-code of a GA, ES, and DE algorithms with the Shake-Regicide Heuris-
tic is provided here. These are versions used for the Experiments. 

  



GA-SRH Algorithm 
1. Set k=0 (generation) and create initial random popula-

tion  and  where 

. 

2. Repeat until stop_condition==true  

2.1 Create  (Selection) with r = m/2  
and 

 

(6) 

where  and  are randomly selected in .  

Perform . 

    2.2 Create  (Reproduction) where  

 (7) 

where  and  are randomly selected in  and 

. 

    2.3 Create  (Mutation) where  

 
(8) 

where . Compute . 

    2.4 Set k=k+1, perform where . 

2.5 Every λ iterations, perform Shake Heuristic and 
Regicide Heuristic.     

 
 

 
 
 
ES-SRH Algorithm  

1. Set k=0 (generation) and create initial random popula-

tion  and  where 

. 

2. Repeat until stop_condition==true  
2.1 Create  (Reproduction) with r=2m  

 (9) 



where  and  are randomly selected in  and 

. 

    2.2 Create  (Mutation) where  

 
(10) 

where  and σ is computing in (3). Compute 

.    

2.3 Create  (Selection) and 

perform , i=1,…, m+r-1.   

    2.4 Set k=k+1, perform . 

2.5 Every λ iterations, perform Shake Heuristic and 
Regicide Heuristic.    

 
DE-SRH Algorithm  

1. Set k=0 (generation) and create initial random popula-

tion  and  where 

. 

2. Repeat until stop_condition==true  
2.1 For i=1,…,m. 

    2.1.1 Select  and ,  
perform 

 (11) 

        with F=0.3. 

        2.1.2 If , perform .   

2.2 Every λ iterations, perform Shake Heuristic and 
Regicide Heuristic. 

 

5 Experiments 

In this section, SRH was applied to global minimization problems in order to verify 
its performance and compared with standard versions of GA, ES and DE. This is the 
benchmark functions were solved with the three algorithms, each algorithm with and 
without using the SRH (the standard GA does not include step 2.5 of GA-SRH; the 
standard ES does not include step 2.5 of ES-SRH; and the standard DE does not in-
clude the step 2.2 of DE-SRH).  

   



 
Table 1. Comparison of GA and GA-SRH. 

Best Mean Worst Function 
GA GA-SRH GA GA-SRH GA GA-SRH 

ƒ0 n=30 183.02 0.0015 391.43 0.0120 764.79 0.0205 
ƒ0 n=50 663.22 0.0458 951.58 0.0745 1552.36 0.1181 
ƒ0 n=100 1680.70 0.3516 2415.95 0.4632 3332.87 0.5857 
ƒ1 n=30 28.53 0.0355 66.84 0.2423 133.66 0.5015 
ƒ1 n=50 69.29 0.4489 155.51 0.8033 241.01 1.13 
ƒ1 n=100 282.29 3.61 485.66 4.38 770.74 5.45 
ƒ2 n=30 26.96 0.4497 69.86 1.60 128.07 3.30 
ƒ2 n=50 74.16 4.21 137.44 10.87 238.85 14.51 
ƒ2 n=100 198.91 47.16 300.36 66.29 418.42 80.39 
ƒ3 n=30 0.2548 0.0007 0.4899 0.0014 0.7057 0.0025 
ƒ3 n=50 0.4932 0.0037 0.7088 0.0052 0.8724 0.0084 
ƒ3 n=100 0.7022 0.0115 0.8610 0.0191 0.9737 0.0257 
ƒ4 n=30 0.6685 0.0222 1.19 0.0716 1.75 0.1101 
ƒ4 n=50 1.03 0.1501 1.58 0.1884 2.06 0.2556 
ƒ4 n=100 1.54 0.35 1.87 0.44 2.10 0.59 

  
 
Table 2.  Comparison of ES (µ + λ) and ES-SRH (µ + λ).  

Best Mean Worst Function 
ES ES-SRH ES ES-SRH ES ES-SRH 

ƒ0 n=30 38.64 0.0210 95.58 0.0323 180.98 0.0558 
ƒ0 n=50 142.63 0.0757 232.11 0.1080 333.53 0.1447 
ƒ0 n=100 444.25 0.4974 597.20 0.6270 759.51 0.7452 
ƒ1 n=30 18.95 0.0832 27.23 0.3510 34.58 0.6176 
ƒ1 n=50 43.66 0.8146 59.03 1.03 85.57 1.34 
ƒ1 n=100 126.31 3.89 146.78 5.08 182.76 6.04 
ƒ2 n=30 4.46 1.47 11.68 4.33 17.69 8.04 
ƒ2 n=50 17.84 9.43 26.77 13.95 42.48 24.12 
ƒ2 n=100 48.54 24.80 66.05 35.59 90.01 47.56 
ƒ3 n=30 0.0666 0.0017 0.1593 0.0025 0.2543 0.0036 
ƒ3 n=50 0.1352 0.0038 0.2567 0.0062 0.4227 0.0092 
ƒ3 n=100 0.2383 0.0152 0.3344 0.0198 0.5103 0.0243 
ƒ4 n=30 0.2975 0.0896 0.5138 0.1603 0.7747 0.2211 
ƒ4 n=50 0.5025 0.1978 0.6972 0.2721 0.9178 0.3261 
ƒ4 n=100 0.6054 0.4256 0.8157 0.4805 1.04 0.5607 

 
We performed 30 Monte Carlo independent runs of each algorithm for each 

benchmark function.  The test problems are: Sphere model (ƒ0), generalized Rosen-
brock (ƒ1), generalized Rastrigin (ƒ2), Ackley function (ƒ3) and generalized Griewank 
(ƒ4).  The optimum value of these functions is 0.0. A population of 200 individuals 
was randomly initialized on the allowed range of either decision variable, and 
500,000 fitness function evaluations. Shake is always applied after the regicide every 
10 generations. Tables 1 to 5 summarize the results and comparison of problems in 
dimension 30, 50 and 100. In every case, the modified EA with SRH obtained a better 
result than the standard version. 



Table 3. Comparison of ES (µ + λ) and ES-SRH (µ + λ). We used panmictic reproduction [16].  

Best Mean Worst Function 
ES ES-SRH ES ES-SRH ES ES-SRH 

ƒ0 n=30 1.62 0.0049 8.94 0.0199 23.13 0.0471 
ƒ0 n=50 25.43 0.0451 50.31 0.0822 87.51 0.1167 
ƒ0 n=100 223.65 0.3223 297.04 0.4604 442.13 0.6376 
ƒ1 n=30 10.15 0.2251 13.02 0.3246 16.52 0.4260 
ƒ1 n=50 25.87 0.6850 31.29 1.13 39.65 1.43 
ƒ1 n=100 83.78 4.39 101.79 5.77 126.70 7.65 
ƒ2 n=30 0.2393 2.09E-9 0.7908 0.0014 2.0240 0.0231 
ƒ2 n=50 2.24 0.0376 5.04 0.6402 7.46 1.80 
ƒ2 n=100 21.06 8.81 29.56 14.84 41.62 22.20 
ƒ3 n=30 0.0054 0.0009 0.0149 0.0019 0.0310 0.0029 
ƒ3 n=50 0.0253 0.0036 0.0523 0.0062 0.0918 0.0089 
ƒ3 n=100 0.1126 0.0173 0.1559 0.0225 0.2237 0.0281 
ƒ4 n=30 0.0471 1.24E-4 0.0882 0.0203 0.1359 0.1045 
ƒ4 n=50 0.1388 0.0543 0.2336 0.1225 0.3575 0.1950 
ƒ4 n=100 0.3442 0.2815 0.4705 0.3884 0.5689 0.5000 

Table 4.  Comparison of  DE and DE-SRH.  

Best Mean Worst Function 
DE DE-SRH DE DE-SRH DE DE-SRH 

ƒ0 n=30 208.83 0.0019 522.37 0.0103 944.19 0.0200 
ƒ0 n=50 915.08 0.0311 1397.02 0.0695 2070.54 0.0985 
ƒ0 n=100 2335.25 0.3687 4100.89 0.4663 5832.83 0.6130 
ƒ1 n=30 24.33 0.0840 82.96 0.2415 157.74 0.4242 
ƒ1 n=50 115.46 0.5641 325.35 0.8765 625.48 1.28 
ƒ1 n=100 515.29 3.83 1127.68 4.88 1751.66 5.55 
ƒ2 n=30 41.35 0.0559 69.04 0.5756 96.98 2.20 
ƒ2 n=50 145.41 3.93 195.31 8.83 231.89 23.30 
ƒ2 n=100 290.44 37.96 521.48 59.74 622.95 85.15 
ƒ3 n=30 0.3204 0.0008 0.5554 0.0017 0.8449 0.0030 
ƒ3 n=50 0.5228 0.0041 0.7847 0.0058 0.9354 0.0081 
ƒ3 n=100 0.9160 0.0159 0.9902 0.0198 1.05 0.0239 
ƒ4 n=30 0.9735 0.0188 1.46 0.0600 1.86 0.1021 
ƒ4 n=50 1.65 0.1314 2.02 0.1886 2.39 0.4463 
ƒ4 n=100 1.81 0.3263 2.28 0.4197 2.64 0.5369 

Table 5. Comparison of DE and DE-SRH. Both DE versions ran with panmictic reproduction 
[16]. 

Best Mean Worst Function 
DE DE-SRH DE DE-SRH DE DE-SRH 

ƒ0 n=30 0.0 0.0 0.0 0.0 0.0 0.0 
ƒ0 n=50 3.78E-42 3.19E-43 1.09E-41 6.69E-42 1.96E-41 1.26E-42 
ƒ0 n=100 2.26E-14 1.60E-16 3.16E-14 3.03E-16 5.09E-14 4.28E-16 
ƒ1 n=30 4.05E-13 4.68E-14 1.607E-6 9.38E-14 3.08E-5 2.54E-13 
ƒ1 n=50 2.20E-13 2.34E-14 5.52E-13 5.75E-14 1.16E-12 1.12E-13 
ƒ1 n=100 6.18E-9 2.67E-10 1.75E-8 6.90E-10 4.27E-8 2.51E-9 
ƒ2 n=30 110.61 45.88 125.16 102.29 138.69 134.94 
ƒ2 n=50 260.53 131.78 289.64 210.53 308.06 293.39 



ƒ2 n=100 684.80 357.06 728.57 452.29 753.91 554.98 
ƒ3 n=30 0.0 0.0 0.0 0.0 0.0 0.0 
ƒ3 n=50 0.0 0.0 2.34E-20 5.42E-21 5.42E-20 8.35E-21 
ƒ3 n=100 2.14E-17 2.54E-18 4.38E-17 5.65E-18 1.15E-16 1.06E-17 
ƒ4 n=30 1.98E-6 2.34E-7 1.98E-6 2.34E-7 1.98E-6 2.34E-7 
ƒ4 n=50 1.98E-6 3.89E-7 2.11E-6 3.92E-7 3.89E-6 3.99E-7 
ƒ4 n=100 5.60E-6 4.71E-6 5.80E-6 4.71E-6 5.90E-6 4.71E-6 

6 Conclusions and Remarks 

Exploration is an important issue in Evolutionary Algorithm because  poor explora-
tion leads EAs to local minima. A novel heuristic, named SRH, is proposed in this 
paper. SRH is inspired in social investigations and economic laws to promotes wider 
exploration of the EA. The shake heuristic promotes exploration by spawning new 
individuals in a neighborhood around the population mean. After a shake, the regicide 
heuristic is applied to eliminate hegemonic individuals.  
Genetic Algorithm discussion: the GA version with SRH clearly improves the stan-
dard GA by several orders of magnitude. Note that both GA versions use elitism of 
three individuals. The regicide heuristic replaces the best elite with one individual 
generated about the centroid, and the other two are copied to the new population. 
However, removing the elite did not decrement the chance to converge  to the  opti-
mum value, in fact,  GA-SRH is always better.  
Evolution Strategy discussion: ES with standard reproduction (no panmictic) is 
shown in Table 2. Table 3 show results for panmictic reproduction. Again, in both 
tables, the use of the SR heuristic improves the results. Note that ES with SRH (table 
2, column EE-SRH), performs better than the ES with panmictic reproduction (table 
3, column ES). Panmictic reproduction is the natural approach of ES to increase the 
diversity, however, the SRH itself is able to improve the panmictic approach.  
 Differential Evolution discussion: in these experiments, the use of panmictic repro-
duction did not improve that much the SRH results. However, SRH version is still 
better.  
Note that the search mechanism of  DE and ES is self-adaptable but GA is not. 
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Appendix: Benchmark functions  

(1) Sphere model: 
, 

    where fmin=0 and xmin=(0,…,0). 
 
 (2) Generalized Rosenbrock’s function:  

, 

where fmin=0 and xmin=(1,…,1). 
 

 
 (3) Generalized Rastrigin’s function: 

, 

    where fmin=0 and xmin=(0,…,0). 
 
(4) Ackley’s function: 

, 

 where fmin=0 and xmin=(0,…,0). 



 
(5) Generalized Griewank function 

, 

 where f min=0 and xmin = (0,…,0). 
 


