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Abstract

In this work we present a new Markov Random Field
model for image binary segmentation that computes the
probability that each pixel belongs to a given class. We
show that if a real valued field is computed, instead of a
binary one as in graph cuts based methods, then the re-
sultant cost function has noticeable computational and per-
formance advantages. The proposed energy function can
be efficiently minimized with standard fast linear order al-
gorithms as Conjugate Gradient or multigrid Gauss-Seidel
schemes. Moreover, our formulation accepts a good ini-
tial guess (starting point) and avoids to construct from
scratch the new solution accelerating the computational
process. Then we naturally implement computationally effi-
cient multigrid algorithms. For applications with limited
computational time, a good partial solution can be ob-
tained by stopping the iterations even if the global optimum
is not yet reached. We performed a meticulous compari-
son (with state of the art methods: Graph Cut, Random
Walker and GMMF) for the interactive image segmenta-
tion (based on trimaps). We compare the algorithms us-
ing cross–validation procedures and a simplex decent algo-
rithm for learning the parameter set.

1. Introduction
Two–classes image segmentation [image binary segmen-

tation (IBS) is an important issue in image analysis and im-
age editing tasks. There are many problems which the core
solution algorithm is an IBS method; for instance: interac-
tive image segmentation (trimap) [23], [5], [2], [22], [14]
organs segmentation in medical imaging (e.g. skull strip-
ping) [4], [10], foreground extraction (image matting) [22],
[25], motion computation [7], [15], among others. Mul-
ticlass image segmentation is also commonly implemented
by the successive applications of IBS methods [3], [7], [15].
Last listed applications shown that any improvement to IBS
methods in the convergence ratio, reduction in memory re-
quirements or error reduction will have an important im-

pact in many image processing and computer vision appli-
cations. In this paper we present a novel IBS method that
improves the procedures of the state of the art with respect
to the three above listed issues. Our method is based on a
new Markov Random Field model and computes the prob-
ability of each pixel belongs to a given class. It is based
on the minimization of a quadratic energy function; such
a minimization corresponds to solve a linear system with
standard iterative algorithms as Gauss-Seidel (GS) or Con-
jugate Gradient (CG) [20]. As it is well known, the conver-
gence ration of such algorithms can be improved by provid-
ing a good initial guess (starting point). Moreover gradient
descent based algorithms (as GS or CG) produce a partial
solutions sequence (a new partial solution at each iteration)
that reduces successively the energy function. Thus, for ap-
plications with limited computational time, a good partial
solution can be obtained by stopping the iterations even if
the global optimum is not yet reached. These characteristics
lead us to, naturally, implement computationally efficient
multigrid algorithms [8].

We organize this paper as follows. In section 2 we
presents a new derivation of the recently reported method
by Rivera et al. [21] for soft (probabilistic) multiclass im-
age segmentation. Our derivation is more accord with
the Bayesian regularization framework. Such an algorithm
is proposed as the minimization of a linearly constrained
quadratic, does not necessarily positive definite, energy
function.In section 3 we particularize the method in de-
rived in section 2 for the IBS case. In our formulation
the probabilities are represented by a single Markov Ran-
dom Field (MRF) and our positive definite quadratic en-
ergy function incorporates effectively the constraints. In
section 4 we present a discussion about related formula-
tion for multilabel image segmentation.In section section 5
we evaluate the performance of the proposed IBS method
in the interactive color IBS task based on trimaps. For
such purposes we follow the implementation by Boykov
and Jolly [5] and then we only replace the IBS method.
We used the popular Lasso’s bench database, such database
is used in [2] and available online [28]. The experimental
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(a) I1 (b) I2 (c) α (d) g = αI1 + (1− α)I2

Figure 1. Image model generation. I1 and I2 are the original data, α is matting factor and g is the observed image.

results demonstrate a superior performance of our method
compared with methods of the state of the art for IBS. We
conducts a deeper evaluation based on a cross-validation
technique was used for such purposes and the algorithms
hyper-parameters were automatically adjusted. Then in sec-
tion 6, we demonstrate (by numerical experiments in both
real and synthetic data) the method capability for the simul-
taneous estimation task of the segmentation and the model
parameters. Finally, section 7 presents our conclusions.

2. Quadratic Markov Measure Fields Models
Recently Rivera et al. [21] proposed the Entropy Con-

trolled Gauss Markov Measure Fields (EC-GMMF) mod-
els for image multiclass segmentation. Such an algorithm
is computationally efficient and produces “soft” segmenta-
tions of excellent quality. In [21] the algorithm is derived in
the framework of Gauss Markov Measure Fields (GMMF)
models [18], an early work of the EC-GMMF’s authors. In
the GMMF framework the likelihood is constrained to be
Gaussian and therefore quadratic in the measure fields [18].
However, the exact form of the quadratic potentials is not
constrained and thus in [21] is chosen an“appropriated po-
tential.” In this section we present an alternative derivation
to the formulation in [21] rigourously based on the frame-
work of Bayesian regularization (BR) with prior Markov
random fields (MRF) models. We directly derive the for-
mulation from an observation model instead of a simple
conjecture. MRF models is a well-accepted and powerful
approach for solving problems in early computer vision and
image processing [1], [2], [3], [5], [7], [9], [14], [15], [16],
[18], [21], [22], [23], [25].

Consider the example in Fig. 1 where the image g is
generated by using the model

g(x) = α(x)I1(x) + (1− α(x))I2(x), (1)

where x ∈ R ⊆ L denotes a pixel position in the region
of interest, R, into the regular lattice L; I1 and I2 are two
general images and α is a matting factor [22], [25]. We can
generalize the model (1) to the case of multiple regions as:

g(x) =
∑

k

αk(x)g(x), (2)

for k = 1, 2, . . . ,K; where

αk(x)g(x) = αk(x)(Ik(x) + ηk(x)); (3)

where ηk is a noise image with known distribution and the
matting factors α’s satisfy:

K∑

k=1

αk(x) = 1, x ∈ R; (4)

αk(x) ≥ 0, k = 1, . . . , K, x ∈ R; (5)
αi(x)αj(x) ≈ 0 if i 6= j, (6)

α(x) ≈ α(y), x ∈ R, y ∈ Nx; (7)

where Nx denotes the set of first neighbors of x: Nx =
{y ∈ R : |x − y| = 1}. Note that, because (4) and (5),
α can be interpreted as a probability measure field where
αk(x) is understood as the probability of the pixel Ik(x)
is likely to produce the observation g(x). Additionally (6)
introduces the constraint on the probability vectors α(x) to
have low entropy: together with (4) and (5), constraint (6)
indicates that only one α(x) vector entry has a value close
to one and the others are close to zero. The constraint (7)
promotes the probability measure α to be spatially smooth.

The segmentation of the composed image g can be seen
as the solution to ill–posed inverse problem stated in (2)
and (3) subject to the hard constraints (4) and (5) and the
soft constraints (6) and (7). This is, the computation of the
matting factors αk and the original images Ik, or at least
the image fractions αkIk. In the BR framework, with MRF
model priors, one computes the solution (α∗, I∗) as an esti-
mator of the posterior distribution P (α, I|g). Then by using
the Bayes rule, the posterior distribution can be expressed
as:

P (α, I|g) =
1
Z

P (g|α, I)P (α, I). (8)

where P (g|α, I) is conditional probability of the data by
assuming given unknowns (α, I), P (α, I) is the prior dis-
tribution and Z = P (g) is a normalization constant (in-
dependent on (α, I)). In this framework, the conditional
probability P (g|α, I) is derived from the noise distribution
and the observation model [(2) and (3)]; the prior P (α, I)
expresses that the parameters are Markovian.



The general inference of the images Ik from the data g
is a complex inverse problem: even if α is given, we could
recover the fraction αkIk of the whole image. Thus impor-
tant assumptions (priors) need be used: for instance, we can
consider that such images can be represented by a paramet-
ric function: Ik(x) = Φ(x, β), with parameters β. For sim-
plify the notation we express our derivation in terms of I in-
stead of the parameters β. Parametric forms, although lim-
ited, has been used and have shown be useful for defining
layered models for segmenting gray scale images or optical
flows [17], [24]. Other form for introducing prior (expert)
knowledge is by interactively leading the segmentation. In
this case the user label a subset of pixels and the unknown
labels are estimated with a segmentation algorithm.

For deriving P (g|α, I) we start by assuming that the ηk

is i.i.d. Gaussian noise with mean zero and variance σ2
k, i.e.:

P (ηk(x)) = Gσk
(ηk(x)) (9)

where we define

Gσ(z)
def
=

1√
2πσ

exp
[
− z2

2σ2

]
. (10)

From (3) we have: αk(x)ηk(x) = αk(x)(g(x)−Ik(x)). As
αk is almost binary [because (6)], then for αk(x) ≈ 1 one
can expect a similar distribution for both αk(x)ηk(x) and
ηk(x). Therefore (by defining rk(x) = g(x)− Ik(x):

P (αkg|αkIk, σ2
k) =

∏
x

Gσk

(
αk(x)rk(x)

)

=
∏
x

Gσk

(
rk(x)

)α2
k(x)

. (11)

Now we remove the assumption of Gaussian noise. First
we consider that any smooth density distribution vk can be
expressed with a Gaussian mixture model [13]:

vk(x, θk) =
I∑

i=1

πkiGσk
(rk(x)−mki) , (12)

with θk = (σk, πk,mk); where πki ≥ 0 are the mixture
coefficients (with

∑
i πki = 1), the Gaussians centers mk =

(mk1,mk2, . . . , mkI) and variances σk are known (this is
equivalent to assume a known noise distribution) and I is
the number (maybe large) of Gaussians in the mixture. Then
in the low entropy limit we have:

P (αkg|αkIk, θk) =
∏
x

[ I∑

i=1

πkiGσ (rk(x)−mki)
α2

k(x)

]

≈
∏
x

[ I∑

i=1

πkiGσ (rk(x)−mki)
]α2

k(x)

=
∏
x

vk(x, θ)α2
k(x). (13)

If independency between αiIi and αjIj (for i 6= j) is as-
sumed, then the likelihood of the observed (composed) im-
age g is given by

P (g|α, I, θ) =
∏

k

P (αkg|αkIk, θk). (14)

In particular, such an independency occurs if (6) is sat-
isfied. The entropy of discrete distributions can be reduced
by increasing its variance: E2[αk]−E[α2

k]. That leads us to
introduce the potential µ

(
1−∑

k α2
k(x)

)
with µ > 0, also

named Gini’s coefficient in [13]. Additionally a Gibbsian
distribution based on MRF models controls the granularity
of the regions (i.e. for promoting smooth regions). We fi-
nally obtain the prior P (α):

1
Z ′

exp
[∑

k

∑

x∈R

(
µα2

k(x)− λ
∑

y∈Nx

|α(x)− α(y)|2
)]

; (15)

where Z ′ is a normalization constant. Therefore, we use
P (α, I) ∝ P (α) as prior probability by assuming indepen-
dence among I and α, and an uniform distribution on I .
Thus the posterior distribution takes the form P (α, θ|g) ∝
exp [−U(α, θ)] and the maximum at posteriori (MAP) esti-
mator is computed by minimizing the cost function:

U(α, θ) =
∑

x∈R

{ K∑

k=1

α2
k(x) [− log vk(x, θ)− µ]

+
λ

2

∑

y∈Nx

|α(x)− α(y)|2
}

, (16)

subject to the constraints (4) and (5).
This quadratic programming problem can efficiently be

solved by using the Lagrange multiplier procedure for the
equality constraint (4) and a projection strategy for the non-
negativity constraint (5). The convergence is guaranteed to
a local minima. See [21] for details.

3. Quadratic Markov Probability Fields
For the particular case of IBS [i.e. for the case in model

(1)], the resultant energy function has remarkable computa-
tional and performance advantages over standard IBS meth-
ods. Let the normalized likelihoods corresponding to the
first and second classes:

v̂k(x, θ) =
v1(x, θ1)
s(x, θ)

, (17)

for k = 1, 2; with

s(x, θ)
def
=

∑

k

vk(x, θk). (18)

Thus we define the distances:

dk(x)
def
= − log v̂k(x, θk). (19)



That leads us to formulate our IBS method as the minimiza-
tion of the unconstrained quadratic cost function:

Q(α) =
∑

x∈R

{
α2(x) [d1(x)− µ]

+(1− α(x))2 [d2(x)− µ]

+λ
∑

y∈Nx

(α(x)− α(y))2
}

. (20)

The minimization convergence properties of (20) are estab-
lished in the following theorem.

Theorem 1. Binary QMPF convergence.

(i) If µ < mink,x dk(x), then (20) has unique global min-
imum that satisfies α(x) ≥ 0,∀x ∈ R.

(ii) Otherwise an energy descend algorithm convergence,
at least, to a local minima if the additional constraint
α(x) ≥ 0, ∀x ∈ L, is enforced.

Proof of (i). Assuming µ < mink,x dk(x).

(a) Q(α) a convex quadratic potential with a unique global
minima. Thus the linear system that results of equaling
to zero the gradient of (20) w.r.t. α can be solved with
the Gauss-Seidel (GS) scheme

α(x) =
a(x)
b(x)

(21)

with

a(x)
def
= d2(x)− µ + λ

∑

y∈Nx

α(y), (22)

b(x)
def
= d1(x) + d2(x)− 2µ + λ]Nx; (23)

where ]Nx denotes the cardinality of Nx.

(b) If α0(x) ∈ [0, 1], ∀x, is provided as initial guess then
the sequence generated by the GS scheme (21) satisfies
{αt(x)}t=1,...,T ∈ [0, 1], for any iteration number t
(given that b(x) ≥ a(x) ≥ 0). Therefore the unique
global minimizer is also in the interval [0, 1].

Finally, from (a) and (b), any minimization algorithm
converge to the unique global minima, α∗(x) ∈ [0, 1], inde-
pendently of the initial point α0.
Proof of (ii). It follows from the fact that any descent algo-
rithm that produces a feasible sequence, {αt}t=1,...,T , for
solving an indefinite quadratic (linearly constrained) prob-
lem converge to, at least, a local minima, [20].

The formulation of the IBS problem as the minimization of
an unconstrained positive definite quadratic energy function

has the advantage of being achieved by computational effi-
cient algorithms, as CG or a multigrid implementation of
the GS scheme in (21). Although an initial guess does not
determine the convergence to the global minima, a good
starting point can accelerate the convergence rate. For in-
stance, we initialize α(x) = v̂1(x, θ1) in this work. More-
over, descend algorithms produce sequences {αt}t=1,...,T

such that:

Q(α0) ≥ . . . ≥ Q(αi) ≥ Q(αi+1) ≥ . . . ≥ Q(α∗) ≥ −1
2
;

(24)
where the superscripts i and i + 1 indicate consecutive it-
eration numbers. GS can be seen as a particular case of a
coordinate descent that converges if b(xt) ≥ a(xt) ≥ 0, ∀t.
These features (the possibilities of to provide initial guesses
and to stop the algorithm iterations for having partial solu-
tions) allows us to naturally implement fast multigrid algo-
rithms.

4. Relationship with other Markov Measure
Fields Models

A Markov measure field (MMF), α, is a random vectorial
field that satisfies (4) and (5) with a Gibbsian prior distribu-
tion P (α) in terms of MRF models [16]. In this comparative
study we focus in segmentation algorithms that are imple-
mented as the computation of the MAP estimator, i.e. by
minimizing a posterior energy of the general form:

MMF (α) = D(α, g) + λR(α). (25)

The potential D corresponds to the negative log-
likelihood of the data given the labels and is determined
by the observation model and the noise distribution. The
potential R is the negative log-prior, also known as regular-
ization term. We will focus our discussion in variants for
the potential D:

Binary MMF. The image segmentation task is a com-
binatorial problem in its original formulation: to assign to
each pixel the label of the class that is more likely to belong.
The prior knowledge of the labels field smoothness is intro-
duced in form of an MRF [9] [1]. Among the most compu-
tationally efficient algorithms for solving such a problem is
the graph-cut (GC) algorithm that essentially computes the
MAP estimator from a posterior distribution as (8) [7], [6].
The GC algorithm guarantees convergence to a global min-
ima for the IBS case.

Gaussian MMF (GMMF) [18]. Such a work proposed
to compute the probability that a pixel can be generated
by a particular intensity model instead of directly the label
map, i.e. differently to hard segmentation schemes based on
graph cuts methods. The method models (with a MRF) di-
rectly the posterior marginals field, α, of the hard-labels.



The GMMF potential,
∑

k

∑
x

(αk(x)− v̂k(x, θk))2 + λR(α), (26)

is chosen such that, for λ = 0, the posterior marginals are
equal to the likelihoods, i.e. the consistence condition:

αk(x) = v̂k(x, θk)
def
=

vk(x, θk)
s(x)

. (27)

is satisfied.
Random Walker (RW) [11], [12]. Although introduced in

terms of random walks of particles, RW is a variant of the
GMMF formulation (see the diffusion process in [18]). The
consistence condition is reformulated as:

s(x)αk(x) = vk(x, θk). (28)

Then the corresponding potential is a quadratic one such
that the minimum for λ = 0 results in (28) and consequently
satisfies the GMMF consistence condition (27). The im-
age coloring procedure proposed Levin et al. is close re-
lated with the GMMF diffusion process with space-varying
weights [18].

Quadratic MMF [This work]. Differently to GMMF
models, the minimum of the QMPF potential (4) for the
case of λ = 0 corresponds to:

αk(x) =
1
K

H(d(x))
dk(x)

; (29)

where H(z) is the harmonic mean of z. Because the
GMMF–consistence condition is not satisfied by , it does
not corresponds to a GMMF model.

5. Image Binary Interactive Segmentation
In this section we compare the performance of the pro-

posed probabilistic method (based on QMPF models) with
of popular IBS segmentations methods: maximum flow
(minimum graph cut), GMMF and Random Walker. The
task is the binary interactive segmentation of color images
(segmentation by trimaps). A cross-validation procedure
was implemented for comparing the generalization capabil-
ities of the methods [13]. The benchmark data is the set of
50 images in the Lasso’s database used in [2], available on-
line in [28]. Such a database contains a natural images set
with the corresponding trimap and the ground truth. Actu-
ally, a Lasso’s trimap is image of class labels: no–process
mask (M), definitively background (B), unknown (R) and
definitively foreground (F). Note that each pixel x ∈ L has
an unique label. First column in Fig. 2 shows images in
the Lasso’s database and second column the corresponding
trimaps (the gray scale corresponds with above class enu-
meration. In this case, the region to process is labelled as

“unknown” and the boundary condition are imposed by the
foreground and background labelled regions. The regular-
ization term in (20) is replaced by:

λ
∑

y∈Nx∩B∩F
[α(x)− α(y)]2 lxy, (30)

for leading the border regions to follow the color edges;
where the color border information is computed with

lxy =
γ

γ + |g(x)− g(y)|2 ; (31)

and the color image, g, is previously transformed to the
CIE–Lab color space with the Ruzon’s C-code library [27]
and γ is a method’s hyper–parameter that controls the edge
sensibility. lxy is an affinity measure that takes a value close
to one if the neighbor pixels x and y have similar colors and
its is close to zero for too different colors. Recent reported
matting computation methods have focused in variants of
the intra–pixel affinity measure with improved results w.r.t.
the basic one in (31) [22] [10]. However, in our experimen-
tal, we use the simple affinity measure (31) for comparing
directly the performance of the methods.

In this task, empirical likelihoods are computed from the
histogram of the labelled by hand pixels. Following [5],
the empirical likelihoods are computed from the smoothed
(with 10 iterations of a homogeneous diffusion filter) color
histograms of the foreground, h1, and background, h2, la-
belled pixels. Then the normalized likelihoods are com-
puted with:

v̂k(x) =
hk(g(x)) + ε

h1(g(x)) + h2(g(x)) + 2ε
, (32)

for k = 1, 2; where ε = 10−3 is a small positive con-
stant that introduces a contaminant uniform distribution
that stabilizes the likelihoods and it avoids the undefined
computation of log 0. We initialize α with (29) and set
dk(x) = − log v̂k(x). The normalized histograms can be
seen as 3D Look-Up-Table with 50×100×100 dimensions
for the L, a and b coordinates, respectively.

The data set was partitioned in 5 groups of 10 images.
The parameters set were trained by minimizing the mean
of the segmentation error (computed according to [2]) in

Params. AIC Training Testing

Graph cut λ, γ 8.58 6.89% 6.93%
Rand. Walk. λ, γ 6.50 5.46% 5.50%
GMMF λ, γ 6.49 5.46% 5.49%
QMPF λ, γ 6.04 5.02% 5.15%
QMPF+EC λ, γ, µ 5.39 3.13% 3.13%

Table 1. Cross-validation results. Parameters, Akaike information
criterion, training and testing error.



(e) Original (f) Trimap (g) QMPF (h) QMPF+EC

Figure 2. Selected trimaps segmentations.

groups of 40 images by using the Nelder and Mead simplex
descent [19]. Table 1 shows the training and testing error
averages. Figure 2 shows examples of the segmented im-
ages. Additionally, the Akaike information criterion (AIC)
is computed for the parameters optimized (trained) with the
50 image in the database [13], such an AIC estimation of
the prediction error is consistent with the cross-validation
results. Note that the QMPF algorithm has the best perfor-
mance in the group. For our implementation, the learned
parameters were: (λ = 4.7 × 103, γ = 9 × 10−6) and
(λ = 3.8 × 10−4, γ = 1.3 × 10−6, µ = −123) for QMPF
and QMPF+EC, respectively. We note that such parame-
ters are appropriated for the trimap segmentation task and
should not produce the expected results in other tasks as,
for instance, matting computation. For instance we note
that the learned parameter µ for QMPF+EC promotes large
entropy. For illustrate last statement, we compute the mat-
ting factors for the example illustrated in Fig. 1. The results
are shown in Fig. 3. In particular the matting factor shown
Fig. 1 was computed with QMPF with µ = 0.

6. Model parameters estimation

The method has a noticeable advantage if Gaussian like-
lihoods are assumed and the parameters, θk = [mk, σk]
(mean and standard deviation, respectively), are unknown.
Then the parameters can been efficiently estimated by us-
ing an alternated minimization scheme of the cost function
(20) w.r.t. the MMF, α, and the parameters, θ. For illus-
trating this capability, we consider the task of computing a
binarization of a synthetic image (Fig. 4a) generated with
model (1); where Ik are constant values for all x (actually
white and black in gray values), and ηk(x) ∼ N (0, σ2

k)
(i.i.d. Gaussian noise. Such a segmentation task (i.e. the

estimation of the indicator variables bk(x) ∈ {0, 1} with
αk(x) ≈ bk(x)) requires of the simultaneously estimation
of α and θk =

[
Ik, σ2

k

]T for k = 1, 2. As ηk(x) is Gaussian,
we have:

− log vk(x, θ) =
1

2σ2
k

|g(x)− Ik|2 + log
√

2πσk. (33)

Then, by assuming an uniform distribution as prior for θ,
from the partial derivatives w.r.t. the parameters, we have:

Ik =
∑

x α2(x)g(x)∑
x α2(x)

(34)

and

σ2
k =

∑
x α2(x)|g(x)− Ik|2∑

x α2(x)
. (35)

Such formulas, (34) and (35), are similar to the ones ob-
tained in an Expectation-Maximization (EM) procedure;
except by the α2(x) weighting factor instead of α(x). Such
a factor is also changed for estimating the covariance matrix
of multivariated Gaussian models.

Figure 4 shows the pair of images used this experiment.
The synthetic binary image, in Fig. 4(a), was precluded
with Gaussian noise with zero mean and σ1 = 0.5 and
σ2 = 0.3 for the white and black regions, respectively. Fig
4(b) shows a metallic real piece illuminated with laser (co-
herent) light and thus corrupted with speckle (multiplica-
tive) noise. The effect of the entropy control parameter, µ,
is showed in Fig. 5. The computed α field with µ = 0
(without entropy control) and the corresponding binariza-
tion are shown in Figs. 5(a) and 5(b). Figs. 5(c) and 5(d)
show the results computed with µ = 0.5. Table 2 summa-
rizes the experiment results. We noted that, for the IBS case,
the results (segmentation and the estimated parameters) are



(a) QMPF µ = 10. (b) µ = 0. (c) µ = −123.

(d) GMMF. (e) Rand. Walk. (f) Graph Cut.

Figure 3. First row, results computed with the proposed method
with a) low-entropy, b) without entropy control and c) high en-
tropy. Second row, results computed with methods of the state of
the art.

(a) Synthetic. (b) Speckle.

Figure 4. Test Images.

robust to the exact value of the entropy control. The models
(I1 and I2) where initialized with the maximum and mini-
mum image gray values, respectively.

I1 σ1 I2 σ2

Real values 1.000 0.500 0.000 0.300
Initial condition 2.760 0.100 -1.013 0.100
λ = 4, µ = 0.0 1.002 0.477 0.005 0.325
λ = 4, µ = 0.3 0.999 0.488 0.002 0.308

Table 2. Computed parameters for Fig. 5.

Fig. 6 shows the results corresponding to the speckle
image. In Fig. 6(a) we show the computed α field with the
proposed QMPF method (with µ = 0 and λ = 1 × 103)
and Fig. 6(b) the corresponding segmentation. Second row
shows the computed results with GMMF. The computed α
field with the GMMF algorithm has, evidently, larger en-
tropy than the QMPF solution. This is consistent with the
results reported in Refs. [17] and [21]. If such a high–
entropy α field were used in an EM kind scheme for esti-
mating the model parameters then the algorithm may con-
verge to a single value. Such a limitation of the GMMF
model is discussed in [17]. As it is expected, we observed a
similar behavior for the Random Walker algorithm than for
GMMF.

(a) α field with µ =
0.0.

(b) Segmentation.

(c) α field with µ =
0.5.

(d) Segmentation.

Figure 5. Entropy control.

(a) QMPF α field. (b) QMPF Segmenta-
tion.

(c) GMMF (RW) α
field .

(d) GMMF Segmen-
tation.

Figure 6. Effect of the data term.

7. Conclusions

We started our paper by presenting a new derivation
of the Markovian models for multi–class image segmen-
tation presented by Rivera et al. [21]. Our derivation is
accord with the Bayesian Regularization framework. We
have named such a models Quadratic Markovian Measure
Fields (QMMF)) and have exposed the relationship (and
difference) with the Gauss Markov random fields (GMMF)
and/or Random Walker. The algorithm computes a low
entropy (almost binaries) and regularized (smooth) vector
field, α. Such that αk(x) that can be interpreted as the prob-
ability of the pixel x were generated with the distribution k.
We have shown that the QMMF models accept any prob-
ability distribution as the empirical distributions estimated



by histogram techniques or kernel methods.
We have presented a new quadratic energy function for

IBS. For evaluating the proposed model performance, we
implemented an interactive binary segmentation tool (seg-
mentation by trimaps) and compare the results by substitut-
ing our algorithm with state of the art methods: Graph Cut,
Random Walker and GMMF. The remaining implementa-
tions details were unaltered. As bench data set we used the
Lasso’s trimap set of 50 natural images.

We have achieved a meticulous comparison of the algo-
rithm by using a cross–validation procedures and a simplex
decent algorithm for learning the parameter set. Such a
comparison showed that our proposal have a superior per-
formance than the compared methods and illustrate the im-
portance of the entropy control introduced by Rivera et
al. [21]. According with our experiments the interactive
IBS task is better achieved with high entropy probabilities,
however, the matting computation (as the simultaneous esti-
mation of the segmentation and parameter) requires of low-
entropy fields.

In the interactive IBS task is common that once a so-
lution is computed then the user refine such a solution by
retouching the initial trimap. Our method can use as initial
guess for a subsequent refining the previous final solution
(a feasible point for the next problem). That accelerate the
interactive process by avoiding to construct from scratch the
new solution.

Future work consider to extend our trimap based com-
parison to other IBS methods as, for instance, the based on
the Maximum of the Posterior Marginal (MPM) estimator.
Such estimator is now possible to estimate by fast methods
based on graph cuts [26].
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