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Abstract. We present a computationally efficient segmentation–restoration meth-
od, based on a probabilistic formulation, for the joint estimation of the label map
(segmentation) and the parameters of the feature generator models (restoration).
Our algorithm computes an estimation of the posterior marginal probability distri-
butions of the label field based on a Gauss Markov Random Measure Field model.
Our proposal introduces an explicit entropy control for the estimated posterior
marginals, therefore it improves the parameter estimation step. If the model pa-
rameters are given, our algorithm computes the posterior marginals as the global
minimizers of a quadratic, linearly constrained energy function; therefore, one
can compute very efficiently the optimal (Maximizer of the Posterior Marginals
or MPM) estimator for multi–class segmentation problems. Moreover, a good es-
timation of the posterior marginals allows one to compute estimators different
from the MPM for restoration problems, denoising and optical flow computation.
Experiments demonstrate better performance over other state of the art segmen-
tation approaches.

1 Introduction

Image segmentation from different attributes (such as gray level, local orientation or
frequency, texture, motion, color, etc.) is typically formulated as a clustering problem.
Although generic clustering algorithms as K-Means or ISODATA have been used with
relative success [8], the consideration of spatial interactions among pixel labels provides
additional, useful constraints on the problem [2][3] [6][7] [9][10] [11][12] [13][14]
[17][18] [19][20] [21][22] [23][24].

Therefore, most successful algorithms for image segmentation taked into account
both the observed pixel values (which are generally noisy) and pixel context informa-
tion.

We assume that an image of features, g, in the regular lattice L, is an assembly of K
disjoint regions, R = {R1, R2, ..., RK}. Moreover, such features are generated with a
generic parametric model φ, with θ = {θ1, θ2, ..., θK} as the corresponding parameters
for each region, i.e.:

gr =
K∑

k=1

φkrbkr + ηr (1)
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where r = [x, y]T is the position of a pixel in the regular lattice L; φkr
def
= φ(θk, r) is

the parametric model of the actual value of the feature at pixel r; θk is the parameter set
corresponding to the kth region; bkr is an indicator variable equal to one if the pixel r
was generated with the model k and equal to zero otherwise and η is an additive, inde-
pendent, identically distributed noise process. In the general case, the one we consider
here, the parameter set is unknown and needs to be estimated.

Bayesian regularization framework has been successfully used for finding the solu-
tion to these problems [6][10] [11][12] [13][14] [18] [19][20] [21][22] [24][25]. In this
framework, the solution is computed as a statistical estimator from a posterior proba-
bility distribution. In particular, one needs to estimate the label map, b, and the model
parameters, θ, from the posterior distribution Pb,θ|g . If it is assumed independence be-
tween b and θ and a uniform prior distribution for θ, then this posterior distribution is
given by:

Pb,θ|g = Pg|b,θPb/Pg (2)

where the likelihood of the whole label field is obtained from a mixture model :

Pg|b,θ =
∏
k

∏
r

(vkr)bkr ;

with vkr as the probability (individual likelihood) that the observed value at pixel r
was generated with model k (that uses the set of parameters θk). For instance, if η is
Gaussian with zero mean and variance σ2:

vkr =
1√
2πσ

exp

[
− (gr − φkr)

2

2σ2

]
, (3)

for a real valued feature image g. In the framework of Bayesian Estimation Theory, b is
modelled as a Markov Random Field (MRF) with prior distribution, Pb, in the form of
a Gibbs distribution:

Pb =
1
z

exp
[
−β

∑
C

VC(b)
]
; (4)

where z is a normalization constant and VC is a potential such that it assigns larger
probabilities to smooth label fields than to granular ones and β is a positive parameter.
The most popular potential is the Ising model:

Vkrs(b) =
{
−1 if bkr = bkr ∀k

1 if bkr 6= bks.
(5)

Finally, Pg is a normalization constant independent of the unknowns b and θ.
In most cases, approximate solutions for this complex estimation problem are found

by 2-step procedures,[2][4][12][14][20] in which the best segmentation, given the pa-
rameters is found in the first step, and the optimal estimator for the parameters, given
the segmentation is found in the second step, iterating these 2 steps until convergence.
Usually, one chooses the models, φ in such a way that the maximum a posteriori (MAP)
estimator for the parameters θ given b is relatively easy to compute. For instance, flat,
planar or spline models have successfully been used [12][14][18]. However, the MAP
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estimator for the label field requires the solution of a combinatorial optimization prob-
lem. Graph–Cuts based algorithms[2][3] [7][19][23] can be used to compute the exact
MAP estimator in the case of binary segmentation or an approximation for problems
with more than two classes. The problem here is that using a “hard” segmentation in the
first step of the procedure, makes the 2-step algorithm prone to get trapped in local min-
ima, producing suboptimal results. A better strategy is to compute, instead of a set of bi-
nary indicator variables, their expected value (i.e., the posterior marginal distributions),
in which case the 2-step procedure is equivalent to the Expectation-Maximization (EM)
algorithm [4][15][20]. Upon convergence, a hard segmentation may be computed, if
desired, using, for instance, the MPM estimator [11]:

Definition 1 (MPM Estimator). The MPM estimator of the label field is given by:

bMPM
kr =

{
1 if πkr ≥ πlr, for k 6= l
0 otherwise, (6)

where πr is the marginal probability distribution of the pixel r.

An estimation, p, of the true marginals, π, can be computed with Markov Chain
Monte Carlo (MCMC) based methods [6][10]. In such a case, samples {b(1), b(2), . . . ,
b(N)}, of the posterior distribution, Pb,θ|g , are used to compute the empirical marginals:
pkr = 1

N

∑N
j=1 b

(j)
kr , that satisfy

E[pkr] = πkr (7)

where E[·] denotes the expectation operator. The problem with these methods lies in
their high computational cost.

A more efficient approach considers the empirical marginals as a vector-valued ran-
dom field (i.e., a random measure field) that needs to be modeled. There are 2 main mod-
els that have been proposed: one based in a Mean Field (MF) approximation [20][24],
and the other in a Gauss-Markov Measure Field (GMMF) model [13]. Both of them,
however, have certain drawbacks: the MF approach leads to algorithms that are rela-
tively slow and sensitive to noise, while the GMMF approach presented in [13] pro-
duces estimators for the marginal distributions that differ significantly from the true
ones, in the sense that these distributions (one for each pixel) have significantly higher
entropy than the ones found asymptotically by MCMC approaches. If the model para-
meters are known, this difference is not too important, since usually the modes of these
distributions (and hence, the MPM estimator) are correct; if the model parameters are
unknown, however, this high entropy produces an unstable behavior of the EM algo-
rithm, producing bad results. The goal of this paper is to present a better GMMF model
for the empirical marginals that produces estimates that are in agreement with the true
ones, and that can be efficiently computed.

2 Entropy Controlled GMMF (EC-GMMF) Models

The use of GMMF models for estimating the posterior marginal distributions is based
in the following:
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Theorem 1 (Gauss-Markov Measure Fields (GMMF)). Let the binary label field b
be a Markov random field (MRF) with posterior distribution (2) and v the likelihood
field, then the empirical marginal field, p, is itself a MRF with posterior distribution:

Pp|v = Pv|pPp/Pv (8)

with the following properties:

1. It is Markovian with the same neighborhood system as b.
2. It is Gaussian, i.e. Pp|v ∝ exp [−U(p; v)], where the energy U(p; v) is a Quadratic,

Positive Definite (QPD) function of p.

The proof is presented in [13]. This theorem establishes important properties of the
marginal probabilities, π, of the label field, b, with posterior distribution (2), but it does
not determine the exact form of the QPD energy U . Given (7), and Theorem 1, π can
be estimated as the MAP estimator of (8). In order to find a particular form for U , an
additional consistency constraint is imposed in [13]:

Consistency Constraint 1 (GMMF) If no prior information is provided [i.e. Pπ is the
uniform distribution] then the maximizer of (8) is π∗ = v̄, where v̄kr = vkr/

∑
j vjr.

Based on these properties, the function U that is proposed in [13] is:

U(p; v) =
K∑

k=1

∑
r∈L

[
(pkr − v̄kr)2 +

λ

2

∑
s∈Nr

‖pkr − pks‖2
2

]
, (9)

where Nr = {s ∈ L : |r − s| = 1} is the set of nearest neighbor pixels to r. In
spite of the fact that the minimization of (9) can be done with computationally efficient
algorithms, the use of this equation has two disadvantages: first, it depends on the model
parameters (via the likelihoods v) in a highly non-linear way (3), which makes difficult
its incorporation in EM procedures, and second, the set of distributions ({pr} field)
that minimizes (9) are relatively flat (i.e., they have high entropy), which makes them
unsuitable for EM procedures.

In order to propose a new QPD function U that overcomes these difficulties, we
need to relax the consistency constraint 1; the new constraint is:

Consistency Constraint 2 (EC-GMMF) If no prior information is provided, the mode
of the optimal estimators for the posterior marginal distributions π∗ coincides with the
maxima of the corresponding likelihoods v, i.e., the MPM estimator for the label field,
computed using π∗ coincides with the maximum likelihood estimator.

With this relaxed constraint, we may introduce log v instead of v in the data term,
to get a quadratic dependence on the model parameters θ (assuming a Gaussian noise
model). Entropy control is introduced by adding a penalization term of high entropy
distributions; to keep quadratic the energy function, we use the Gini coefficient [5]
(instead of the Shannon’s entropy [22]): −

∑
k

∑
r p2

kr; so that we finally get:

UEC(p, θ) =
∑

k

∑
r

[
p2

kr (− log vkr − µ)+
λ

2

∑
s∈Nr

(pkr − pks)
2] (10)
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subject to ∑
k
pkr = 1, ∀r and pkr ≥ 0, ∀k, r; (11)

where the parameter µ controls the entropy of the marginals. Note that for µ < 2λ, we
can assure that (10) is QPD. It is found that the performance of the estimation algorithms
does not depend critically on the precise value for µ; we have used µ = 0.1λ in all the
experiments reported here.

2.1 Computation of the Optimal Estimators

The minimization of (10) may be carried out by a 2-step (EM) procedure. The MAP
estimators for the marginals, pMAP , and the models, θMAP , are computed by iterating
alternated minimizations of (10) w.r.t. p and θ, respectively. These minimizations have
the following interesting properties:

Theorem 2 (EC-GMMF Convergence). Assuming that UEC is QPD with respect to
p and Vkr is a uni-modal distribution, we have:

(i) If θ is given, the problem of minimizing UEC w.r.t. p, subject to the constraints (11)
has a unique local minimum, which coincides with the constrained global minimum.

(ii) If p is given, the problem of minimizing UEC w.r.t. θ has a unique local minimum,
which coincides with the global minimum.

(iii) The iterated alternate minimizations of UEC w.r.t. p and θ converges, at least, to a
local minimum.

The proof of (i) and (ii) follows from the facts that UEC is a QPD function of p for fixed
θ, and of θ for fixed p, and the constraints (11) are linear (see [16]). (iii) Follows from
(i) and (ii) and from the fact that UEC ≥ 0.

Last theorem establishes that any descent algorithm will converge to the global min-
imum in the E and M steps of the EM procedure. In particular, if the model parame-
ters are given, one may find very efficiently the optimal (MPM) segmentation even for
multi-class segmentation problems, which represents a significant advantage over al-
gorithms like those based on graph cuts, which guarantee global optimality only for
2-class problems.

In the algorithm we propose here, the equality constraint in (11) may be incor-
porated using the Lagrangian method: the Lagrangian, that incorporates the equality
constraints, is given by:

L(p, θ) = UEC(p, θ)−
∑

r

γr

(
1−

∑
k
pkr

)
(12)

where γ are the Lagrange multipliers of the equality constraints. Now, we define nkr
def
=

λ
∑

s∈Nr
pks and

mkr
def
= (− log vkr − µ) + λ]Nr. (13)

where ]S is the cardinality of the set S. Equating to zero the gradient of (12) w.r.t. p,
solving for pkr and substituting in the equality constraint (11), one finally obtains the
Gauss-Seidel update equation:



6

Algorithm 1 Gauss-Seidel Implementation of Parametric Segmentation
1: Set the initial model parameters θ0 and initially set p0 = v;
2: Given the tolerance ε > 0;
3: for i = 1, 2, . . . do
4: for all the pixels r do
5: for all the models k do
6: Compute pikr with (14);
7: Project pikr = max{0, pikr};
8: end for all the models

{The renormalization of the pir can be performed here}
9: end for all the pixels

10: Update the models θi with (15);
11: if ‖pi − pi−1‖ < ε then
12: STOP with solution p∗kr = pikr and θ∗ = θi;
13: end if
14: end for

pkr =
nkr

mkr
+

1−
∑N

l=1
nlr

mlr∑N
l=1

mkr

mlr

. (14)

Note, however, that pkr computed with (14) does not necessarily satisfy the non-negativity
constraint in (11). If such a constraint is violated, one makes the negative pkr equal to
zero, and renormalizes the vector pr. In our experiments we found that this simple
method works properly and is faster than more sophisticated methods(such as gradient
projection).

In practice, one gets better performance, in terms of computational efficiency, if the
θ variables are updated after every Gauss-Seidel iteration, instead of waiting until con-
vergence of the E step, i.e. by using a Generalized EM algorithm (GEM) [15]. One gets
then a direct procedure, in which the p and θ variables are simultaneously optimized.

Given that θ is not constrained, it may be computed, after every update of the p field,
by

θMAP = arg min
θ

∑
k

∑
r

[
−p2

kr log vkr(θ)
]
. (15)

The complete procedure is summarized in algorithm 1. Line 10 in such an algorithm
is generic and depends on the specific feature model; in the next section we present a
particular case.

3 Experiments

The purpose of the experiments in subsection 3.1 is to evaluate the relative performance
of the EC-GMMF model with respect to other state of the art segmentation methods.
Three aspects are evaluated: Noise robustness, computational efficiency and entropy
control. In subsection 3.2 we show an application of our method to other Computer
Vision problems: Image Denoising and Optical Flow estimation. We also show that
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using the same p∗ obtained, we can directly compute different estimators that serve as
solutions to Piecewise Constant and Piecewise Smooth regularization.

3.1 Numerical Experiments

The normalized test images (two models synthetic image and Lenna’s portrait) were
corrupted with additive Gaussian noise with mean zero and variance 0.30 and 0.05 re-
spectively. The first experiment, illustrated by Fig. 1, demonstrates the robustness of

Data Graph Cut HMMF EC-GMMF

Fig. 1. Segmentation method performance for different level noise, see text for details.

the EC-GMMF method to noise. The task is to segment and estimate the models’ pa-
rameters for a five models synthetic image with levels 1,2,3,4 and 5. First column in
Fig. 1 shows the data corrupted with Gaussian noise with: σ = 0.7, 1.0, 1.2, 2.0, re-
spectively. The second column shows the segmentations computed with a multi–way
graph cut based algorithm. This algorithm has the drawback of being based on a MAP
criterion, and it is known that for low SNR data the MPM estimator exhibits better
performance. The third column shows the results computed with other state of the art
parametric segmentation method, namely HMMF, which in [14] is shown to have better
performance than the Mean Field and MCMC-based EM procedures. Our results are
consistent with the ones reported by the authors [14]: HMMF models are more robust
to noise than graph-cuts based algorithms; however, we found that HMMF algorithm
is very sensitive to the precise selection of the parameters’ values: the noise variance,
the regularization parameter, the initial p–field values and the minimization algorithm
parameters (i.e. the friction coefficient and the step size for the gradient projection New-
tonian descent algorithm [14]). In part, such a difficulty lies in the fact that the energy
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function, in the HMMF model, is not convex, which makes the descent algorithm prone
to be trapped by local minima. Last column shows segmentations computed with the
proposed EC-GMMF method. The experiment shows the superior performance of the
proposed method: EC-GMMF produces acceptable segmentations even for low SNR
data and in a fraction of the computational time of the compared methods. The number
of iterations for all the algorithms were 500 in all cases. The initial estimates for the
models (φrk = θk, with θk ∈ <) where uniformly distributed in the dynamic range of
the noisy data; we initialize p0kr = vkr and p0kr = 1/5 for the EC-GMMF and the
HMMF algorithms, respectively. In this case −logvkr = (gr − θk)2. So that step 10 in

algorithm 1 is computed, for each θ model at the ith iteration, with: θik =
P

r grp2
ikrP

r p2
ikr

.

Fig. 2. Comparison of the robustness to noise of different methods. (a) Test image. (b) Computed
marginals corresponding to the central row (see text).

Figure 2-(b) shows a comparison of the computed marginals for the central row
in figure 2-(a). The model parameters are in this case assumed known, i.e. φ1r = 0
and φ2r = 1, for all the pixels r. The thin solid line corresponds to the p2 marginals
computed with the Gibbs Sampler algorithm (a MCMC method) after 2,000 iterations,
with a computational time of 15.92 sec. The heavy line shows the marginals computed
with the original GMMF formulation (with λ = 10 in 0.18secs.) and the dotted line,
the marginals computed with the EC-GMMF method in 1 second (with λ = 10 and
µ = 3 in 0.33secs.). The proposed EC-GMMF approximates very closely the marginals
computed with the MCMC method but at a fraction of the computational time. If no
entropy control is applied in the EC-GMMF formulation (i.e., for µ = 0), then the
computed marginals are similar to the ones computed with the original GMMF method.

For the multi–class problem such entropy reduction can be observed in the maxi-
mum p-value maps (i.e maxk pkr). Figure 3 shows the max p–values for the case of
10 models computed with: (a) Gibbs Sampler (comp. time, 318.12 secs.), b) original
GMMF (comp. time 0.75 secs.) and (c) EC-GMMF (comp. time, 2.03 secs.), respec-
tively. The apparently low entropy of the Gibbs sampler results may be explained by an
incomplete convergence, even after about 5 min.

Next experiment compares the computational efficiency of the EC-GMMF as the
number of models is incremented. Parametric segmentations of the Lena’s portrait were
performed with the HMMF and the EC-GMMF algorithms. Figure 4 shows the cor-
responding computational times; the Gibbs sampler method (not shown in the plot)
required 5 min for 10 models.
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Gibbs Sampler GMMF EC-GMMF

Fig. 3. Maximum value of the marginals: Dark pixels denotes low (high entropy) values.

Fig. 4. Comparison of the computational times for the EC-GMMF and HMMF algorithms for
different number of models.

3.2 Optimal Estimators for Piecewise Smooth Reconstruction

The fact that one can obtain very precise approximations for the marginals, allows one
to compute estimators other than the MPM, which give very good results for piecewise
smooth restoration problems. These estimators may be obtained even with fixed models
that sample uniformly the search space, producing highly efficient methods. The idea
is to compute, instead of the posterior mode (MPM estimator), the mean or median of
the estimated posterior marginal distribution at each pixel. The resulting estimators will
have sharp discontinuities when these are present in the image, and produce smooth
transitions between adjacent models in other places. The posterior mean is computed
using:f̄r =

∑
k θkpkr.

This is illustrated in Fig. 5, where the first row shows the results for the piecewise
smooth restoration of a noise-corrupted Lena image. Second row in Fig. 5 shows details
of the corresponding images in first row. A similar procedure may be used for the
computation of piecewise smooth optical flow from a pair of images [1][12][14][22].
In this case, the models are 2-vectors that correspond to discrete velocities that sample
the space of allowed displacements: φij = θij = [ui, vj ]T where we make a slight
notation change by substituting the index model k by the more intuitive pair ij. For
the example of Fig. 6 we use ui = vi = dm(2i/∆ − 1) for i = 0, 1, . . . ,∆), where
dm is the largest expected displacement and ∆ is number of models in [−dm, dm]; we
use dm = 2.5 and ∆ = 6 with bi–cubic interpolation for the fractional displacement
that corresponds to consider displacements of {±2.50,±1.66,±0.83, 0} in the x and
y directions. Now, let f1 and f2 be two consecutive frames from a sequence. Then,
assuming Gaussian noise, we have: − log vijr = [f1(r)− fr(r − θij)]2. One may now
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Fig. 5. First row: Explicit entropy control allows us restore images by using estimators other than
the MPM see text). Second row: Details.

Fig. 6. Optical flow computation (a) Frame 8 of the Hamburg taxi and optical flow magnitude
estimator with (b) n = 1, (c) n = 2 and (d) n = ∞ (mode).

compute an optimal estimator that interpolates smooth velocities between neighboring
models, while preserving the motion discontinuities. Note that since in this case the
models are only partially ordered, one cannot compute the median. Instead, one may
compute a family of estimators that include the mode and the mean as special cases:

f̄r =
∑
ij

θijwijr (16)

with wijr = pn
ijr/

∑
ij pn

ijr The parameter n controls the sharpness of the transitions
between models: for large n the estimator corresponds to the mode, while for n = 1
one gets the mean.

Since the θ parameters are fixed, one finds the optimal p as the unique minimizer of
UEC using the Gauss-Seidel algorithm with projection that was described above. The
only change that is necessary is in the definition of mkr in (13), which changes to:

mijr
def
= [f1(r)− fr(r − θij)]2 − µ + λcard(Nr). (17)

Note that since (17) does not depends on p, mijk can be precomputed, and the com-
putational cost is the same as that for the case of image restoration with fixed constant
models.
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Figure 6 shows the computed optical flow with the EC-GMMF method for different
estimators. Panel (a) shows the frame 8 of the Hamburg taxi sequence (image f1) the
other image corresponds to the frame 9 (no shown). Panel (b) shows the mode optical
flow, i.e. the vector field θij corresponding to the largest marginal at each pixel. Panel
(c) show the mean flow and panel(d) shows a robust mean computed with (16) and
n = 2. The mean optical flow is obtained with a sub-pixel resolution and the edges are
better preserved by the robust mean.

4 Summary and Conclusions

We have proposed an efficient parametric segmentation method based on Bayesian es-
timation with prior MRF models and the Expectation-Maximization (EM) procedure.
This method estimates the model parameters and the posterior marginals in successive
steps as minimizers of QPD energy functions subject to linear constraints, so that each
step in the EM procedure has a unique minimum. We also showed that it is possible
to implement the estimation process as a Generalized EM algorithm, in which one per-
forms the minimization of the posterior energy with respect to the model parameters
and the posterior marginals simultaneously, which decreases significantly the computa-
tional cost.

The key point for the superior performance of our method is the introduction of
a quadratic term (derived from the Gini coefficient) that controls the entropy of the
posterior marginals. This performance is demonstrated by numerical experiments that
compare our approach with other state-of-the-art algorithms, such as minimum graph-
cut and HMMF methods. The numerical experiments performed demonstrate that the
proposed algorithm is more robust to noise and to the initial values for the parameters
and significantly more efficient from a computational viewpoint.

It is important to remark that for the case of fixed models, the algorithm reduces to a
single E step, and the posterior marginals computed with a simple and efficient Gauss-
Seidel procedure correspond to the global optimum. Since these marginals are entropy-
controlled, they approximate very well the true ones, and may be used to compute
estimators different from the posterior mode (MPM), such as the posterior mean or
median. These estimators have the property of interpolating smoothly the estimated
feature between neighboring constant models, while preserving the discontinuities in
the solution. Two early vision applications that take advantage of this fact are presented:
piecewise smooth image reconstruction and optical flow computation.
This work was partially supported by CONACYT, Mexico (grants 40722 and 46270).
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