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Abstract

We apply the theory ofmetric-divergences between probability distributions
and a variational approach in order to obtain a new model for probabilistic image
segmentation. We study a specific model based on a very general measure be-
tween discrete probability distributions. We show experimentally that this model
is competitive with some other models of the state of the art.In this work we

use a particular case of the themeasure of kind

(

α β

γ δ

)

between two discrete

probability distributions.

Key words: Probabilistic segmentation, Markov random vector field, Markov
random measure field, Markov random field

1. Introduction

Image segmentation has been one of the most studied tasks in image process-
ing and it is considered a bridge between low and high level image processing
tasks. Image segmentation consists in obtaining a partition of the image accord-
ing to some homogeneous predicate (or property). Many strategies have been
proposed according to the point of view of the image modeling. If the image
is considered from the deterministic modeling viewpoint (i.e., a function defined
in some space) we can find different variational approaches for image segmenta-
tion [1, 2], when is modeled as a graph [3] we find Graph Cut [4] and Normalized
Cut [5]; in the context of data clustering the fuzzy c-means (FCM) methods are
widely used [6, 7] and if the image is modeled as a Markov Random Field (MRF)
several approaches have been reported [8, 9, 10, 11]. Among them, MRF-based
models have shown to be a powerful framework to design efficient and robust
models for image segmentation.
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The segmentation problem can be divided in two groups: hard and soft segmenta-
tion. The objective of the hard segmentation is to find a labelmap while the soft
segmentation methods try to find piecewise smooth maps (or functions) that can
be interpreted as probabilistic maps, see Ref. [12]. That iswhy, the soft segmen-
tation is also known asprobabilistic segmentation. The study of theprobabilistic
segmentationis very important because the probabilistic segmentation allows us
to obtain more robust hard segmentations. On the other hand,the probabilistic
segmentationby itself has many other applications, see for instance Refs. [13, 14]
and references therein. Therefore, theprobabilistic segmentationis an active area
and the study of new probabilistic models is crucial. The main aim of this work is
to present a new model for probabilistic image segmentation. The proposed model
combines a variational approach with the theory of metrics between discrete dis-

tributions [14, 15, 16]. The new model is based on themeasure of kind

(

α β

γ δ

)

between two discrete probability distributions [16]. We also present a theoretical
study of this model and we prove some properties and discuss particular cases.

This paper is organized as follows. In Section 2 we present a new model for
probabilistic segmentation. Section 3 presents some properties of the new model
and some particular cases. Section 4 shows some experimental results and finally
in Section 5, we present our conclusions.

2. α Markov Measure Field model

Here, we propose a new model for image segmentation that we call α-Markov
Measure Field model (α-MMF). Our model is obtained from the general formula-
tion in Ref. [12]. The new model here presented relies on a particular case of the

measure of kind

(

α β

γ δ

)

between two discrete probability distributionsf ,h,

i.e., f ,h ∈ S whereS (thesimplex) is the set of all pointsz ∈ RK that satisfy the
following conditions:1T z = 1 andz < 0, see Ref. [16]. This measure is defined
as

I
(α,β)
(γ,δ) (f ,h) = (2−β − 2−δ)−1

∑

k

(fα
k h

β
k − f

γ
k h

δ
k) (1)

whereα, β, γ, δ > 0. Defining the particular case

I(α,β)(f ,h)
def
= I

(α,β)
(1,0) (f ,h), (2)
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then, theα-MMF model can be formulated through the following optimization
problem

min
x∈S|L|

Uα(x; y), (3)

whereL is the lattice of the image,S |L| def
= {x(r) ∈ S : r ∈ L} andUα(x; y) is

defined as follows

Uα(x; y)
def
=

∑

r∈L

I(α,β)(x(r),y(r)) + λ
∑

s∈Nr

ωrsI
(α,α)(x(r),x(s)), (4)

y ∈ S |L| represents the likelihood of pixels to belong to some models, see Ex-
periment section, andωrs is a weight function,e.g., in the experiments we use
ωrs = ψγ(g(r), g(s)), whereγ is a small positive value, for other weight functions
see Refs [17, 18]. By eliminating the constants that appear in the functional (3)
we obtain

min
x∈S|L|

U(x; y, α), (5)

U(x; y, α) = −
1

α

∑

r∈L

∑

k∈K

[

xα
k (r)yβ

k (r) + λ
∑

s∈Nr

ωrsx
α
k (r)xα

k (s)

]

(6)

where0 < α ≤ 1 so that the similarity measuresI(α,β)
(1,0) (·, ·), I(α,α)

(1,0) (·, ·) are con-
vex. It is important to note that the measure of the second term of the functional
in Eq. (3) was selected in such a way that the prior energy is symmetric. The
solution of the constrained optimization problem (5)-(6) can be obtained by using
the Lagrange multipliers and theCoordinate Descentmethod [19]—in the MRFs
context, this optimization strategy can be seen as an ICM method [20]. The La-
grangian, without the non-negativity constraints is:

L(x,π; y, α) =U(x; y, α) +
∑

r∈L

π(r)
[

∑

k∈K

xk(r) − 1
]

,

whereπ(r) are the Lagrange multipliers associated with the constraint given by
Eq. (6). Computing the first derivative w.r.t. each component xk(r) of the vector
measure fieldx and equating to zero yields:

∂L(x,π; y, α)

∂xk(r)
= −xα−1

k (r)yβ
k (r) − λ

∑

s∈Nr

ωrsx
α−1
k (r)xα

k (s) + π(r) = 0.
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Then, we obtain, implicitly, the componentxk(r) in terms of its Lagrange multi-
plier

xk(r) =

[

nk(r)

π(r)

]
1

1−α

, (7)

wherenk(r) is defined as

nk(r)
def
= y

β
k (r) + λ

∑

s∈Nr

ωrsx
α
k (s). (8)

Taking into account thatx(r) ∈ S then
∑

k∈K

xk(r) = 1, (9)

whereK
def
= {1, 2, · · · , K}. Substitutingxk(r) in the previous equality we can

compute the Lagrange multiplierπ(r). Then, using (7) we obtain the following
expression forxk(r),

xk(r) =
[nk(r)]

1

1−α

∑

j∈K

[nj(r)]
1

1−α

. (10)

Finally, the algorithm for theα-MMF model is obtained by iterating the Eqs. (8)
and (10) until a convergence criterion. We note that the optimization problem (4)
is a nonlinear programming problem, so this strategy produces, in general, a local
minimum.

3. Analysis of the α-MMF model

To gain a better understanding of the proposed model, in thissection we dis-
cuss particular cases and some properties.

3.1. Some properties
Proposition 3.1. Let us consider the following Linear Programming problem

min
z

aT z, (11a)

s.t : z ∈S, (11b)

wherea ∈ RK . If j = arg mink ak thenz∗ = ej is an optimum solution.
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Proof. Clearly the problem (11a)-(11b) is a linear programming problem (LP),
which is feasible and bounded. ApplyingFundamental Theorem of Linear Pro-
gramming[19], then it has an optimal solution and at least one such solutions (the
basic optimal points) is abasic feasible point. Note the vectors of the canonical
basise = [e1, e2, · · · , eK ]T arebasic feasible points, therefore the solutions lie on
the polytope defined by the vectors of the canonical basis . Using the condition
j = arg mink ak thenz∗ = ej is an optimum solution.

Proposition 3.2. Let h(x) =
P

k∈K ax

k
log ak

P

k∈K ax

k

be a real function where0 ≤ ak ≤

1, ∀k ∈ K (ak ≥ 1, ∀k ∈ K) and
∑

k∈K ak 6= 0, thenh(x) is an increasing
function.

Proof. It is enough to prove thath′(x) ≥ 0. We will assume without loss of
generality that0 ≤ ak ≤ 1, ∀k ∈ K (the proof is similar ifak ≥ 1, ∀k ∈ K).
By applyinglog function to both sides ofh(x) and computing the derivative w.r.t
x we get

h′(x) = h(x)

(

∑

k∈K a
x
k log2 ak

∑

k∈K a
x
k log ak

−

∑

k∈K a
x
k log ak

∑

k∈K a
x
k

)

.

As h(x) < 0 we need to prove that
∑

k∈K a
x
k log2 ak

∑

k∈K a
x
k log ak

≤

∑

k∈K a
x
k log ak

∑

k∈K a
x
k

, (12)

or equivalently
∑

k∈K a
x
k log2 ak

∑

k∈K a
x
k

≥

(
∑

k∈K a
x
k log ak

∑

k∈K a
x
k

)2

. (13)

The inequality (13) follows from Jensen’s inequality

f(
∑

k∈K

ωkxk) ≤
∑

k∈K

ωkf(xk), (14)

usingf(x) = x2, ωk =
ax

k
P

k
ax

k

andxk = − log ak.

Proposition 3.3. Let a(x) be a vector ofRK whose components are defined as
followsak(x) =

ax

k
P

k∈K ax

k

where0 ≤ ak ≤ 1, ∀k ∈ K (ak ≥ 1, ∀k ∈ K) and
∑

k∈K ak 6= 0. Then, the entropy ofa(x) is a decreasing function ofx.
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Proof. We are to prove that ifx < y thenH(a(x)) ≥ H(a(y)) whereH(·) is
certain entropy measure. First, we need to select an entropymeasure. There have
been many attempts to generalize Shannon’s entropyH(f) = −

∑

k∈K fk log fk,
wheref ∈ S is a discrete distribution. Therefore, we will prove the proposition
based on some generalizations. Rényi’s entropy (or the entropy of orderα) is
defined as

Hα(f) =
log
(
∑

k∈K f
α
k

)

1 − α
, α 6= 1, α > 0, (15)

Another generalization of Shannon’s entropy is the entropyof typeβ (or the en-
tropy of degreeβ) due to Havrda and Charvat, see [15], and is defined as

Hβ(f ) =

∑

k∈K f
β
k − 1

21−β − 1
, β 6= 1, β > 0, (16)

and,H(f) = limα→1Hα(f ) = limβ→1H
β(f). The entropies (15) and (16) share

the same termT (f) =
∑

k∈K f
α
k , hence it is better to work with this term. We

will assume without loss of generality thatα > 1, then the inequalityH(a(x)) ≥
H(a(y)) is equivalent to prove that

T (a(x)) ≤ T (a(y)).

Defining the function

g(x)
def
= T (a(x)) =

∑

k∈K a
xα
k

(
∑

k∈K a
x
k)

α
,

it suffices to prove thatg(x) is an increasing function, or thatg′(x) ≥ 0. By
applyinglog function to both sides ofg(x) and computing the derivative w.r.tx
we get

g′(x) = αg(x)

(
∑

k∈K a
xα
k log ak

∑

k∈K a
xα
k

−

∑

k∈K a
x
k log ak

∑

k∈K a
x
k

)

. (17)

Finally, the resultg′(x) ≥ 0 follows from the fact thatg(x) > 0 and applying
Proposition 3.2 to the last factor of (17).

The proposed model, also satisfies the following properties:

Proposition 3.4. The optimum solutionx∗ of the minimization of the data term in
Eq. (4) satisfies
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Figure 1: 2D example. The entropy of the solution decreases while the parameterα increases from
0 to 1.

i) arg maxk∈K x∗ = arg maxk∈K y for all α ∈ (0, 1],

ii) x∗(r) = ekr
if α = 1 and∀r ∈ L ∃kr ∈ K such thatykr

(r) > yi(r) ∀i 6= kr,

iii) x∗ = y if α = β = 1
2
.

Proof.
The proof of i) is obtained directly by using the Eq. (10).
The proof of ii) follows from Proposition 3.1.
The proof of iii) follows from Cauchy-Schwarz inequality.

Proposition 3.5. If there is no prior information aboutx (i.e. λ = 0) then the
entropy of theα-MMF model is a decreasing function ofα.

The proof follows from proposition 3.3. In addition, the Fig. 1 depicts how
the entropy of the solution of the model (5)-(6) decreases while the parameterα
increases from0 to 1. Finally, we conclude that changing the parameterα in our
model (3) we can control the entropy of the solution.

Table 1: The best parameters obtained after training each method on the whole Lasso’s benchmark.

Parameters ECQMMF αMMF

λ 3.18 × 105 2.91 × 105

γ 2.84 × 10−2 1.94 × 10−3

α −7.08 × 104 4.67 × 10−1
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Figure 2: ‘Ceramic’ image taken from the Lasso database. a) Original image b) trimap: foreground
(in white), background (in dark gray), the unknown region (in light gray) and thenon-process
region (in black), c) groun8dtruth: foreground (in white),background (in black), the region in
gray is not taken into account in the comparisons.

3.2. Particular cases

• Case α = 1: If α is set to1 in the functional Eq. (3) we obtain the following
model,

min
x∈S|L|

U1(x; y), (18)

where

U1(x; y)
def
= I(1,β)(x(r),y(r)) + λ

∑

s∈Nr

ωrsI
(1,1)(x(r),x(s)). (19)

Eliminating the constants values in Eq. (19) produces the functional

U(x; y, 1) = −
∑

r∈L

∑

k∈K

[

xk(r)y
β
k (r) + λ

∑

s∈Nr

ωrsxk(r)xk(s)

]

. (20)

obtaining the following optimization problem

min
x∈S|L|

U(x; y, 1). (21)

The solution of the previous optimization problem could be obtained using
the formula (10) whenα approaches to1, that is,xk(r) can be computed
with
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Table 2: Comparative performance of probabilistic segmentation methods using the Lasso’s bench
database. The values in the table represent the classification errors (MSE) and are expressed in
percentage. These results were obtained by using the best parameters after training each method
on the whole database.

Filename Group ECQMMF αMMF Filename Group ECQMMF αMMF

21077 1 3.88 3.74 cross 3 1.62 1.46
86016 1 3.30 3.63 grave 3 1.64 1.19
181079 1 6.31 6.65 person2 3 0.61 0.49
271008 1 3.73 2.71 person7 3 0.88 0.66
banana1 1 2.57 1.17 stone2 3 0.41 0.17
bush 1 5.84 6.92 65019 4 0.59 0.65
flower 1 0.54 0.46 153077 4 1.66 1.49
music 1 1.66 1.49 209070 4 2.27 2.12
person5 1 3.47 3.22 376043 4 6.59 6.85
sheep 1 5.91 5.34 book 4 4.13 2.45
37073 2 1.70 1.70 doll 4 0.42 0.4
106024 2 8.68 7.52 llama 4 4.98 5.77
189080 2 4.20 4.01 person3 4 1.03 1.01
304074 2 10.75 9.67 person8 4 0.55 0.65
banana2 2 0.72 0.45 teddy 4 3.50 3.50
ceramic 2 1.37 0.98 69020 5 4.71 4.10
fullmoon 2 0.00 0.00 153093 5 4.61 5.27
person1 2 0.53 0.37 227092 5 3.4 4.14
person6 2 4.84 5.13 388016 5 1.28 1.24
stone1 2 1.04 0.78 bool 5 2.01 1.63
24077 3 4.27 4.10 elefant 5 1.14 0.79
124080 3 5.70 5.06 memorial 5 1.52 1.22
208001 3 1.76 1.86 person4 5 2.96 3.29
326038 3 7.19 5.89 scissors 5 1.97 1.73
banana3 3 1.87 1.88 tennis 5 7.73 6.74
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xk(r) = lim
α→1

[nk(r)]
1

1−α

∑

j∈K

[nj(r)]
1

1−α

= δ(kr − k), (22)

whereδ(·) is the Kronecker delta andkr = arg maxj∈K xj(r) = arg maxj∈K nj(r).
That is, at each iteration we computenj(r), j ∈ K and then we setxk(r) =
1 if the corresponding value ofnk(r) is the greatest orxk(r) = 0 in any
other case.

• Case α = 1, β → 0: In this case,I(1,β)(·, ·) becomes the Kerridge’s Inaccu-
racy measure [21], that is

lim
β→0

I(1,β)(f ,h) = −
∑

k

fk log hk,

and the new functional is

min
x∈S|L|

−
∑

r∈L

∑

k∈K

[

xk(r) log yk(r) + λ
∑

s∈Nr

ωrsxk(r)xk(s)

]

, (23)

wherenk(r) = log yk(r) + λ
∑

s∈Nr
ωrsxk(s) and now can take different

signs. The solution of the previous problem can also be obtained using the
iterative method based on the expression (22). This functional, see Eq. (23),
is very similar to the MPM-MAP model proposed by Marroquin etal. in [8].
However, there are two main differences. First, in the MPM-MAP model
xk(r) takes discrete values,i.e. xk(r) ∈ {0, 1}. Second, the regularization
term is different too.

4. Experiments

In the interactive segmentation the image is partitioned indifferent regions (a
trimap), see Ref. [22]: foreground (F ), background (B), unknown (U), and a non-
process region (O), see Fig. 2. The problem consists of estimating the class (F or
B) to which the pixels located in the unknown region belong.

We make a comparison using the best algorithm reported in [23], the Entropy
Control Quadratic Markov Measure Field (ECQMMF) and the oneproposed here,
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Table 3: Summary of some statistics computed for each method.

EQQMMF αMMF

mean 3.08 2.87
median 2.14 1.87
std 2.45 2.37
min 0.00 0.00
max 10.75 9.67

Table 4: Cross-validation results. Training errors for each group and method, and the mean training
error for each model.

Training
EQMMF αMMF

Testing
EQMMF αMMF

Group Group

1 3.01 2.83 1 3.21 3.08
2 3.06 2.97 2 2.93 2.50
3 3.17 3.01 3 2.49 2.43
4 2.97 2.82 4 3.27 3.08
5 2.86 2.71 5 3.68 3.53

mean 3.01 2.87 mean 3.11 2.92

theα-MMF. For making such a comparison we use the Lasso’s database available
online at Ref. [24]. This database consists of 50 color images. Each image has a
trimap and its segmented by hand image (groundtruth, image t). To compare the
methods we use as comparison measure themean square error(MSE) between
the groundtruth and the segmented image (s) obtained by eachmethod. The MSE
is computed just in the region of interest (the unknown regionU), that is:

MSE(s, t) =
1

|U|

∑

r∈U

(s(r) − t(r))2. (24)

We note that theα-MMF and ECQMMF models have 3 parameters. Then, each
method has the same number of parametersθ = [λ, γ, α]T , whereλ controls
the spatial smoothness,γ controls the sharpness of the edges andα controls the
entropy of the solution. To obtain the solution of the ECQMMFmodel we use the
formula proposed in Ref. [11].
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As preference measure to the models (foreground and background) we use the
empirical normalized likelihoods, see Refs. [22, 23] for details:

yk(r) =
hk(g(r)) + ǫ

∑

j∈{1,2}[hj(g(r)) + ǫ]
,

whereǫ = 10−3 is a small positive value that prevents the above expressionis
undefined.h1 andh2 are the empirical color histograms that corresponds to the
foreground and the background respectively. We did experiments computing the
histograms inLab andRGB color spaces and the results were very similar. There-
fore, in the experiments presented here the empirical histograms are computed in
theRGB color space.
First, the parameter setθ was trained for each method on the whole Lasso’s
database by minimizing the MSE, Eq. (24), between the groundtruth and the seg-
mented images. We follow the evaluation procedure proposedin [23]: a cross-
validation with a parameter optimization stage. The minimization of the MSE
was done by using the Nelder Mead method [25, 26]. In particular, we use the im-
plementation in the Numerical Recipes [26]. Second, we applied a k-fold cross-
validation, see Refs. [27, 28], by dividing the database in 5groups. In particular,
we use the same groups reported in [23].
The results of the first experiment appear in the Tables 1-3. The Table 1 shows
the best parameter set obtained for each method during the training step. The Ta-
ble 2 presents the results obtained for each method on the whole Lasso’s dataset
by using the best parameter set, Table 1, obtained in the training step. Table 3
shows a summary of some statistics which are based on the results presented in
the Table 2. The results of the second experiment (cross-validation) are shown in
Table 4. Note that theα-MMF has the best performance in both evaluations. The
difference between the results reported in Table 2 and in Ref. [23] with respect to
the ECQMMF model, is due to the color empirical histograms are computed in
theRGB color space. In Ref. [23] the color empirical histograms were computed
in theLab color space.
According to the Table 1, the algorithms tried to increase the entropy during the
training step. That is, for this problem, the models ‘prefer’ to have high entropy.
Observe that, in the case of the ECQMMF model, the value ofα is less than
zero. Therefore, the result would have been the same if instead of penalizing the
Gini’s entropy we would have penalized theL2-norm in the local prior energy.
Theα-MMF model also ‘prefers’ a solution with high entropy becauseα < 0.5,
see Table 1. However, we note that there problems for which solutions with low
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entropy is better, for instance: the applications presented in Ref. [18] and the si-
multaneous estimation of segmentation and parameters problem [11, 23].

5. Conclusions

We present a new model,α-MMF, for probabilistic image segmentation. We
also analyze some properties and limit cases of the presented model. For evaluat-
ing the performance of the new model we use the interactive segmentation task.
We compared our model with the ECQMMF model which has been recently re-
ported as the best method is this image processing task. We show experimentally
that theα-MMF model has competitive results compared with some algorithms
of the state of the art.
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