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Abstract

We apply the theory ofmetric-divergences between probability distributions
and a variational approach in order to obtain a new modelrababilistic image
segmentation. We study a specific model based on a very geneesure be-
tween discrete probability distributions. We show expemtally that this model
is competitive with some other models of the state of the hrtthis work we
o

use a particular case of the theeasure of kinc< 5

) between two discrete
probability distributions.
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1. Introduction

Image segmentation has been one of the most studied taskageiprocess-
ing and it is considered a bridge between low and high levelgenprocessing
tasks. Image segmentation consists in obtaining a partitidhe image accord-
ing to some homogeneous predicate (or property). Manyesfieg have been
proposed according to the point of view of the image modeliifgthe image
is considered from the deterministic modeling viewpoirg.(ia function defined
in some space) we can find different variational approacbiesrfage segmenta-
tion [1, 2], when is modeled as a graph [3] we find Graph Cut j#] Blormalized
Cut [5]; in the context of data clustering the fuzzy c-medfGNI) methods are
widely used [6, 7] and if the image is modeled as a Markov RemBeld (MRF)
several approaches have been reported [8, 9, 10, 11]. Anmemg, (MRF-based
models have shown to be a powerful framework to design efiicad robust
models for image segmentation.
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The segmentation problem can be divided in two groups: haddsaft segmenta-
tion. The objective of the hard segmentation is to find a lateb while the soft
segmentation methods try to find piecewise smooth maps (atiins) that can
be interpreted as probabilistic maps, see Ref. [12]. Thahig the soft segmen-
tation is also known agrobabilistic segmentatiorhe study of theprobabilistic
segmentatiofs very important because the probabilistic segmentatiowa us
to obtain more robust hard segmentations. On the other liaagyrobabilistic
segmentatioby itself has many other applications, see for instance.Re3s 14]
and references therein. Therefore, pinebabilistic segmentatiois an active area
and the study of new probabilistic models is crucial. Themaam of this work is
to present a new model for probabilistic image segmentalibe proposed model
combines a variational approach with the theory of metretsvben discrete dis-

tributions [14, 15, 16]. The new model is based onrtteasure of kin : ?

between two discrete probability distributions [16]. Weapresent a theoretical
study of this model and we prove some properties and disarsisylar cases.

This paper is organized as follows. In Section 2 we presermwamodel for
probabilistic segmentation. Section 3 presents some prep®f the new model
and some particular cases. Section 4 shows some experimesuks and finally
in Section 5, we present our conclusions.

2. o« Markov Measure Field modél

Here, we propose a new model for image segmentation thatve-dsarkov
Measure Field modeh(-MMF). Our model is obtained from the general formula-
tion in Ref. [12]. The new model here presented relies on aqudar case of the

measure of kint( : ? ) between two discrete probability distributiogfsh,

i.e, f,h € SwhereS (thesimpley is the set of all pointg € RX that satisfy the
following conditions:1”7z = 1 andz 3= 0, see Ref. [16]. This measure is defined
as

I (F.h) = (277 =277 Y (fehl = ) (1)
k

wherea, (3,7, > 0. Defining the particular case
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then, thea-MMF model can be formulated through the following optintina
problem
min U, (x;vy), (3)

xeSILl

whereZ is the lattice of the image§/<! %/ {x(r) € S:r e L} andU,(x;y) is
defined as follows

NI @),y (1) + A Y w0 @ (), 2(5), (@)

rel sEN;

y € SI¢l represents the likelihood of pixels to belong to some modsls Ex-
periment section, and,, is a weight functiong.g, in the experiments we use
wrs = 1 (g(7), g(s)), wherey is a small positive value, for other weight functions
see Refs [17, 18]. By eliminating the constants that appe#re functional (3)
we obtain

min U(x;y, a), (5)

xESILI

Ulx;y,a) = —é Z Z 2% (r)yl (r) + X Z wWrsTh ()i (s) (6)

rel kek SEN,

(aa

where0 < « < 1 so that the similarity measuréé“ () Iy ) are con-
vex. It is important to note that the measure of the secomi tegrthe functional
in Eq. (3) was selected in such a way that the prior energy nsnsstric. The
solution of the constrained optimization problem (5)-(&h de obtained by using
the Lagrange multipliers and tl@&oordinate Descennethod [19]—in the MRFs
context, this optimization strategy can be seen as an ICModef20]. The La-
grangian, without the non-negativity constraints is:

‘C(wvﬂ-;y7 ) .’E Y, Z [Zxk(’f’)—

wherer(r) are the Lagrange multipliers associated with the constgauen by
Eq. (6). Computing the first derivative w.r.t. each compdnelir) of the vector
measure fielde and equating to zero yields:

oL(x,my,a)
B 3 T 0 450



Then, we obtain, implicitly, the component(r) in terms of its Lagrange multi-
plier

ar) = |20, )
whereny(r) is defined as
ng(r) = Yl (r) + A Z Wrs T (8). (8)
SEN,

Taking into account that(r) € S then

Zxk(r> = 17 (9)
kek
wherek =/ {1,2,---, K'}. Substitutingz,(r) in the previous equality we can

compute the Lagrange multipliet(r). Then, using (7) we obtain the following
expression fot(r),

a7 10

37 Iny(r)) ==

jex

zy(r) =

Finally, the algorithm for the.-MMF model is obtained by iterating the Egs. (8)
and (10) until a convergence criterion. We note that thenoigtition problem (4)
is a nonlinear programming problem, so this strategy presglua general, a local
minimum.

3. Analysisof the a-MMF model

To gain a better understanding of the proposed model, irstgtion we dis-
cuss particular cases and some properties.

3.1. Some properties
Proposition 3.1. Let us consider the following Linear Programming problem

mina’z, (11a)
st:zeS, (11b)

wherea € R¥. If j = arg min; a;, thenz* = e; is an optimum solution.
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Proof. Clearly the problem (11a)-(11b) is a linear programmingbpgm (LP),
which is feasible and bounded. Applyifgindamental Theorem of Linear Pro-
gramming[19], then it has an optimal solution and at least one sualtisols (the
basic optimal points) is hasic feasible pointNote the vectors of the canonical
basise = [e, €0, - - , ex]T arebasic feasible pointgherefore the solutions lie on
the polytope defined by the vectors of the canonical basisingise condition
J = argminy a;, thenz* = e; is an optimum solution. 0J

Proposition 3.2. Let h(z) = %}C’ifg‘“‘ be a real function wher@ < q; <
€ k

L, Vk € K(ap > 1, Yk € K)and)_, . ar # 0, thenh(z) is an increasing
function.

Proof. It is enough to prove that'(z) > 0. We will assume without loss of
generality that) < a, < 1, Vk € K (the proof is similar ifa;, > 1, Vk € K).
By applyinglog function to both sides of(x) and computing the derivative w.r.t
x we get

W(x) = h(x) (Eke}c Gilog’a _ Fyexcailos ak) .

Zkelc ay, log ay, Zke/c ay

As h(z) < 0 we need to prove that

Y kex O log? ay, > kex 0% log ay,
- < — (12)
> _kex Of log ai > kex @,
or equivalently
xr x 2
> ke Ok loiz Ak > (Zkelc Ay loxgak) . (13)
> ke O > kex @,
The inequality (13) follows from Jensen’s inequality
FO werr) <Y wif(an), (14)
kel kel
usingf(z) = 22, wy = ﬁkak andz;, = — log ay. O
Proposition 3.3. Let a(z) be a vector ofR® whose components are defined as
follows ay(z) = Zka’;a*‘ where0 < a;, < 1, Yk € K (a, > 1, Vk € K) and
S k

> kex Gk # 0. Then, the entropy ai(x) is a decreasing function af.
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Proof. We are to prove that it < y thenH (a(x)) > H(a(y)) whereH(-) is
certain entropy measure. First, we need to select an entngagure. There have
been many attempts to generalize Shannon’s entfbQf)) = — >, . fi10g fx,
wheref € S is a discrete distribution. Therefore, we will prove the gsition
based on some generalizations. Rényi’'s entropy (or th@mntof ordera) is
defined as

log (Y pex /i)

l—«

Ha(f) = La# L a>0, (15)
Another generalization of Shannon’s entropy is the entmitype 3 (or the en-
tropy of degree?) due to Havrda and Charvat, see [15], and is defined as

Ekelcfk:ﬁ —1

915 _ | , B#1, >0, (16)

HP(f) =
and,H(f) = lim,_, H,(f) = limg_, H?(f). The entropies (15) and (16) share
the same ternT'(f) = >, . fi'» hence it is better to work with this term. We
will assume without loss of generality that> 1, then the inequality{ (a(x)) >
H(a(y)) is equivalent to prove that

it suffices to prove thay(z) is an increasing function, or that(z) > 0. By
applyinglog function to both sides ofi(x) and computing the derivative w.rt
we get

o 1 ZEl
J0) = agle) (SR Sag L) g
D ke % > ke O
Finally, the resulty’(z) > 0 follows from the fact thay(z) > 0 and applying
Proposition 3.2 to the last factor of (17). O

The proposed model, also satisfies the following properties

Proposition 3.4. The optimum solutiom* of the minimization of the data term in
Eq. (4) satisfies



1R

Figure 1: 2D example. The entropy of the solution decreadde the parameter increases from
Otol.

i) arg maxye * = argmaxgerc y forall o € (0, 1],

i) *(r) = ey, if a =1andVr € L 3k, € K such thatyy, (r) > v;(r) Vi # k,,
i) " =yifa=0=1.

Proof.

The proof of i) is obtained directly by using the Eq. (10).

The proof of ii) follows from Proposition 3.1.
The proof of iii) follows from Cauchy-Schwarz inequality. O

Proposition 3.5. If there is no prior information about (i.e. A = 0) then the
entropy of thex-MMF model is a decreasing function of

The proof follows from proposition 3.3. In addition, the Figdepicts how
the entropy of the solution of the model (5)-(6) decreasesdewvthe parametety
increases fron to 1. Finally, we conclude that changing the parametén our
model (3) we can control the entropy of the solution.

Table 1: The best parameters obtained after training eattotien the whole Lasso’s benchmark.

| Parametery ECQMMF | aMMF |

A 318 x 10° | 2.91 x 10°
5 2.84 x 1072 | 1.94 x 10~3
o —7.08 x 10% | 4.67 x 10~




b) C)

Figure 2: ‘Ceramic’ image taken from the Lasso databaserigjr@l image b) trimap: foreground
(in white), background (in dark gray), the unknown regiam l{ght gray) and thenon-process
region (in black), c) groun8dtruth: foreground (in whitégckground (in black), the region in
gray is not taken into account in the comparisons.

3.2. Particular cases
» Casea = 1: If ais settol in the functional Eg. (3) we obtain the following

model,
min U1(z;y), (18)
where
Ui(@sy) < 109(@(r),y(r) + 2wl "D (@(r), (s)). (19)
sEN;

Eliminating the constants values in Eq. (19) produces thetfanal

Ulx;y,1) = — Z Z :Ek(r)y,f(r) + A Z wrsTr(r)zr(s)| - (20)

rel keK sEN;

obtaining the following optimization problem

min U(x;y,1). (22)
xcSI~Ll
The solution of the previous optimization problem could béamed using
the formula (10) whenv approaches ta, that is,z(r) can be computed
with



Table 2: Comparative performance of probabilistic segat@m methods using the Lasso’s bench
database. The values in the table represent the classificatiors (MSE) and are expressed in
percentage. These results were obtained by using the basheters after training each method
on the whole database.

Filename| Group | ECQMMF | aMMF || Filename | Group | ECQMMF | aMMF |

21077 1 3.88 3.74 Cross 3 1.62 1.46
86016 1 3.30 3.63 grave 3 1.64 1.19
181079 1 6.31 6.65 person2 3 0.61 0.49
271008 1 3.73 2.71 person? 3 0.88 0.66
bananal 1 2.57 1.17 stone2 3 0.41 0.17
bush 1 5.84 6.92 65019 4 0.59 0.65
flower 1 0.54 0.46 153077 4 1.66 1.49
music 1 1.66 1.49 209070 4 2.27 212
person5 1 3.47 3.22 376043 4 6.59 6.85
sheep 1 5.91 5.34 book 4 4.13 2.45
37073 2 1.70 1.70 doll 4 0.42 0.4
106024 2 8.68 7.52 llama 4 4,98 5.77
189080 2 4.20 4.01 person3 4 1.03 1.01
304074 2 10.75 9.67 person8 4 0.55 0.65
banana2 2 0.72 0.45 || teddy 4 3.50 3.50
ceramic 2 1.37 0.98 69020 5 4,71 4.10
fullmoon 2 0.00 0.00 153093 5 4.61 5.27
personl 2 0.53 0.37 227092 5 3.4 4.14
person6 2 4.84 5.13 388016 5 1.28 1.24
stonel 2 1.04 0.78 bool 5 2.01 1.63
24077 3 4.27 4.10 elefant 5 1.14 0.79
124080 3 5.70 5.06 memorial 5 1.52 1.22
208001 3 1.76 1.86 person4 5 2.96 3.29
326038 3 7.19 5.89 scissors 5 1.97 1.73
banana3 3 1.87 1.88 tennis 5 7.73 6.74




() = lim Z[”’E“)(] ;_ = §(k, — k), (22)

jek

whered(-) is the Kronecker delta arig = arg max;cx x;(r) = arg max;ex n; ().
That is, at each iteration we computgr), j € K and then we set;,(r) =

1 if the corresponding value of,(r) is the greatest of,(r) = 0 in any
other case.

« Casea = 1,3 — 0: Inthis case/?)(-, .) becomes the Kerridge’s Inaccu-
racy measure [21], that is

lim IO (f h) = — log hi,

and the new functional is

min — Z Z x(r) logye(r) + A Z wrsTr ()T (8) |, (23)

weslel Tl kex sEN,,
whereny(r) = logyr(r) + AY_,cn wrsk(s) @and now can take different
signs. The solution of the previous problem can also be néthiising the
iterative method based on the expression (22). This funatjcee Eq. (23),
is very similar to the MPM-MAP model proposed by Marroquimktin [8].
However, there are two main differences. First, in the MPM®model
x(r) takes discrete valuese. x(r) € {0, 1}. Second, the regularization
term is different too.

4. Experiments

In the interactive segmentation the image is partitionedifierent regions (a
trimap), see Ref. [22]: foregroundF], background), unknown {{), and a non-
process region®), see Fig. 2. The problem consists of estimating the classr(
) to which the pixels located in the unknown region belong.

We make a comparison using the best algorithm reported iih 23 Entropy
Control Quadratic Markov Measure Field (ECQMMF) and the praposed here,
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Table 3: Summary of some statistics computed for each method

[ EQQMMF | aMMF |

mean
median
std

min
max

3.08
2.14
2.45
0.00
10.75

2.87
1.87
2.37
0.00
9.67

Table 4: Cross-validation results. Training errors foteg@oup and method, and the mean training
error for each model.

2§gﬂ? EQMMF | aMMF Eﬁﬂ? EQMMF | aMMF
1 301 | 283 1 321 | 3.08
2 3.06 | 297 2 293 | 250
3 317 | 301 3 249 | 243
4 297 | 282 4 327 | 308
5 286 | 271 5 3.68 | 353

| mean | 3.01 | 287 [ mean| 311 | 292 |

thea-MMF. For making such a comparison we use the Lasso’s dadabaslable
online at Ref. [24]. This database consists of 50 color imagm@ch image has a
trimap and its segmented by hand imaggoundtruth image t). To compare the
methods we use as comparison measurertban square erro(MSE) between
the groundtruth and the segmented image (s) obtained byneeittod. The MSE
is computed just in the region of interest (the unknown ne@i®, that is:

(24)

We note that thee-MMF and ECQMMF models have 3 parameters. Then, each
method has the same number of parameiers [\, ~,a|”, where\ controls

the spatial smoothness,controls the sharpness of the edges arabntrols the
entropy of the solution. To obtain the solution of the ECQMMBdel we use the
formula proposed in Ref. [11].
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As preference measure to the models (foreground and baokgyave use the
empirical normalized likelihoods, see Refs. [22, 23] fotads:

 he)+
W) = = T

wheree = 1073 is a small positive value that prevents the above expression
undefined.h; andh, are the empirical color histograms that corresponds to the
foreground and the background respectively. We did expartsncomputing the
histograms in.ab and RG B color spaces and the results were very similar. There-
fore, in the experiments presented here the empiricaldriatos are computed in
the RG B color space.

First, the parameter sét was trained for each method on the whole Lasso’s
database by minimizing the MSE, Eq. (24), between the groutidand the seg-
mented images. We follow the evaluation procedure propos¢2i3]: a cross-
validation with a parameter optimization stage. The mization of the MSE
was done by using the Nelder Mead method [25, 26]. In padicule use the im-
plementation in the Numerical Recipes [26]. Second, weiag@@ k-fold cross-
validation, see Refs. [27, 28], by dividing the database gndups. In particular,
we use the same groups reported in [23].

The results of the first experiment appear in the Tables 1& Table 1 shows
the best parameter set obtained for each method duringaiméniy step. The Ta-
ble 2 presents the results obtained for each method on thkewheso’s dataset
by using the best parameter set, Table 1, obtained in thartigastep. Table 3
shows a summary of some statistics which are based on thisrpsesented in
the Table 2. The results of the second experiment (crosdatain) are shown in
Table 4. Note that the-MMF has the best performance in both evaluations. The
difference between the results reported in Table 2 and in[R&f with respect to
the ECQMMF model, is due to the color empirical histogrames @mputed in
the RG B color space. In Ref. [23] the color empirical histogramseveymputed

in the Lab color space.

According to the Table 1, the algorithms tried to increasedhtropy during the
training step. That is, for this problem, the models ‘prefetave high entropy.
Observe that, in the case of the ECQMMF model, the value @ less than
zero. Therefore, the result would have been the same ifadstépenalizing the
Gini's entropy we would have penalized tlig-norm in the local prior energy.
The a-MMF model also ‘prefers’ a solution with high entropy besau < 0.5,

see Table 1. However, we note that there problems for whikltisns with low
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entropy is better, for instance: the applications preseimdRef. [18] and the si-
multaneous estimation of segmentation and parametertepndtl, 23].

5. Conclusions

We present a new model;MMF, for probabilistic image segmentation. We
also analyze some properties and limit cases of the preberdadel. For evaluat-
ing the performance of the new model we use the interactigmeatation task.
We compared our model with the ECQMMF model which has beeantécre-
ported as the best method is this image processing task. $veestperimentally
that thea-MMF model has competitive results compared with some #lgois
of the state of the art.
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