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Abstract

We propose a general image and video editing method basedBayesian segmentation framework. In the first
stage, classes are established from scribbles made by eoustnie image. These scribbles can be considered as
a multimap (multilabel map) that defines the boundary canlit of a probability measure field to be computed
for each pixel. In the second stage, the global minima of atipesdefinite quadratic cost function with linear
constraints, is calculated to find the probability measueddfi The components of such a probability measure field
express the degree of each pixel belonging to spatially gmdasses. Finally, the computed probabilities (mem-
berships) are used for defining the weights of a linear comtimn of user provided colors or effects associated
to each class. The proposed method allows the applicatiatifffrent operators, selected interactively by the
user, over part or the whole image without needing to recdamplie memberships. We present applications to
colorization, recolorization, editing and photomontagsks.

Categories and Subject Descript@ascording to ACM CCS) 1.3.8 [Computer Graphics]: Applications—Image
Colorizarion, Recolorizaction

1. Introduction 3. we introducethe distanceas a feature for probabilistic
segmentation methods,

4. we introduce an off-line entropy control for probabilist
segmentation methods.

In this paper, we propose an interactive method for im-
age/video colorization and editing. Our method is based on
a probabilistic Bayesian framework for image segmentation

Our strategy consists of applying a particular image tramsf Unlike reported approaches for image editing, we present
mation to each segmented region. We demonstrate that ouran interactive framework for gray and color image/video

framework is very general, it can be applied to monochrome editing tasks. The criterion we use for extracting simikar r

or color images, as well as to video. Our technique ac- gions is based on a similarity measure given by probabil-

cepts different kind of transformations: colorizationcok ity distributions. In the case of colorization (or recolx
orization, tonal transformations, artistic effects andmget- tion), our method assumes that regions with similar intgnsi
ric transformations. (color) distributions should have similar colors. In gealer

) ) the same transformation is applied to regions with similar
Our proposal extends and generalizes our previous confer- gistribution.

ence paper)RMO07], in which we proposed an interactive

method for the particular task of colorization. The priratip Recent works for image editing are reported in
contributions of this paper are: Refs. LLW04,WC05LFUS06YS06DRM07,AP0§. Most

of them tackle a particular image editing task. Some so-
1. we improve the colorization operator proposed in our pre- lutions to the matting problem have been proposed in

vious work DRMO07], Refs. WCO05 RKB04, WCO05 LRALO0S8]. Lischinski et al.
2. we extend the previous operator to other image and video present an interactive technique for the local adjustmént o
editing tasks, tonal values LFUS04. An and Pellacini present an inter-
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Figure 1: Interactive colorization using multimaps for de-
fined regions. (a) Original gray scale image (luminance
channel), (b) multimap, (c) colored image in which the
chrominance channels are provided by the user. The col-
orization was achieved with the method presented in this pa-
per.

active editing method for tonal adjustment, and for chang-
ing the appearance (low and high dynamic range) of color
images PAP0g. Both methods use a propagation strategy
based on a quadratic functional. Yatziv and Sapiro present
an approach close related with our scheme, see R8D§.
They compute a layered map of geodesic distances from
each pixel to the scribbles. Another particular editingktas
is image colorization. This technique consists of intradgc
color to grayscale, sepia or monochromatic images, for in-
stance see RefsL[W04, SBv04 YS06 DRMO07]. In spite

of the fact that many colorization algorithms have been
developed in recent yearRAGS01, WAM, Hor02 BR0O3
CWSMO04 WHO04, LLW04, SBv04 QGO05 TJT05 KVO06,
YS06 QWCO*07, DRMO7], only a few of them are based
on a segmentation procedur€ WSM04 TJTO05 KVO06,
DRMO07]. The reason seems to be, for coloring purposes,
that regions to be segmented come from different groups:
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technique, the chromaticity channels are transferred fham
source image to the target image by finding regions that best
match their local mean and variance of the luminance chan-
nel . In order to improve the last method, Blasi and Recu-
pero proposed a sophisticated data structure for acdelgrat
the matching procesghe antipole tredBR03. Chen et al.,

in Ref. [CWSMO04, proposed a combination of composi-
tion [PD84 and colorization WAM] methods. First, they
extract objects from the image to be colorized by applying
a matting algorithm, then each object is colorized using the
method proposed by Welsh et al., and in the last step, they
make a composition of all objects to obtain the final col-
orized image. Tai et al. treat the problem of transferringico
among regions of two natural imagegJ[T05.

Automatic color transfer methods will equally transfer
color between regions with similar luminance featuresygra
level mean, standard deviation or higher—level pixel cante
features, as in ICOLO05]). However, this approach may fail
in many cases. For instance, consider the simple case in
which the gray mean is the used feature, then a grass field
and a sky region may have similar gray scale values, but
different colors. Therefore, in general, colorizationuiegs
high—level knowledge that can only be provided by the final
user: a human. For this reason, semiautomatic methods have
successfully been used inimage colorization. These msthod
take advantage of user interaction for providing high level
knowledge [LWO04, KV06, YS06 DRMO7]. For instance,
Levin et al. presented a novel interactive method for col-
orization based on an the minimization of a free-parameter
cost functional [LW04].

Video colorization is, in general, implemented as an hy-

faces, coats, hair, forest, landscapes and, up to now, therebrid technique: the user provides scribbles for some frames
has not been a proficient method that automatically discerns and afterward such information is propagated to the re-
among this huge range of features. In the absence of a gen-minder frames. Previous solutions to this problem are re-
eral purpose automatic segmentation algorithm, other-alte ported in Refs. [[LW04, SBv04 YS0§. The method in
natives have appeared in recent years and techniques ¢hat us Ref. [YS06g uses the idea of geodesic distance in volumet-
human interaction (semi-automatic algorithms) have been ric data {.ewith the time as the third dimension). In spite
introduced as part of computer vision algorithms. In inter- of the method presents good results it is limited to work
active colorization procedures one uses a gray scale imageWwith sequences with small displacements: videos with fixed
as the luminance channel and estimates the chrominance forbackground (without camera movements) and short move-
each pixel. This is achieved by propagating the colors from ments of objects. Another approach to video colorization is
user labeled pixels. The process is illustrated in Eigone presented in RefLLWO04]. This approach uses optical flow
can find two main groups in colorization methods. In the (Lukas and Kanadel K81]) information for redefining 3D
first group one can set those methods in which the color is pixels neighboring.

transferred from a source color image to a greyscale one us-
ing some corresponding criteri@PGS01 WAM, Hor0Z].

In the second group are the semiautomatic algorithms that
propagate the color information provided by a user in some
regions of the image L WO04].

In this paper we propose an interactive image/video edit-
ing framework. Our method is general enough for imple-
menting very different editing process for image and video.
The paper is organized as follows. Sectpresents a de-
scription of the general scheme. In order to simplify our

Among automatic methods we can mention the following
works. Reinhard et al. stated the basis for transferringrcol
between digital imagesRAGS0]. Afterwards, Welsh et al.
extended the previous method for colorizing greyscale im-
ages using a scan-line matching procediva]. In that

presentation, we study the particular case of colorization
Section3. Then the generalization and extensions to other
editing effects are presented in Sectibrsections presents

an application for video colorization. That applicatiolus-
trates how to combine intensity and spatial distance featur
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in our framework. Sectiofi shows experimental results and,
finally, we present our conclusions in Sectifn

2. Description of the Proposed Scheme

3

Composition operator of the general scheme presented in
Section2 are combined in one step that we call h&rans-
ferring color operator First, some scribbles are made by a
user on a gray scale image, these scribbles should describe
regions that will have the same color. The operator bank is

Our proposal uses a segmentation procedure based on theactually thecolorization palettehat will be used to colorize

minimization of a quadratic cost function with well-known
convergence and numerical stability properti@OMO07,
RDTO0§. The scheme can be summarized in the following
steps:

1. Feature learning,
2. Image layering,
3. Layering process and composition operator.

In this scheme, the interactive process is concentratetkin t
feature learning stage, see details in Subse@idnBasi-

the image. Therefore, we have two color palettes with the
same number of colors, the first one containing colors used
to make the scribbledabel palett¢ and the second one con-
taining colors to colorize the imaged|orization palettg,

see Fig.2 (c). In the second step, we apply a probabilistic
image segmentation method and, finally, in the last step, we
need to build an appropriate transferring color functiod an
assign color to each detected region.

cally, some scribbles are made by a user on an image, these3.1. Feature learning

scribbles should describe regions on which some transfor-
mation will be applied. We have then, a set of colors used to
make the scribbles in some regions of the image. This color
set is named thiabel palette Moreover, we have an operator
bank composed by filters (for example: directional bluryjng
enhancement operators, tone transfer functi@w02, ge-
ometric transformations (rotation, scaling, etc), aidigf-
fects Hol88,McA04], a second set of colors named ttw-
orization palettein the case of colorization. How many col-
ors (for thelabel palett¢ and similarly, how many operators
(in the operator bankto use is decided by the user. Tlae

bel paletteis actually formed by colors that are considered

as labels, and will be used for the learning process. The fea-

ture learning process consists of achieving empiricatigist
butions of certain features of the image, for example in our
experiments we use color (intensity) empirical histograms
on regions marked by the user, although other local charac-
teristics could also be included.

The second step, image layering, conceptually consists of

The introduced notation in this section will be preserved
for rest of the article. We consider the segmentation case in
which some pixels in the region of interes§l, are labeled

by hand in an interactive process. Assumit@s the class
label set, we define the pixels set (region) that belongseto th
classkasRg = {r : R(r) = k}, and

R(r) € {0} UK, Vr € Q, 1)

is the label field (class map onultimap where
R(r) =k> 0indicates that the pixelis assigned to the class
kandR(r) = 0 if the pixel class is unknown and needs to be

estimated. Leg be an intensity image such thatr) € t,
wheret = {t1,tp,...,t7} are discrete intensity values. Let
hg(t) : R — R be the intensity empirical histogram on the
marked pixels which belong to clakswhere

Yrer0(9(r) —t)

he(t) = R

)

a soft segmentation of the image, or a sequence of images, iniS the ratio betweethe number of pixels injRvhose inten-
regions with an assumed similar color histogram, or in gen- Sity is tandthe total number of pixels in the regior, RVe
eral it is assumed that regions to be transformed have sim- Smoothhy(t), see PHS01 HTF09, and denote a(t) the
ilar distribution of certain feature: intensity, colorstince, ~ SMoothed normalized histograms (i%.hy(t) = 1) of the
etc. This approach requires achieving a robust segmentatio intensity values, then the likelihood of the pixeto a given
method that is, in itself, a challenging problem. Afternaard ~ classkis computed with:

comes the Layering process. In this step, the bank of opera-
tors will be used. Then, the layering process depends on the
selected operators or on the specific editing task. Finally,
composition operator is applied to combine the transformed
layers.

(heog)(r) +&
sia[(hjog)(r) +¢]’

where o is the composition operator, i.ghy o g)(r) =
h(g(r)), € is a small positive real value, we used=

1x 10~%. Note that, although parametric models (such as
Gaussian Mixture Models) can be used for defining the like-
lihood functions, we used smoothed normalized histograms
because they are computationally more efficient, i.e. they a
implemented as look up tables. In our experiments we are
just using the pixel intensity as local feature, howeveeoth
local statistics could be taked into account, as the localrme
In the image colorization task the Layering process, and of the intensity values on a pixel neighborhood.

vk > 0;

®)

w(r) =

3. Image Colorization

In this section, we present our proposal scheme for coloriza
tion task, thoroughly explaining all its details and bersefit
In the next sections we extend this scheme to recolorization
and other interactive tasks.
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3.2. Image layering

Now the task is to compute the probability measure feeld
at each pixel such thaty(r) is the probability of the pixet
to be assigned to the claksSuch a probability vector field
o must satisfy:

K
zak(r) = 17 (4)
K=1
oag(r) > 0, VvkeK,VreQ, 5)
a(r) = a(s), VreQ,VseM, (6)

where N denotes the set of the first neighborsrof\;
{s€ Q:|r—s| =1}. Note that, the conditions in Eq})¢
(5) constraina to be a probability measure field and the
condition in Eq. 6) to be spatially smooth. The probabil-
ity measure fieldx allows us to divide the image in layers in
correspondence to the established classes.

Although our framework admits any probabilistic seg-
mentation methodjIVRNO1, MAB03,ROMO07] we select a
Quadratic Markov Measure Field (QMMF) mod&QMO07]
because the solution conducts to a linear system. According
to [ROMO05,ROMO7], the smooth image multiclass segmen-
tation is formulated as the maximization of the posterisr di
tribution, that takes the form(a|R, g) « exp[—U(a, 8)] and
the maximum a posteriori (MAP) estimator is computed by
minimizing the cost function:

v@ = 3 {amomar
2
A 2
+5 2 wislla(r) —a(s)[fz ¢, @)
SEN;
subject to the constraints in Eqd){(5); where
D(r) = —diag{logvi(r),logva(r), ..., logvk (r)}
is a definite-positive diagonal matrix, i¥g(r) € (0,1) Vr €

Q ke K.

The soft constraint in Eq6] is enforced by introducing a
Gibbsian prior distribution based on Markov Random Field
(MRF) models 5G84Li01,WG04 and the spatial smooth-
ness is controlled by the positive parameten the regular-
ization potential (second term in Eq7)], where the weight
Wrs &~ 0 if a class edge is probably allocated between the
pixelsr ands, otherwisews =~ 1. As the weight function,
see DPRMO07], we use

_ B
B+lg(r) —g(s)|?’

wheref is a small positive value, i.§ = 1073

Wrs

®)

The convex quadratic programming problem in Ef). (
subject to the constraints in Eqsd)£(5) can efficiently
be solved by using the Lagrange multiplier procedure for
the equality constraint, see Edg4)( Unlike the proposal
in [ROMO045], we are not penalizing the(r)’s entropy, and
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thus the energy functional in Ecf)(is convex. Therefore, we
guarantee convergence to the global minima $&@NI05,
ROMO7]. For our purposes, we have found that the mode
(hard segmentation computed as the winner—take—all) of the
solution should be correct. The entropy, that controls the
smooth transition between classes, can be adjusted eff-lin
at the composition stage, see Sect3oB

3.3. Transferring color operator

Once the measure fieldy, is computed, colorCy =
[R, G, Bk]T in RGB color space are selected by the user
to form the colorization palette thereafter every selected
color is assigned to a color (or class) in the correspond-
ing label paletteby the user. Then, the cold is con-
verted into a color space in which the intensity and the
color information are independent. For example, the color
spaces:Lap [RCC98 RAGS0], YIQ [GLOO, WOz02
YKO03, GWE04, YUV [WOZ02 GWEO04, 111513 [GLOQ],
HSV[GWEO04, CIE-Laband CIELuv[WS83. In general,

we denote the transformed color spacd Ry Cy:

Lk R
Ck | =T Gk |, 9)
Cax Bk

where Ly is the luminance componenEik, Cox are the

chrominance components for the class7 is the applied
transformation. Such a transformation is linear for YH),
YUV, lil,l3 spaces. For the CIHaf3 and HSV spaces,
the transformationZ is non-linear. The reader can find
details of the color transformations used in this paper in
Refs. RCC98 WS82 OKS8(Q. For computing the color
component (to colorize) at each pixel, we obtain the compo-
nentd (r), c1(r) andcy(r) (Vr € Q) in theLC,C; color space,
see Eqgs.10)—(12). We based our colorization operator on
the one proposed by Dalmau et al. BRMQ7]. Unlike that
work, we propose to change the luminance component of
the original image. The color components are obtained as a
linear combination of the chrominance compone2yisand

Cok. Our colorization operator is defined as:

I(r) = (fol)(n), (10)
K

cu(r) = kz Gk (r)Cuk, (11)
=1
K

co(r) = ) ak(r)Ca; 12
&

wherel is the first component of (g), i.e.[ is the lumi-
nance component of the gray intensity imageand f is a
transformation function of the luminance component, ire. a
enhancement operator, a piecewise-linear transformadion
tone transfer function or an intensity transformation func
tion [GWO0Z. The introduction of the functiori is very im-
portant because now we can modify the luminance channel
of the original image, and for instance, in colorizatiorktas
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it allows us to colorize dark region with lighter colors. Sub

section4.1 presents a procedure for estimatihdor adapt- =§=
ing the image intensity to be close to the one of the selected —H
color. E——u
N
The componentsiy(r) of @(r) can be understood as the —n
contribution (matting factor) of the class colgy to the pixel ©
r. The matting factors are computed with:
A al(r) Figure 2: Result of colorization using 6 classes. (a)
Q(r) = —ct—, (13) Grayscale image, (b) scribbled image, (c) palettes link (d)

z}l'(=la?(r) colorized image.
where then-factor allows us to control the color transition
smoothness (off-line entropy control), far— oo the col-
orization is achieved with flat colors such as in a cartoon.
According to our experiments the entropy control can eas-
ily and effectively be adjusted with the power Note that,
because of Eq4), for n=1, one hagiy(r) = ay(r).

Finally, the colored imagg i3 transformed into th&@GB Figure 3: Colorization using 6 classes. Each image repre-
color space by applying the corresponding inverse transfor sents a component of the vector measure of the probability
mation: of each classiy layer).

a
ar)=7"| cr) |- (14)

Calr . . o .
_( )_ ~our extension for image recolorization. The following sub-
Observe that the step of assigning color to each region section generalizes theansferring color operatotto other

Ry is completely independent of the segmentation stage. It gperators. The final subsection presents a mechanism for in-
means that, once we have computed the vector measure f'9|dclud|ng in our framework other image features, as for in-

a, for the whole image, we can reassign colors to one or stance shortest path distance.
more regions by just recomputing the color components with

Egs. (1) and (12), and transforming the image with the

Eqg. (14). Also it may be possible to assign the same color 4.1. Luminance adjustment
to different regions. This makes the proposed method very

versatile. One problem of the colorization methods IDRMO7,

o . . LLWO04,YS08§, is that they only use the chrominance com-
In summary, the process of colorization begins by making ponents of the colors provided by the user. So, in many
a “hard” pixel labeling from the user marked regions (mul-  cases, the resulting colorized image has regions whose col-

timap): for everyr € Re with k> 0, we seto(r) = 1 and ors are very different from those given in the colorization
a(r) = 0 for | 7 k. Next, the remainder pixels are “soft’  palette. This is due to, the values of the luminance channel
segmented by minimizing the functional in Eq).(Fig. 2 in these regions mismatched with the corresponding lumi-

illustrates the colorization process. Panel (a) showsttige ©  nance channel of the user given color. In this subsection we
inal gray scale image, the scribbles for 6 classes are shown i study a particular transformation function of the luminanc

Panel (b) and the colored image in Panel (d). The computed componenf of the image. This function is of the form:
class memberships (probabilitiesay layers) are shown in

Fig. 3. Finally the color assignment to each region is done by . 0, . al < 9?
applying Eqgs. {0)—(12) in LC;C; color space followed by fil) = § al, 0<ad<M; (15)
the inverse transformation into RGB color space. Note that M, &l >M;

smooth inter-region probability transitions produce sthoo
color transitions (as in the face regions) and, conversely,
sharp intensity edges produce sharp color transitions.

where M’ is the maximum value of the luminance compo-
nent in theLC,C, space andy is a scalar value (luminance
gain control) for each class. The aim is to obtain at each re-
gion to be colorized a color as similar as possible to that

4. Extension and Generalization of the Colorization given by the user, in theolorization palette Although ay
Scheme could be manually adjusted, we found that this gain control
ay can automatically be computed by solving the optimiza-

In this section we extend our colorization scheme to image
and video editing. The first subsection presents a procedure

for adjustin.g the luminance component accorqmg to the se- ax = argmin (aIA(r) _ Lk)27 st0<a<bhy, (16)
lectedcolorization paletteThe next two subsections present &

tion problem:
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whereQy is the region of the image that corresponds to the

classk, by = maxg'\’(')kl(r) (with f(r) > 0) andLy is the lumi-

nance component of theth color in thecolorization palette
see Eq.9). The solution to 16) is given by the closed for-

mula:

The recolorization task consists of changing colors in the
original image. Unlike colorization in whicfis a gray level,
nowg represents a color image. A common approach to such
a task is based on the definition of a context independent
mapping function from the original colors to the new ones.
This simple approach, although computationally efficient,
fails with noisy images or when similar colors are mapped to
different colors. Here, we propose two possible extensiéns
the above presented colorization scheme for recolorizatio
task, that is robust to the above mentioned problems.

; Lk zrerl(r)
ax=ming by, —=—x -~
{ I’Elez(r)

4.2. Semi-Automatic Recolorization

The Semi-Automatic or interactive Recolorization is a
straightforward extension of colorization task. The diffe
ence is that now, the imagg is given in theRGB color
space, s@(r) € t, wheret = {t1,t,...,t7} are vectorial
values that correspond to channels in R@Bcolor space.
Therefore, the density distributions for each class ara the
empirically estimated irRGB color space by using a his-
togram technique, similar to the colorization case, but now

in B3, ie. N(t) 1 R® — R, wherehy(t) = %2807 g
the ratio betweerthe number of pixels in Rwhose color
is equal to tandthe number of pixel in the regionyRsee
Ref. [DHS01,HTFOY. Then, we can compute the likelihood
of each pixek belonging to clask. That is, leth, : R® — R
be the smoothed normalized histogranys F(k(t) =1) of
vectorial values, then likelihood of the pixelo a given class
kis computed by using the EB)(

4.3. Quasi-Automatic Recolorization

We present a variant for colorization that reduces the user
interaction. Our method relies on the assumption that for a
particular class of images the likelihood density funcsion
have previously been learned. The instance we present is
the case in which the classes correspond to linguistic solor
brown, green, orange, red, eB{69]. In Ref. [AM09] Alar-

con and Marroquin proposed a segmentation method based
on a combination between a color categorization method
and Bayesian technique. The elaborated color categamizati
model describes each voxel in the color space L*u*v* as a
vector of probabilities, whose components express the de-
gree to which the voxel belongs to one of the eleven color
categories established by Berlin and K&8K69] in 1969,

as basic and universal. Alarcon and Marroquin obtained the
color categorization model by an interactive techniquesyTh

ra & T. Alarcon /

performed a color naming experiment considering 336 color
samples and 32 subjects. Each subject was instructed to se-
lect the most likely color basic categokyfor the observed
color samplec. With this procedure the likelihood(k|c),

for each shown color sample is calculated, using the expres-
sion [AMO09]:

P(Ko) = ¥ k=1, K; an
whereAy. denotes the number of assignments to the dtass
for the color sample, andM is the total number of subjects;

K is the number of the used color basic categories and it was
consideredK = 11. The number of color classes included
in [AMQ9] is non arbitrary, but is based on relevant findings
about the human color naming process, reported by Berlin
and Kay BK69]. Nevertheless, the color model proposed by
Alarcon and Marroquin, as specified iaj109], can include
different categories, respect to those established byirBerl
and Kay. More details related to the color model elabora-
tion are in Ref. AM09]. As a result of the color naming
experiment done in RefAMO9] the likelihood, P(k|c), for

a limited number of color samples in the color space was cal-
culated. In order to know the likelihood for the whole space,
Alarcon and MarroquinAMQ9] used an interpolation pro-
cedure in which each category is modeled as a linear combi-
nation of quadratic splines. After the interpolation pExe
the likelihood functiorP(k, c) is obtainedj.e. the likelihood

P(k, c) is known for each categokyand for all colors:in the
color space. The computed solution is interpreted as a proba
bilistic measure field (a probabilistic dictionary), thatised

in Ref. [AM09] as likelihood in a segmentation Bayesian
technique. From the above, the obtained color model gives a
quasi-automatic segmentation method, that could be applie
in many image processing tasks. Color video restoring and
video recolorization are examples of these tasks, in which
the use of this technique leads to the considerably reductio
of the human effort. The quasi-automatic recolorization ap
proach, proposed in this manuscript, considers the coter ca
egorization modeP, see AM09], and the algorithm is the
following:

Algorithm 1 Quasi-Automatic Recolorization
Require: | (color image) andP (color categorization

model) 3 ~
1: Set the likelihoodv usingP, i.e.vi(r) < P(K|I(r)), for
all k,r.
2: Probabilistic segmentation, i.e. Minimize the functional

in Eq. (7) subject to the constraints in the Eg$)«(5).

3: Apply the Colorization operator, see Eq$0)/—(12).

Note that the segmentation (steps 1 and 2) is completely
automatic. The semiautomatic part is hidden in the color
naming experiment of the color categorization mdéehat
in our recolorization experiments we assume to be known,
Ref. [AM09]. Due to the color categorization model, now the
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label paletteis not fixed by the user, but automatically By =:tj§

and it includes only the basic color categories set by Berlin |

and Kay BK69]. The solution found in step 2 gives the seg- =f§§4

mentation of color image in terms of basic colors. However, \‘f;j

as specified inAMO09], we can learn different color cate-

gories and different number of them, thatks# 11. This Figure 4: To each label (left column) is assigned a compo-

will depends on the color composition of the image, or set sition operator (right column).
of images, for the specific application. In the step 3l &l
paletteand thecolorization paletteare considered for apply-

ing colorization operator (Subsecti@?3). Like in the col- and is combined using the followirgpmposition operator
orization approach (Subsecti@), the color palette is again K
established interactively by the user. I(r) = z a(r) A km(r) (18)

Fop
Il
fat

k(r)fm.k[él](r)v (19)

M =
Q>

c(r) =

=
I
s,

Co(r) = k(1) Fe klC2](r)- (20)

M=
Q

4.4. Image editing effects

Il
!

We note again thaf is a family of operators. That is, these
operators can be functions that change the intensity or colo
of the image (tone or color transferring functions) simttar
"the ones used in Refd FUS06 AP0g, and also functions
that change the geometry of the image (artistic or geometric
transformations), see ReH$l88]. Instances of such opera-

The scheme explained in Subsect®mran be very useful
for other interactive image processing tasks, if some sligh
change is made. Now we explain the more general scheme
in which colorization is a particular case. Based on the
scheme presented in Secti@anwe have the following in-
teractive general scheme:

tors are:
_ 1. Theidentity operator £[f] = f,
1. Feature learning, 2. Thelayer selectionSy[f] = af,
2. Image layering, 3. Themultiple layer selectionSuppose that the user select
3. Layering process and Composition operator. aset of layersd C K thenS 4[f] = Yye 4 Sk(f],

4. Thecolorization see SubsectioB,
5. Therecolorization see Subsectiof and

The first two stages are similar to the Sect®rand only 6. Thematting see Refs.[RALO8, RKBO4, WC05
the third stage is changed. The transferring color function ' ' ' '

is replaced byLayering processind a more general oper- ~among many others. We show some combinations of opera-
ator, named her€omposition OperatorThe Layering pro- tors in the experiment section, Secti®nwvhere characteris-
cessincludes tonal transferring functions, artistic/georizetr  tics of experiments are discussed, see Fi§s20, 21. We re-
transformations, image filters, etc. Instances of suchgmmc ~ Markthat the layer operatdr can be composed by a sequen-
ing are blur or sharpen, or any other effect or combinations. tial application of basic operators, for instance a sebeeti
The Composition Operatoallows us to combine the infor-  colorization-bluring (see our experiments).

mation (processed layers) obtained in the previous stdp. Th

operator set could be applied at the same time or sequen-4 5. Shortest—Path Distances

tially.
y Intensity (or color) distributions allow to segment images

into classes where the pixels have similar intensity orrcolo
Under this assumption, a class can be partitioned in differ-
ent (disconnected) regions. However, there can be partic-
ular tasks where connectedness is an important feature to
be taken into account. For instance the methodGira06
YS06 segment images in regions with small geodesic dis-
tances. We can incorporate connectedness information into
the QMMFs framework by defining the pixel likelihood that
depends on some kind of distance between each pixel to the
user scribbles.

In this modality, the user widens his interaction options.
As explained in Sectio2, the interactive process of stage
one consists of scribbling, labeled pixels, made by a user
in different regions of interest. Actually, these labele-p
els are the training data of the (supervised) learning stage
The second stage is the same as in the Subsegtibmnthe
third stage awoperator setF = { F1, Fo,...,Fk } is selected
by the user. The triad operat@i, = []—'ij-'chkj-'cbkf acts
over the layeik and over each channel, i.e, C; andCo.
Hence, similarly to colorization, each operator in the aper
tor set must be linked to a color label palette see Fig4. In this work we incorporate the distance between pix-
Finally, the operator sef is applied on each detected layer, els in form of a graph connectivity,e. the larger distance,

submitted to COMPUTER GRAPHICBrum(5/2010).
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the smaller connectivity factor (and conversely/Ww *05].
According to the QMMF model the connectivity factor is
better expressed as a likelihood probabilityThis can be
computed, for instance, by means of a diffusi@rd0g, in
particular, with the random walker formulation through the
combinatorial Dirichlet problem:

X =argmin S wrs||x — ||, (21)
x<r.,;:

R(r)=0,

seNy
with X = [Xklr:» (r)=0, kekcr Xr € RX and boundary condi-
tions at the marked pixels. The probability of the class cor-
responding to marked pixels is fixed to 1 and for the other
classes fixed to zero:

1 R(r)=kk>0
M = Y0  otherwise

Then the solution to the unmarked pixels is computed by
solving the set of linear systems

LX = —B'M

wherelL = [Wfs}r,s:R(r):R(s):Ov B= [Wfs]rﬁs:R(r);éO: R(s)=0
andM = [my], see {5ra0q for details. Then the connected-
ness likelihood is

Mk
U () {er
Now we have 2 sources of information (likelihoodspand
v: u that encodes some kind of spatial distance waride
color (intensity) likelihood. Then, assuming independenc
between the information sources, the joint likelihoods
given by

R(r)>0

otherwise (22)

W(r) = BV ()

where the mix parameter (power¥x0a < 1 denotes our con-
fidence, or reliability, on each source. Thus, the join likel

(23)

hood can be computed in a preprocessing stage and being

directly used in the QMMF framework by substitutibgr)
by

D(r) = —diag{logva(r),logVa(r), .., logvi ()}

into the cost function?).

5. Application: Video Colorization

As a demonstration of the subsectié, we present an ap-
plication for video colorization that incorporates twodik
hood sources: shortest path distances and intensity simila
ity, i.e. we use the joint likelihood23).

In the literature, one can find previous interactive works
dealing with this problem JLWO04, SBv04 YS0€. The
method presented irY[S0§ is suitable for colorization of
videos with fixed background (without camera movements)

frame of the
video. This frame is available in a video at
http://www.cs.huji.ac.il/~yweiss/Colorization/.

Figure 5: Scribbles made on one

in [LLWO04] uses implicitly optical flow what allows to col-
orize more complex videos: larger displacements and cam-
era movements. This method does not propagate the scrib-
bles, but calculates an overall video colorization by redefi
ing neighboring pixels, establishing in this way a temporal
coherency. That is, the pixels = (xo,Yo) andry = (x1,Y1),
in the frameg andt + 1 respectively, are neighbors if:
[[(ro+d(ro,t)) —ra|]| < T, (24)
where T is a parameter, d(r,t) = d(x,y,t) =
(dx(x,y,t),dy(x,y,t)) represents the optical flow com-
puted by an standard method, in particuldrl\VO4] uses
the Lucas and Kanade algorithin81].

Here we present a video colorization method that also
incorporates an optical flow-based strategy. The basic idea
consists of: given a framg(r,t) and its corresponding user
scribblesmasKr,t) (a multimap then, we propagate the
scribbles to the framé+ 1 by warping themaskKt) using
the optical flond(r,t) to obtain the multimap at frantet 1.

That is

maskKr,t + 1) = masK|r +d(r,t) +q],t), (25)
whereq = (0.5,0.5), and| - | is the floor functionj.e. | x| is
the largest integer not greater tharirhen, we use the esti-
mated (warpedinultimapto colorize thet + 1-frame. After
a number of propagatechultimapthe user needs to make
small rectifications to the multimap due to the error intro-
duced by the optical flow propagation process or large scene
changes. The algorithm continues up to a desired number of
frames.

In Fig. 5 we show the multimap on the frame
of the video used for the experiment, available at
http://www.cs.huji.ac.il/~yweiss/Colorization/. Nepanels
show three mulitmaps estimated by our method based on the
standard multigrid optical flow algorithm of the Horn and
Schunck HS8Q. Fig. 6 depicts four colorized frames of the
video. We note that our method relies strongly on the com-
puted optical flow. It is implemented as a frame by frame
colorization and does not include a temporal regulariratio
However, that temporal regularization can be introduced as

and small object displacements. The approach presentedin [LLWO04].

submitted to COMPUTER GRAPHICBrum(5/2010).
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' (@) (b) (© (@) ©

Figure 6: Four colorized frames representative of the full
colorized video. Figure 7: Comparison between our method and the method
reported in LLW04 when colorizing pixels are located far
away from the user’s scribbles or when colorizing pixels are
in disconnected regions. (a) Image, (b) scribbles, (c) col-
orization using the Levin et al. method, (d) colorization us
In order to evaluate the performance of our proposal, sev- ing the Dalmau et al. method, (e) colorization using our pro-
eral experiments were carried out. First, we describe the co posal.

orization process by using an experiment. Then, we com-
pare the performance of the colorization method proposed
by Levin et al. in LLWO04] and our method. Additionally,
we show some other results of colorization and recoloriza-
tion that demonstrate the method capabilities. And finally,
we present some experiments of image editing.

6. Experiments and Results

Most of the images presented here were taken from
Berkeley Image Database MFTMO1], available at
http://www.eecs.berkeley.edu/Research/Projectsi€ish/
bsds/. First, they were converted into greyscale images and
then the process of colorization was applied.

6.1. Colorization experiments

Figs.7, 8, 9 and 10 compare our method with the one pro- Figure 8:_Comparison betwgen our method and_ the method
posed by Levin et al LW04] and Dalmau et al.[pRMO7]. reported in L.LWO04. (a) Original image, (b) multimap, (c)

In the experiments of Figg, 8 and9 the label paletteand Levin et al. result, (d) our result.

colorization paletteare the same, and the colors in both

palettes are the ones used in the corresponding multimap.

In general, the methods reported Il }v04] and [DRMO7] tained by Dalmau’s and our method wét&34,10.1,32.7]
have good results in many situations. However . Figs. and[207.5,62.2, 88.7] respectively.

and 8 show that the Levin et al. method, code available at

http://www.cs.huiji.ac.il/~yweiss/Colorization/, oiria poor In Fig. 11 we show additional experiments that demon-
results when the image has disconnected regions that neecstrate the method capability. Moreover, once we have com-
to be colorized with the same color, or when the pixels to Puted the probability measure field, we can reassign col-
be colorized are far away from the user’s scribbles. Both Ors to some labels and colorize the image by just reapplying
methods, the reported ih[W04] and [DRMO7], also work Egs. (0—(12). In Fig. 13 we present experimental results
p00r|y when Co|orizing dark regions with ||ght colors or that illustrate the method erXIbIIIty by Changing colorgdan
when colorizing light regions with dark colors, see Feg.  keeping the memberships fixed.

In order to show the influence of the luminance component

transformation in the recolorization context, in Fid) we

compare our proposal with the Dalmau et al. method. Based
on the visual comparison between Fl@.(c) and Fig.10(d) e
we conclude that the color RGB composition of the image
(@) (b) © @ @

obtained from the transformation luminance function, see
Fig. 10 (d), is more similar to the colors fixed in the col-

orization palette than the image obtained without using the Figure 9: Comparison between our method and the method
transformation luminance function, see Fi) (c). In or-  reported in LLWO04 when colorizing dark regions with light
der to give a numerical argument of the above explanation, ¢o|ors, or when colorizing light regions with dark colors) (

a test of the RGB composition of the red class, see F0g.  |mage, (b) scribbles, (c) colorization using the Levin et al

panels (&) and (b), was carried out. The RGB components method, (d) colorization using the Dalmau et al. method, (e)
used to recolorize this class wel208 54, 88|, and the av- colorization using our proposal.

erage RGB components, corresponding to the red class, ob-

submitted to COMPUTER GRAPHICBrum(5/2010).
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Figure 10: Comparison between our method and the method
reported in DRMO07. (a) label palette (left column) and col-
orization palette (right column), (b) multimap, (c) Dalmeu

al. result, (d) our result.

Figure 11: Columns from left to right: Gray scale image,
multimap and colored image.

Experiments with different color models demonstrate that

O. Dalmau, M. Rivera & T. Alarcén /

Figure 13: Flexibility for assigning and reassigning colors
to images. (a) Original image (b)-(d) colorizations.

ot 2
"'J€$

e

Figure 14: Semi-automatic recolorization. The first row,
from left to right, shows: (a) original image, (b) multimap,
(c) recolorization by using likelihood, (d) recolorizatidy
using segmentation. The second and third rows show the
class membershipsi(layers) corresponding the likelihood
and the soft segmentation respectively.

timap, respectively. Panels (c) and (d) show two recoleriza

the final results do not depend on the chosen model but on ¢jopg: panel (c) shows a recolorization that was reached us-

the user ability for selecting the appropriate color paletee
Fig.12.

6.2. Semi-automatic recolorization

Fig. 14 illustrates a semi-automatic recolorization. The first
row, panels (a) and (b) show the original image and the mul-

Figure 12: Colorization results using different color models:
(a) Original image, (b) YUV, (c) LUV.

ing the likelihood (Eq. §) and Sectiom.2) and panel (d)
illustrates a recolorization that was attained by using the
QMMF based on the probabilistic segmentati@ni-or com-
parisson purposes, in Fifj5 we show details of the original
image and the corresponding colorizations. Note that & lik
lihood based colorization some regions in the butterfly body
are colorized in green because the color similarity of the bu
terfly body and the leaves. As we can see, from this experi-
ment, the likelihood is not enough for obtaining good recol-
orizations and in general the regularization stage is rieede

The proposed scheme also admits a multimap with im-
precise scribbles, see the left image in F§. This image
shows a multimap with scribbles that overlap different re-
gions (the horses and the grass). The second panel shows the
recolorized image using this multimap. In this case, the vec
tor field a is computed on the whole imageg. a(r) is also
computed in the pixels marked by the us®g(() # 0), and

submitted to COMPUTER GRAPHICBrum(5/2010).
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(a) (c)

Figure 15: Likelihood vs Segmentation. Zoom of sub-images |

taken from recolorization using, as a measure field, the like
lihood and the segmentation respectively. (a) Subimage, (b
recolorization using likelihood, (c) recolorization ugjseg-
mentation.

L, 3

G i U B L

Figure 16: Recolorization with imprecise scribbles.

the multimap is only used to compute tlikelihoods The
third panel shows the authomaticaly refined multimap com-

puted by keeping the resulted classification at those pixels

whose entropy is small: 4 T a2(r) < 0.4. The most right
image in Fig.16 depicts the recolorized image using the re-
fined multimap.

In the next experiment we assume that color distributions

do not change throughout the video sequence. Therefore, the,

Figure 18: First row show 4 frames of a video sequence of
approximately 10 seconds (about 300 frames). Second row
shows the semiautomatic recolorization (the required user
scribbles are presented in Fid.7). Third row shows the
quasi-automatic recolorization. The difference in catari

tion corresponds to different selected colorization paiet

(a) (b)

Figure 19: (a) Original image, (b) mask obtained from vec-
tor measure field, (c) extracted colorized object (d) pho-
tomontage using the mask in panel (c).

use fixed likelihood density functions that correspond to

method only needs one multimap, i.e. the user scribbles only o color categorization mod@ from Ref. [AMO9], with

on the first frame of the sequence. Left panel in Bigex-

K = 11. As thelabel paletteis fixed, the only user interac-

hibits the scribbles for three classes provided by the USer iionis the linkage between thebel paletteand thecoloriza-

(multimap). The right panel shows the multimap refined sim-
ilarly to the previous experiment. First row in Fit8 shows
demostrative frames from the original video and the semi-
automatic recolorization is shown in second row. We remark
that about 300 frames were colorized using the distribution
estimated from the first frame, the video duration is approx-
imately of 10 seconds.

6.3. Quasi-automatic recolorization

The follow experiments illustrate the quasi-automatic re-
colorization presented in subsectidrB. In this case, we

Figure 17: Left Image, scribble on the first video frame of
the video in first row of Figl8. Right image, automatic gen-
erated multimap from the user scribbles, see text.

submitted to COMPUTER GRAPHICBrum(5/2010).

tion palette Except for this small interaction, the procedure
is fully automatic.

Results of a video colorization experiment are shown in
the third row of Fig.18. The recolorized video frames agree
with the original frames in first row. We note that the differ-
ence between recolorizations (second and third row) is due
to differentcolorization palettesised. Important to remark
it is that both strategies preserve transparency between th
bear and the water.

6.4. Other image editing experiments

In this Subsection we illustrate the capability of our metho
by some editing examples. As our method allows to divide
the image in layers, we can select some particular layers for
segmenting and colorizing a particular object, see E9y.
More formally, letA C K be a layer set selected by a user.
Then, themaskin Fig. 19 (b) can be obtained by
masKr) = A (r).
With the mask, Fig19 (b), we can now extract the colorized
image Fig.19(c), or simply we can make a blending (image

(26)
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puted by using a circular ripple effect to the source image 2
weighed by the layer that corresponds to the green class and
the source image 1 weighed by the layer that corresponds to
the red class.

Regarding the computational cost, tineage Layerings
the most time consuming step in our proposal. Our method
computes the layering of an image by solving a convex
quadratic programming problem. This minimization corre-
sponds to solving a positive definite and symmetric linear
system. The length of the linear system depends on the size
of the image and the number of classes. We implement our
approach using a Gauss-Seidel scheme in Matlab with .m
and .mex files. Although it is not the most efficient imple-
mentation, a 480x640 color image can be segmented in about
a second per class on an Intel 2.5Mhz iMac. Our algorithm
) o ) can be implemented using Multigrid Gauss-Seidel. More-
Figure 20: Combining different operators: blur (red class),  qyer, it can be parallelized in blocks (for a multicore CPU)
identity (green class) and recolorization (blue class)) (& o in cellular automata (for a GPU based implementation,
Original color image, (b) multimap, (c)-(d) multioperator  cypA or OpenCL). This is beyond the scope of the cur-
composition. rent work but we have a CUDA based implementation for
binary segmentation at a rate of 60 frames per second on
an NVIDIA 8800 GT. Our implementation is based on the
QMMF algorithm reported inRD0Y.

7. Conclusions

We have presented a three stage interactive image and video
editing procedure. The first step consists of scribbles made
by a user over the image. The second step consists of com-
puting a probabilistic segmentation and in the third step th
color or effect properties are specified.

Figure 21: Artistic effects. Source images (first two images
at the left) and artistic effects using a combination of the
processed image sources (last two images at the right), see
text.
The proposed interactive editing method is based on the
multiclass probabilistic image segmentation algorithine T
composition) with the colorized image and another image, S€dmentation process consists of the minimization of a lin-
see Fig19 (d). early constrained positive definite quad_rgtlc (_:ost fumctio
and thus the convergence to the global minima is guaranteed.
It is also possible to combine several operators (Subsec- \we associate an image transformation (colorization, recol
tion 4.4). In Fig. 20 three operators were used: directional  orization, directional blur, edge enhancement, etc) teac
blur (for the background), recolorization (for some redpar  class and then the pixel color components are a linear com-
in the car) and identity (for the rest of the car). The goal is pjination of a set of operators applied over regions defined by
to introduce motion effect and recolorize part of the car. We the classes. The color Component values depend on the com-

remark that the applied colorization method is not a simple puted probability of each pixel belonging to the respective
mapping between colors. It can be seen that while some of ¢|ass.

the car’s red regions have been changed, others remain un-
changed, such as the flag on the window and the logo on the
door, see Fig20 (c)-(d).

We have demonstrated the flexibility of the presented
scheme by implementing different image and video edit-
ing applications, as for instance: colorization, recaation,

Morover, the interactive general scheme accepts more plending, blur and combinations. Our method can success-
than one source image. Fig&l show two source images.  fully be used for applying particular transformations to-is
Thus, given the multimap provided by interaction (illustdh lated objects. It also accepts different source imageseAs r
on the left image) we can obtain the composed image in the sylt, complex artistic effects are obtained.
third panel, from left to right, using a pond ripple effect to
the source image 1 weighed by the layer that corresponds to
the red class and the source image 2 weighed by the layer
that corresponds to the green class (third image from the
left). Moreover, the composed image at the right can be com-  We have extended the QMMF models to accept mixture of

A quasi-automatic recolorization version is presentetl tha
could be very useful in video color restoration and video re-
colorization.

submitted to COMPUTER GRAPHICBrum(5/2010).
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likelihoods. New likelihoods can effectively codify thegse
mentation of other methods. In particular, we investighee t
pixel connectivity through the shortest—path distancee Th

shortest—path based likelihood was computed by the random
walker segmentation method. We included a video coloriza-

tion application that relies on this approach.
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