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Abstract

We propose a general image and video editing method based on aBayesian segmentation framework. In the first
stage, classes are established from scribbles made by a useron the image. These scribbles can be considered as
a multimap (multilabel map) that defines the boundary conditions of a probability measure field to be computed
for each pixel. In the second stage, the global minima of a positive definite quadratic cost function with linear
constraints, is calculated to find the probability measure field. The components of such a probability measure field
express the degree of each pixel belonging to spatially smooth classes. Finally, the computed probabilities (mem-
berships) are used for defining the weights of a linear combination of user provided colors or effects associated
to each class. The proposed method allows the application ofdifferent operators, selected interactively by the
user, over part or the whole image without needing to recompute the memberships. We present applications to
colorization, recolorization, editing and photomontage tasks.

Categories and Subject Descriptors(according to ACM CCS): I.3.8 [Computer Graphics]: Applications—Image
Colorizarion, Recolorizaction

1. Introduction

In this paper, we propose an interactive method for im-
age/video colorization and editing. Our method is based on
a probabilistic Bayesian framework for image segmentation.
Our strategy consists of applying a particular image transfor-
mation to each segmented region. We demonstrate that our
framework is very general, it can be applied to monochrome
or color images, as well as to video. Our technique ac-
cepts different kind of transformations: colorization, recol-
orization, tonal transformations, artistic effects and geomet-
ric transformations.

Our proposal extends and generalizes our previous confer-
ence paper [DRM07], in which we proposed an interactive
method for the particular task of colorization. The principal
contributions of this paper are:

1. we improve the colorization operator proposed in our pre-
vious work [DRM07],

2. we extend the previous operator to other image and video
editing tasks,

3. we introducethe distanceas a feature for probabilistic
segmentation methods,

4. we introduce an off-line entropy control for probabilistic
segmentation methods.

Unlike reported approaches for image editing, we present
an interactive framework for gray and color image/video
editing tasks. The criterion we use for extracting similar re-
gions is based on a similarity measure given by probabil-
ity distributions. In the case of colorization (or recoloriza-
tion), our method assumes that regions with similar intensity
(color) distributions should have similar colors. In general,
the same transformation is applied to regions with similar
distribution.

Recent works for image editing are reported in
Refs. [LLW04,WC05,LFUS06,YS06,DRM07,AP08]. Most
of them tackle a particular image editing task. Some so-
lutions to the matting problem have been proposed in
Refs. [WC05, RKB04, WC05, LRAL08]. Lischinski et al.
present an interactive technique for the local adjustment of
tonal values [LFUS06]. An and Pellacini present an inter-
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Figure 1: Interactive colorization using multimaps for de-
fined regions. (a) Original gray scale image (luminance
channel), (b) multimap, (c) colored image in which the
chrominance channels are provided by the user. The col-
orization was achieved with the method presented in this pa-
per.

active editing method for tonal adjustment, and for chang-
ing the appearance (low and high dynamic range) of color
images [AP08]. Both methods use a propagation strategy
based on a quadratic functional. Yatziv and Sapiro present
an approach close related with our scheme, see Ref. [YS06].
They compute a layered map of geodesic distances from
each pixel to the scribbles. Another particular editing task
is image colorization. This technique consists of introducing
color to grayscale, sepia or monochromatic images, for in-
stance see Refs. [LLW04,SBv04, YS06, DRM07]. In spite
of the fact that many colorization algorithms have been
developed in recent years [RAGS01, WAM, Hor02, BR03,
CWSM04, WH04, LLW04, SBv04, QG05, TJT05, KV06,
YS06, QWCO∗07, DRM07], only a few of them are based
on a segmentation procedure [CWSM04, TJT05, KV06,
DRM07]. The reason seems to be, for coloring purposes,
that regions to be segmented come from different groups:
faces, coats, hair, forest, landscapes and, up to now, there
has not been a proficient method that automatically discerns
among this huge range of features. In the absence of a gen-
eral purpose automatic segmentation algorithm, other alter-
natives have appeared in recent years and techniques that use
human interaction (semi-automatic algorithms) have been
introduced as part of computer vision algorithms. In inter-
active colorization procedures one uses a gray scale image
as the luminance channel and estimates the chrominance for
each pixel. This is achieved by propagating the colors from
user labeled pixels. The process is illustrated in Fig.1. One
can find two main groups in colorization methods. In the
first group one can set those methods in which the color is
transferred from a source color image to a greyscale one us-
ing some corresponding criteria [RAGS01, WAM, Hor02].
In the second group are the semiautomatic algorithms that
propagate the color information provided by a user in some
regions of the image [LLW04].

Among automatic methods we can mention the following
works. Reinhard et al. stated the basis for transferring color
between digital images [RAGS01]. Afterwards, Welsh et al.
extended the previous method for colorizing greyscale im-
ages using a scan–line matching procedure [WAM]. In that

technique, the chromaticity channels are transferred fromthe
source image to the target image by finding regions that best
match their local mean and variance of the luminance chan-
nel . In order to improve the last method, Blasi and Recu-
pero proposed a sophisticated data structure for accelerating
the matching process:the antipole tree[BR03]. Chen et al.,
in Ref. [CWSM04], proposed a combination of composi-
tion [PD84] and colorization [WAM] methods. First, they
extract objects from the image to be colorized by applying
a matting algorithm, then each object is colorized using the
method proposed by Welsh et al., and in the last step, they
make a composition of all objects to obtain the final col-
orized image. Tai et al. treat the problem of transferring color
among regions of two natural images [TJT05].

Automatic color transfer methods will equally transfer
color between regions with similar luminance features (gray
level mean, standard deviation or higher–level pixel context
features, as in [ICOL05]). However, this approach may fail
in many cases. For instance, consider the simple case in
which the gray mean is the used feature, then a grass field
and a sky region may have similar gray scale values, but
different colors. Therefore, in general, colorization requires
high–level knowledge that can only be provided by the final
user: a human. For this reason, semiautomatic methods have
successfully been used in image colorization. These methods
take advantage of user interaction for providing high level
knowledge [LLW04, KV06, YS06, DRM07]. For instance,
Levin et al. presented a novel interactive method for col-
orization based on an the minimization of a free-parameter
cost functional [LLW04].

Video colorization is, in general, implemented as an hy-
brid technique: the user provides scribbles for some frames
and afterward such information is propagated to the re-
minder frames. Previous solutions to this problem are re-
ported in Refs. [LLW04, SBv04, YS06]. The method in
Ref. [YS06] uses the idea of geodesic distance in volumet-
ric data (i.e.with the time as the third dimension). In spite
of the method presents good results it is limited to work
with sequences with small displacements: videos with fixed
background (without camera movements) and short move-
ments of objects. Another approach to video colorization is
presented in Ref. [LLW04]. This approach uses optical flow
(Lukas and Kanade, [LK81]) information for redefining 3D
pixels neighboring.

In this paper we propose an interactive image/video edit-
ing framework. Our method is general enough for imple-
menting very different editing process for image and video.
The paper is organized as follows. Section2 presents a de-
scription of the general scheme. In order to simplify our
presentation, we study the particular case of colorizationin
Section3. Then the generalization and extensions to other
editing effects are presented in Section4. Section5 presents
an application for video colorization. That application illus-
trates how to combine intensity and spatial distance features
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in our framework. Section6 shows experimental results and,
finally, we present our conclusions in Section7.

2. Description of the Proposed Scheme

Our proposal uses a segmentation procedure based on the
minimization of a quadratic cost function with well-known
convergence and numerical stability properties [ROM07,
RDT08]. The scheme can be summarized in the following
steps:

1. Feature learning,
2. Image layering,
3. Layering process and composition operator.

In this scheme, the interactive process is concentrated in the
feature learning stage, see details in Subsection3.1. Basi-
cally, some scribbles are made by a user on an image, these
scribbles should describe regions on which some transfor-
mation will be applied. We have then, a set of colors used to
make the scribbles in some regions of the image. This color
set is named thelabel palette. Moreover, we have an operator
bank composed by filters (for example: directional blurring),
enhancement operators, tone transfer functions [GW02], ge-
ometric transformations (rotation, scaling, etc), artistic ef-
fects [Hol88,McA04], a second set of colors named thecol-
orization palette, in the case of colorization. How many col-
ors (for thelabel palette) and similarly, how many operators
(in theoperator bank) to use is decided by the user. Thela-
bel paletteis actually formed by colors that are considered
as labels, and will be used for the learning process. The fea-
ture learning process consists of achieving empirical distri-
butions of certain features of the image, for example in our
experiments we use color (intensity) empirical histograms
on regions marked by the user, although other local charac-
teristics could also be included.

The second step, image layering, conceptually consists of
a soft segmentation of the image, or a sequence of images, in
regions with an assumed similar color histogram, or in gen-
eral it is assumed that regions to be transformed have sim-
ilar distribution of certain feature: intensity, color, distance,
etc. This approach requires achieving a robust segmentation
method that is, in itself, a challenging problem. Afterwards,
comes the Layering process. In this step, the bank of opera-
tors will be used. Then, the layering process depends on the
selected operators or on the specific editing task. Finally,a
composition operator is applied to combine the transformed
layers.

3. Image Colorization

In this section, we present our proposal scheme for coloriza-
tion task, thoroughly explaining all its details and benefits.
In the next sections we extend this scheme to recolorization
and other interactive tasks.

In the image colorization task the Layering process, and

Composition operator of the general scheme presented in
Section2 are combined in one step that we call hereTrans-
ferring color operator. First, some scribbles are made by a
user on a gray scale image, these scribbles should describe
regions that will have the same color. The operator bank is
actually thecolorization palettethat will be used to colorize
the image. Therefore, we have two color palettes with the
same number of colors, the first one containing colors used
to make the scribbles (label palette) and the second one con-
taining colors to colorize the image (colorization palette),
see Fig.2 (c). In the second step, we apply a probabilistic
image segmentation method and, finally, in the last step, we
need to build an appropriate transferring color function and
assign color to each detected region.

3.1. Feature learning

The introduced notation in this section will be preserved
for rest of the article. We consider the segmentation case in
which some pixels in the region of interest,Ω, are labeled
by hand in an interactive process. AssumingK as the class
label set, we define the pixels set (region) that belongs to the
classk asRk = {r :R(r) = k}, and

R(r) ∈ {0}∪K, ∀r ∈Ω, (1)

is the label field (class map ormultimap) where
R(r) = k> 0 indicates that the pixelr is assigned to the class
k andR(r) = 0 if the pixel class is unknown and needs to be
estimated. Letg be an intensity image such thatg(r) ∈ t,
wheret = {t1, t2, . . . , tT} are discrete intensity values. Let
hk(t) : R→ R be the intensity empirical histogram on the
marked pixels which belong to classk, where

hk(t) =
∑r∈Rk

δ(g(r)− t)

|Rk|
(2)

is the ratio betweenthe number of pixels in Rk whose inten-
sity is t andthe total number of pixels in the region Rk. We
smoothhk(t), see [DHS01,HTF09], and denote aŝhk(t) the
smoothed normalized histograms (i.e.∑t ĥk(t) = 1) of the
intensity values, then the likelihood of the pixelr to a given
classk is computed with:

vk(r) =
(ĥk ◦g)(r)+ ε

∑K
j=1

[

(ĥ j ◦g)(r)+ ε
] , ∀k > 0; (3)

where ◦ is the composition operator, i.e.(ĥk ◦ g)(r) =
ĥk(g(r)), ε is a small positive real value, we usedε =
1× 10−4. Note that, although parametric models (such as
Gaussian Mixture Models) can be used for defining the like-
lihood functions, we used smoothed normalized histograms
because they are computationally more efficient, i.e. they are
implemented as look up tables. In our experiments we are
just using the pixel intensity as local feature, however other
local statistics could be taked into account, as the local mean
of the intensity values on a pixel neighborhood.
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3.2. Image layering

Now the task is to compute the probability measure fieldα
at each pixel such thatαk(r) is the probability of the pixelr
to be assigned to the classk. Such a probability vector field
α must satisfy:

K

∑
k=1

αk(r) = 1, (4)

αk(r) ≥ 0, ∀k∈ K,∀r ∈ Ω, (5)

α(r) ≈ α(s), ∀r ∈ Ω,∀s∈Nr , (6)

whereNr denotes the set of the first neighbors ofr: Nr =
{s∈ Ω : |r − s| = 1}. Note that, the conditions in Eqs. (4)–
(5) constrainα to be a probability measure field and the
condition in Eq. (6) to be spatially smooth. The probabil-
ity measure fieldα allows us to divide the image in layers in
correspondence to the established classes.

Although our framework admits any probabilistic seg-
mentation method [MVRN01,MAB03,ROM07] we select a
Quadratic Markov Measure Field (QMMF) model [ROM07]
because the solution conducts to a linear system. According
to [ROM05,ROM07], the smooth image multiclass segmen-
tation is formulated as the maximization of the posterior dis-
tribution, that takes the formP(α|R,g)∝ exp[−U(α,θ)] and
the maximum a posteriori (MAP) estimator is computed by
minimizing the cost function:

U(α) = ∑
r

{

α(r)TD(r)α(r)

+
λ
2 ∑

s∈Nr

wrs||α(r)−α(s)||22

}

, (7)

subject to the constraints in Eqs. (4)–(5); where

D(r) =−diag{logv1(r), logv2(r), . . . , logvK(r)}

is a definite-positive diagonal matrix, i.e.vk(r)∈ (0,1) ∀r ∈
Ω,k∈ K.

The soft constraint in Eq. (6) is enforced by introducing a
Gibbsian prior distribution based on Markov Random Field
(MRF) models [GG84,Li01,WG04] and the spatial smooth-
ness is controlled by the positive parameterλ in the regular-
ization potential (second term in Eq. (7)), where the weight
wrs ≈ 0 if a class edge is probably allocated between the
pixels r ands, otherwisewrs ≈ 1. As the weight function,
see [DRM07], we use

wrs =
β

β + |g(r)−g(s)|2
, (8)

whereβ is a small positive value, i.e.β = 10−3.

The convex quadratic programming problem in Eq. (7)
subject to the constraints in Eqs. (4)–(5) can efficiently
be solved by using the Lagrange multiplier procedure for
the equality constraint, see Eq. (4). Unlike the proposal
in [ROM05], we are not penalizing theα(r)’s entropy, and

thus the energy functional in Eq. (7) is convex. Therefore, we
guarantee convergence to the global minima see [ROM05,
ROM07]. For our purposes, we have found that the mode
(hard segmentation computed as the winner–take–all) of the
solution should be correct. The entropy, that controls the
smooth transition between classes, can be adjusted off-line
at the composition stage, see Section3.3.

3.3. Transferring color operator

Once the measure field,α, is computed, colorsCk =
[Rk,Gk,Bk]

T in RGB color space are selected by the user
to form the colorization palette, thereafter every selected
color is assigned to a color (or class) in the correspond-
ing label paletteby the user. Then, the colorCk is con-
verted into a color space in which the intensity and the
color information are independent. For example, the color
spaces:Lαβ [RCC98, RAGS01], YIQ [GL00, WOZ02,
YK03, GWE04], YUV [WOZ02, GWE04], I1I2I3 [GL00],
HSV [GWE04], CIE-Lab and CIE-Luv [WS82]. In general,
we denote the transformed color space byLC1C2:





Lk
C1k
C2k



 = T





Rk
Gk
Bk



 , (9)

where Lk is the luminance component,C1k, C2k are the
chrominance components for the classk; T is the applied
transformation. Such a transformation is linear for theYIQ,
YUV, I1I2I3 spaces. For the CIE,lαβ and HSV spaces,
the transformationT is non–linear. The reader can find
details of the color transformations used in this paper in
Refs. [RCC98, WS82, OKS80]. For computing the color
component (to colorize) at each pixel, we obtain the compo-
nentsl(r), c1(r) andc2(r) (∀r ∈Ω) in theLC1C2 color space,
see Eqs. (10)–(12). We based our colorization operator on
the one proposed by Dalmau et al. in [DRM07]. Unlike that
work, we propose to change the luminance component of
the original image. The color components are obtained as a
linear combination of the chrominance componentsC1k and
C2k. Our colorization operator is defined as:

l(r) = ( f ◦ l̂)(r), (10)

c1(r) =
K

∑
k=1

α̂k(r)C1k, (11)

c2(r) =
K

∑
k=1

α̂k(r)C2k; (12)

where l̂ is the first component ofT (g), i.e. l̂ is the lumi-
nance component of the gray intensity imageg, and f is a
transformation function of the luminance component, i.e. an
enhancement operator, a piecewise-linear transformation, a
tone transfer function or an intensity transformation func-
tion [GW02]. The introduction of the functionf is very im-
portant because now we can modify the luminance channel
of the original image, and for instance, in colorization task,
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it allows us to colorize dark region with lighter colors. Sub-
section4.1 presents a procedure for estimatingf for adapt-
ing the image intensity to be close to the one of the selected
color.

The componentŝαk(r) of α̂(r) can be understood as the
contribution (matting factor) of the class colorCk to the pixel
r. The matting factors are computed with:

α̂k(r) =
αn

k(r)

∑K
j=1 αn

j (r)
, (13)

where then-factor allows us to control the color transition
smoothness (off-line entropy control), forn→∞ the col-
orization is achieved with flat colors such as in a cartoon.
According to our experiments the entropy control can eas-
ily and effectively be adjusted with the powern. Note that,
because of Eq. (4), for n = 1, one haŝαk(r) = αk(r).

Finally, the colored image ˜g is transformed into theRGB
color space by applying the corresponding inverse transfor-
mation:

g̃(r) = T −1





l(r)
c1(r)
c2(r)



 . (14)

Observe that the step of assigning color to each region
Rk is completely independent of the segmentation stage. It
means that, once we have computed the vector measure field,
α, for the whole image, we can reassign colors to one or
more regions by just recomputing the color components with
Eqs. (11) and (12), and transforming the image with the
Eq. (14). Also it may be possible to assign the same color
to different regions. This makes the proposed method very
versatile.

In summary, the process of colorization begins by making
a “hard” pixel labeling from the user marked regions (mul-
timap): for everyr ∈ Rk with k > 0, we setαk(r) = 1 and
αl (r) = 0 for l 6= k. Next, the remainder pixels are “soft”
segmented by minimizing the functional in Eq. (7). Fig. 2
illustrates the colorization process. Panel (a) shows the orig-
inal gray scale image, the scribbles for 6 classes are shown in
Panel (b) and the colored image in Panel (d). The computed
class memberships (probabilities orαk layers) are shown in
Fig.3. Finally the color assignment to each region is done by
applying Eqs. (10)–(12) in LC1C2 color space followed by
the inverse transformation into RGB color space. Note that
smooth inter–region probability transitions produce smooth
color transitions (as in the face regions) and, conversely,
sharp intensity edges produce sharp color transitions.

4. Extension and Generalization of the Colorization
Scheme

In this section we extend our colorization scheme to image
and video editing. The first subsection presents a procedure
for adjusting the luminance component according to the se-
lectedcolorization palette. The next two subsections present

Figure 2: Result of colorization using 6 classes. (a)
Grayscale image, (b) scribbled image, (c) palettes link (d)
colorized image.

Figure 3: Colorization using 6 classes. Each image repre-
sents a component of the vector measure of the probability
of each class(αk layer).

our extension for image recolorization. The following sub-
section generalizes thetransferring color operatorto other
operators. The final subsection presents a mechanism for in-
cluding in our framework other image features, as for in-
stance shortest path distance.

4.1. Luminance adjustment

One problem of the colorization methods in [DRM07,
LLW04,YS06], is that they only use the chrominance com-
ponents of the colors provided by the user. So, in many
cases, the resulting colorized image has regions whose col-
ors are very different from those given in the colorization
palette. This is due to, the values of the luminance channel
in these regions mismatched with the corresponding lumi-
nance channel of the user given color. In this subsection we
study a particular transformation function of the luminance
component̂l of the image. This function is of the form:

fk(l̂) =







0, akl̂ ≤ 0;
ak l̂ , 0 < akl̂ < M ;
M , akl̂ ≥M ;

(15)

where ‘M ’ is the maximum value of the luminance compo-
nent in theLC1C2 space andak is a scalar value (luminance
gain control) for each class. The aim is to obtain at each re-
gion to be colorized a color as similar as possible to that
given by the user, in thecolorization palette. Although ak
could be manually adjusted, we found that this gain control
ak can automatically be computed by solving the optimiza-
tion problem:

ak = argmin
a ∑

r∈Ωk

(

al̂(r)−Lk
)2

, s.t: 0≤ a≤ bk, (16)
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whereΩk is the region of the image that corresponds to the
classk, bk = M

maxr∈Ωk l̂(r)
(with l̂(r) > 0) andLk is the lumi-

nance component of thek-th color in thecolorization palette,
see Eq. (9). The solution to (16) is given by the closed for-
mula:

ak = min

{

bk,
Lk ∑r∈Ωk

l̂(r)

∑r∈Ωk
l̂2(r)

}

.

4.2. Semi-Automatic Recolorization

The recolorization task consists of changing colors in the
original image. Unlike colorization in whichg is a gray level,
nowg represents a color image. A common approach to such
a task is based on the definition of a context independent
mapping function from the original colors to the new ones.
This simple approach, although computationally efficient,
fails with noisy images or when similar colors are mapped to
different colors. Here, we propose two possible extensionsof
the above presented colorization scheme for recolorization
task, that is robust to the above mentioned problems.

The Semi-Automatic or interactive Recolorization is a
straightforward extension of colorization task. The differ-
ence is that now, the imageg is given in theRGB color
space, sog(r) ∈ t, where t = {t1, t2, . . . , tT} are vectorial
values that correspond to channels in theRGBcolor space.
Therefore, the density distributions for each class are then
empirically estimated inRGB color space by using a his-
togram technique, similar to the colorization case, but now

in R
3, i.e. hk(t) : R3→ R, wherehk(t) =

∑r∈Rk
δ(g(r)−t)

|Rk|
is

the ratio betweenthe number of pixels in Rk whose color
is equal to tand the number of pixel in the region Rk, see
Ref. [DHS01,HTF09]. Then, we can compute the likelihood
of each pixelr belonging to classk. That is, letĥk : R

3→ R

be the smoothed normalized histograms (∑t ĥk(t) = 1) of
vectorial values, then likelihood of the pixelr to a given class
k is computed by using the Eq. (3).

4.3. Quasi-Automatic Recolorization

We present a variant for colorization that reduces the user
interaction. Our method relies on the assumption that for a
particular class of images the likelihood density functions
have previously been learned. The instance we present is
the case in which the classes correspond to linguistic colors:
brown, green, orange, red, etc [BK69]. In Ref. [AM09] Alar-
con and Marroquin proposed a segmentation method based
on a combination between a color categorization method
and Bayesian technique. The elaborated color categorization
model describes each voxel in the color space L*u*v* as a
vector of probabilities, whose components express the de-
gree to which the voxel belongs to one of the eleven color
categories established by Berlin and Kay [BK69] in 1969,
as basic and universal. Alarcon and Marroquin obtained the
color categorization model by an interactive technique. They

performed a color naming experiment considering 336 color
samples and 32 subjects. Each subject was instructed to se-
lect the most likely color basic categoryk for the observed
color samplec. With this procedure the likelihood,P(k|c),
for each shown color sample is calculated, using the expres-
sion [AM09]:

P(k|c) =
Akc

M
,k = 1, . . . ,K; (17)

whereAkc denotes the number of assignments to the classk
for the color samplec, andM is the total number of subjects;
K is the number of the used color basic categories and it was
consideredK = 11. The number of color classes included
in [AM09] is non arbitrary, but is based on relevant findings
about the human color naming process, reported by Berlin
and Kay [BK69]. Nevertheless, the color model proposed by
Alarcon and Marroquin, as specified in [AM09], can include
different categories, respect to those established by Berlin
and Kay. More details related to the color model elabora-
tion are in Ref. [AM09]. As a result of the color naming
experiment done in Ref. [AM09] the likelihood,P(k|c), for
a limited number of color samples in the color space was cal-
culated. In order to know the likelihood for the whole space,
Alarcon and Marroquin [AM09] used an interpolation pro-
cedure in which each category is modeled as a linear combi-
nation of quadratic splines. After the interpolation process,
the likelihood functionP̃(k,c) is obtained,i.e. the likelihood
P̃(k,c) is known for each categoryk and for all colorsc in the
color space. The computed solution is interpreted as a proba-
bilistic measure field (a probabilistic dictionary), that is used
in Ref. [AM09] as likelihood in a segmentation Bayesian
technique. From the above, the obtained color model gives a
quasi-automatic segmentation method, that could be applied
in many image processing tasks. Color video restoring and
video recolorization are examples of these tasks, in which
the use of this technique leads to the considerably reduction
of the human effort. The quasi-automatic recolorization ap-
proach, proposed in this manuscript, considers the color cat-
egorization model̃P, see [AM09], and the algorithm is the
following:

Algorithm 1 Quasi-Automatic Recolorization

Require: I (color image) andP̃ (color categorization
model)

1: Set the likelihoodv usingP̃, i.e. vk(r)← P̃(k|I(r)), for
all k, r.

2: Probabilistic segmentation, i.e. Minimize the functional
in Eq. (7) subject to the constraints in the Eqs. (4)–(5).

3: Apply the Colorization operator, see Eqs. (10)–(12).

Note that the segmentation (steps 1 and 2) is completely
automatic. The semiautomatic part is hidden in the color
naming experiment of the color categorization modelP̃, that
in our recolorization experiments we assume to be known,
Ref. [AM09]. Due to the color categorization model, now the
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label paletteis not fixed by the user, but automatically byP̃,
and it includes only the basic color categories set by Berlin
and Kay [BK69]. The solution found in step 2 gives the seg-
mentation of color image in terms of basic colors. However,
as specified in [AM09], we can learn different color cate-
gories and different number of them, that isK 6= 11. This
will depends on the color composition of the image, or set
of images, for the specific application. In the step 3 thelabel
paletteand thecolorization paletteare considered for apply-
ing colorization operator (Subsection3.3). Like in the col-
orization approach (Subsection3), the color palette is again
established interactively by the user.

4.4. Image editing effects

The scheme explained in Subsection3 can be very useful
for other interactive image processing tasks, if some slight
change is made. Now we explain the more general scheme,
in which colorization is a particular case. Based on the
scheme presented in Section2, we have the following in-
teractive general scheme:

1. Feature learning,
2. Image layering,
3. Layering process and Composition operator.

The first two stages are similar to the Section3, and only
the third stage is changed. The transferring color function
is replaced by:Layering processand a more general oper-
ator, named hereComposition Operator. TheLayering pro-
cessincludes tonal transferring functions, artistic/geometric
transformations, image filters, etc. Instances of such process-
ing are blur or sharpen, or any other effect or combinations.
TheComposition Operatorallows us to combine the infor-
mation (processed layers) obtained in the previous step. This
operator set could be applied at the same time or sequen-
tially.

In this modality, the user widens his interaction options.
As explained in Section2, the interactive process of stage
one consists of scribbling, labeled pixels, made by a user
in different regions of interest. Actually, these labeled pix-
els are the training data of the (supervised) learning stage.
The second stage is the same as in the Subsection3. In the
third stage anoperator setF = {F1,F2, . . . ,FK} is selected
by the user. The triad operatorFk = [Fl ,k,Fc1,k,Fc2,k]

T acts
over the layerk and over each channel, i.e.L, C1 andC2.
Hence, similarly to colorization, each operator in the opera-
tor set must be linked to a color inlabel palette, see Fig.4.
Finally, the operator setF is applied on each detected layer,

Figure 4: To each label (left column) is assigned a compo-
sition operator (right column).

and is combined using the followingcomposition operator:

l(r) =
K

∑
k=1

α̂k(r)Fl ,k[l̂ ](r), (18)

c1(r) =
K

∑
k=1

α̂k(r)Fc1,k[ĉ1](r), (19)

c2(r) =
K

∑
k=1

α̂k(r)Fc2,k[ĉ2](r). (20)

We note again thatF is a family of operators. That is, these
operators can be functions that change the intensity or color
of the image (tone or color transferring functions) similarto
the ones used in Refs. [LFUS06,AP08], and also functions
that change the geometry of the image (artistic or geometric
transformations), see Ref. [Hol88]. Instances of such opera-
tors are:

1. Theidentity operator: E [ f ] = f ,
2. Thelayer selection: Sk[ f ] = αk f ,
3. Themultiple layer selection: Suppose that the user select

a set of layersA⊂K thenSA[ f ] = ∑k∈ASk[ f ],
4. Thecolorization, see Subsection3,
5. Therecolorization, see Subsection4, and
6. Thematting, see Refs. [LRAL08,RKB04,WC05],

among many others. We show some combinations of opera-
tors in the experiment section, Section6, where characteris-
tics of experiments are discussed, see Figs.19, 20, 21. We re-
mark that the layer operatorF can be composed by a sequen-
tial application of basic operators, for instance a selection-
colorization-bluring (see our experiments).

4.5. Shortest–Path Distances

Intensity (or color) distributions allow to segment images
into classes where the pixels have similar intensity or color.
Under this assumption, a class can be partitioned in differ-
ent (disconnected) regions. However, there can be partic-
ular tasks where connectedness is an important feature to
be taken into account. For instance the methods in [Gra06,
YS06] segment images in regions with small geodesic dis-
tances. We can incorporate connectedness information into
the QMMFs framework by defining the pixel likelihood that
depends on some kind of distance between each pixel to the
user scribbles.

In this work we incorporate the distance between pix-
els in form of a graph connectivity,i.e. the larger distance,
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the smaller connectivity factor (and conversely) [YVW∗05].
According to the QMMF model the connectivity factor is
better expressed as a likelihood probabilityu. This can be
computed, for instance, by means of a diffusion [Gra06], in
particular, with the random walker formulation through the
combinatorial Dirichlet problem:

X = argmin
x ∑
<r,s>:
R(r)=0,

s∈Nr

wrs‖xr − xs‖
2
, (21)

with X = [xrk]r:R(r)=0, k∈K, xr ∈ R
K and boundary condi-

tions at the marked pixels. The probability of the class cor-
responding to marked pixels is fixed to 1 and for the other
classes fixed to zero:

mrk =

{

1 R(r) = k,k > 0
0 otherwise.

Then the solution to the unmarked pixels is computed by
solving the set of linear systems

LX = −BTM

whereL = [wrs]r,s:R(r)=R(s)=0, B = [wrs]r,s:R(r) 6=0, R(s)=0
andM = [mrk], see [Gra06] for details. Then the connected-
ness likelihood is

uk(r) =

{

mrk R(r) > 0
xrk otherwise.

(22)

Now we have 2 sources of information (likelihoods)u and
v: u that encodes some kind of spatial distance andv the
color (intensity) likelihood. Then, assuming independence
between the information sources, the joint likelihood ¯v is
given by

v̄k(r) = ua
k(r)v

(1−a)
k (r) (23)

where the mix parameter (power) 0≤ a≤ 1 denotes our con-
fidence, or reliability, on each source. Thus, the join likeli-
hood can be computed in a preprocessing stage and being
directly used in the QMMF framework by substitutingD(r)
by

D̄(r) =−diag{logv̄1(r), logv̄2(r), . . . , logv̄K(r)}

into the cost function (7).

5. Application: Video Colorization

As a demonstration of the subsection4.5, we present an ap-
plication for video colorization that incorporates two likeli-
hood sources: shortest path distances and intensity similar-
ity, i.e.we use the joint likelihood (23).

In the literature, one can find previous interactive works
dealing with this problem [LLW04, SBv04, YS06]. The
method presented in [YS06] is suitable for colorization of
videos with fixed background (without camera movements)
and small object displacements. The approach presented

Figure 5: Scribbles made on one frame of the
video. This frame is available in a video at
http://www.cs.huji.ac.il/~yweiss/Colorization/.

in [LLW04] uses implicitly optical flow what allows to col-
orize more complex videos: larger displacements and cam-
era movements. This method does not propagate the scrib-
bles, but calculates an overall video colorization by redefin-
ing neighboring pixels, establishing in this way a temporal
coherency. That is, the pixelsr0 = (x0,y0) andr1 = (x1,y1),
in the framest andt +1 respectively, are neighbors if:

‖(r0 +d(r0, t))− r1‖ < T, (24)

where T is a parameter, d(r, t) = d(x,y, t) =
(dx(x,y, t),dy(x,y, t)) represents the optical flow com-
puted by an standard method, in particular [LLW04] uses
the Lucas and Kanade algorithm [LK81].

Here we present a video colorization method that also
incorporates an optical flow-based strategy. The basic idea
consists of: given a frameg(r, t) and its corresponding user
scribblesmask(r, t) (a multimap) then, we propagate the
scribbles to the framet + 1 by warping themask(t) using
the optical flowd(r, t) to obtain the multimap at framet +1.
That is

mask(r, t +1) = mask(⌊r +d(r, t)+q⌋, t), (25)

whereq = (0.5,0.5), and⌊·⌋ is the floor function,i.e. ⌊x⌋ is
the largest integer not greater thanx. Then, we use the esti-
mated (warped)multimapto colorize thet + 1-frame. After
a number of propagatedmultimap the user needs to make
small rectifications to the multimap due to the error intro-
duced by the optical flow propagation process or large scene
changes. The algorithm continues up to a desired number of
frames.

In Fig. 5 we show the multimap on the frame
of the video used for the experiment, available at
http://www.cs.huji.ac.il/~yweiss/Colorization/. Nextpanels
show three mulitmaps estimated by our method based on the
standard multigrid optical flow algorithm of the Horn and
Schunck [HS80]. Fig. 6 depicts four colorized frames of the
video. We note that our method relies strongly on the com-
puted optical flow. It is implemented as a frame by frame
colorization and does not include a temporal regularization.
However, that temporal regularization can be introduced as
in [LLW04].
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Figure 6: Four colorized frames representative of the full
colorized video.

6. Experiments and Results

In order to evaluate the performance of our proposal, sev-
eral experiments were carried out. First, we describe the col-
orization process by using an experiment. Then, we com-
pare the performance of the colorization method proposed
by Levin et al. in [LLW04] and our method. Additionally,
we show some other results of colorization and recoloriza-
tion that demonstrate the method capabilities. And finally,
we present some experiments of image editing.

Most of the images presented here were taken from
Berkeley Image Database [MFTM01], available at
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
bsds/. First, they were converted into greyscale images and
then the process of colorization was applied.

6.1. Colorization experiments

Figs.7, 8, 9 and10 compare our method with the one pro-
posed by Levin et al. [LLW04] and Dalmau et al. [DRM07].
In the experiments of Figs.7, 8 and9 the label paletteand
colorization paletteare the same, and the colors in both
palettes are the ones used in the corresponding multimap.
In general, the methods reported in [LLW04] and [DRM07]
have good results in many situations. However Figs.7
and8 show that the Levin et al. method, code available at
http://www.cs.huji.ac.il/~yweiss/Colorization/, obtains poor
results when the image has disconnected regions that need
to be colorized with the same color, or when the pixels to
be colorized are far away from the user’s scribbles. Both
methods, the reported in [LLW04] and [DRM07], also work
poorly when colorizing dark regions with light colors or
when colorizing light regions with dark colors, see Fig.9.
In order to show the influence of the luminance component
transformation in the recolorization context, in Fig.10 we
compare our proposal with the Dalmau et al. method. Based
on the visual comparison between Fig.10 (c) and Fig.10(d)
we conclude that the color RGB composition of the image
obtained from the transformation luminance function, see
Fig. 10 (d), is more similar to the colors fixed in the col-
orization palette than the image obtained without using the
transformation luminance function, see Fig.10 (c). In or-
der to give a numerical argument of the above explanation,
a test of the RGB composition of the red class, see Fig.10
panels (a) and (b), was carried out. The RGB components
used to recolorize this class were[208,54,88], and the av-
erage RGB components, corresponding to the red class, ob-

Figure 7: Comparison between our method and the method
reported in [LLW04] when colorizing pixels are located far
away from the user’s scribbles or when colorizing pixels are
in disconnected regions. (a) Image, (b) scribbles, (c) col-
orization using the Levin et al. method, (d) colorization us-
ing the Dalmau et al. method, (e) colorization using our pro-
posal.

Figure 8: Comparison between our method and the method
reported in [LLW04]. (a) Original image, (b) multimap, (c)
Levin et al. result, (d) our result.

tained by Dalmau’s and our method were[153.4,10.1,32.7]
and[207.5,62.2,88.7] respectively.

In Fig. 11 we show additional experiments that demon-
strate the method capability. Moreover, once we have com-
puted the probability measure field,α, we can reassign col-
ors to some labels and colorize the image by just reapplying
Eqs. (10)–(12). In Fig. 13 we present experimental results
that illustrate the method flexibility by changing colors and
keeping the memberships fixed.

Figure 9: Comparison between our method and the method
reported in [LLW04] when colorizing dark regions with light
colors, or when colorizing light regions with dark colors. (a)
Image, (b) scribbles, (c) colorization using the Levin et al.
method, (d) colorization using the Dalmau et al. method, (e)
colorization using our proposal.
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Figure 10: Comparison between our method and the method
reported in [DRM07]. (a) label palette (left column) and col-
orization palette (right column), (b) multimap, (c) Dalmauet
al. result, (d) our result.

Figure 11: Columns from left to right: Gray scale image,
multimap and colored image.

Experiments with different color models demonstrate that
the final results do not depend on the chosen model but on
the user ability for selecting the appropriate color palette, see
Fig. 12.

6.2. Semi-automatic recolorization

Fig. 14 illustrates a semi-automatic recolorization. The first
row, panels (a) and (b) show the original image and the mul-

Figure 12: Colorization results using different color models:
(a) Original image, (b) YUV, (c) LUV.

Figure 13: Flexibility for assigning and reassigning colors
to images. (a) Original image (b)-(d) colorizations.

Figure 14: Semi-automatic recolorization. The first row,
from left to right, shows: (a) original image, (b) multimap,
(c) recolorization by using likelihood, (d) recolorization by
using segmentation. The second and third rows show the
class memberships (α layers) corresponding the likelihood
and the soft segmentation respectively.

timap, respectively. Panels (c) and (d) show two recoloriza-
tions: panel (c) shows a recolorization that was reached us-
ing the likelihood (Eq. (3) and Section4.2) and panel (d)
illustrates a recolorization that was attained by using the
QMMF based on the probabilistic segmentation,α. For com-
parisson purposes, in Fig.15we show details of the original
image and the corresponding colorizations. Note that in like-
lihood based colorization some regions in the butterfly body
are colorized in green because the color similarity of the but-
terfly body and the leaves. As we can see, from this experi-
ment, the likelihood is not enough for obtaining good recol-
orizations and in general the regularization stage is needed.

The proposed scheme also admits a multimap with im-
precise scribbles, see the left image in Fig.16. This image
shows a multimap with scribbles that overlap different re-
gions (the horses and the grass). The second panel shows the
recolorized image using this multimap. In this case, the vec-
tor field α is computed on the whole image,i.e. α(r) is also
computed in the pixels marked by the user (R(r) 6= 0), and
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Figure 15: Likelihood vs Segmentation. Zoom of sub-images
taken from recolorization using, as a measure field, the like-
lihood and the segmentation respectively. (a) Subimage, (b)
recolorization using likelihood, (c) recolorization using seg-
mentation.

Figure 16: Recolorization with imprecise scribbles.

the multimap is only used to compute thelikelihoods. The
third panel shows the authomaticaly refined multimap com-
puted by keeping the resulted classification at those pixels
whose entropy is small: 1−∑k α2

k(r) < 0.4. The most right
image in Fig.16 depicts the recolorized image using the re-
fined multimap.

In the next experiment we assume that color distributions
do not change throughout the video sequence. Therefore, the
method only needs one multimap, i.e. the user scribbles only
on the first frame of the sequence. Left panel in Fig.17 ex-
hibits the scribbles for three classes provided by the user
(multimap). The right panel shows the multimap refined sim-
ilarly to the previous experiment. First row in Fig.18shows
demostrative frames from the original video and the semi-
automatic recolorization is shown in second row. We remark
that about 300 frames were colorized using the distribution
estimated from the first frame, the video duration is approx-
imately of 10 seconds.

6.3. Quasi-automatic recolorization

The follow experiments illustrate the quasi-automatic re-
colorization presented in subsection4.3. In this case, we

Figure 17: Left Image, scribble on the first video frame of
the video in first row of Fig.18. Right image, automatic gen-
erated multimap from the user scribbles, see text.

Figure 18: First row show 4 frames of a video sequence of
approximately 10 seconds (about 300 frames). Second row
shows the semiautomatic recolorization (the required user
scribbles are presented in Fig.17). Third row shows the
quasi-automatic recolorization. The difference in coloriza-
tion corresponds to different selected colorization palettes.

Figure 19: (a) Original image, (b) mask obtained from vec-
tor measure field, (c) extracted colorized object (d) pho-
tomontage using the mask in panel (c).

use fixed likelihood density functions that correspond to
the color categorization model̃P from Ref. [AM09], with
K = 11. As thelabel paletteis fixed, the only user interac-
tion is the linkage between thelabel paletteand thecoloriza-
tion palette. Except for this small interaction, the procedure
is fully automatic.

Results of a video colorization experiment are shown in
the third row of Fig.18. The recolorized video frames agree
with the original frames in first row. We note that the differ-
ence between recolorizations (second and third row) is due
to differentcolorization palettesused. Important to remark
it is that both strategies preserve transparency between the
bear and the water.

6.4. Other image editing experiments

In this Subsection we illustrate the capability of our method
by some editing examples. As our method allows to divide
the image in layers, we can select some particular layers for
segmenting and colorizing a particular object, see Fig.19.
More formally, letA ⊂ K be a layer set selected by a user.
Then, themaskin Fig. 19 (b) can be obtained by

mask(r) = ∑
k∈A

α̂k(r). (26)

With the mask, Fig.19(b), we can now extract the colorized
image Fig.19 (c), or simply we can make a blending (image
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Figure 20: Combining different operators: blur (red class),
identity (green class) and recolorization (blue class). (a)
Original color image, (b) multimap, (c)-(d) multioperator
composition.

Figure 21: Artistic effects. Source images (first two images
at the left) and artistic effects using a combination of the
processed image sources (last two images at the right), see
text.

composition) with the colorized image and another image,
see Fig.19 (d).

It is also possible to combine several operators (Subsec-
tion 4.4). In Fig. 20 three operators were used: directional
blur (for the background), recolorization (for some red parts
in the car) and identity (for the rest of the car). The goal is
to introduce motion effect and recolorize part of the car. We
remark that the applied colorization method is not a simple
mapping between colors. It can be seen that while some of
the car’s red regions have been changed, others remain un-
changed, such as the flag on the window and the logo on the
door, see Fig.20 (c)-(d).

Morover, the interactive general scheme accepts more
than one source image. Figs.21 show two source images.
Thus, given the multimap provided by interaction (illustrated
on the left image) we can obtain the composed image in the
third panel, from left to right, using a pond ripple effect to
the source image 1 weighed by the layer that corresponds to
the red class and the source image 2 weighed by the layer
that corresponds to the green class (third image from the
left). Moreover, the composed image at the right can be com-

puted by using a circular ripple effect to the source image 2
weighed by the layer that corresponds to the green class and
the source image 1 weighed by the layer that corresponds to
the red class.

Regarding the computational cost, theImage Layeringis
the most time consuming step in our proposal. Our method
computes the layering of an image by solving a convex
quadratic programming problem. This minimization corre-
sponds to solving a positive definite and symmetric linear
system. The length of the linear system depends on the size
of the image and the number of classes. We implement our
approach using a Gauss-Seidel scheme in Matlab with .m
and .mex files. Although it is not the most efficient imple-
mentation, a 480x640 color image can be segmented in about
a second per class on an Intel 2.5Mhz iMac. Our algorithm
can be implemented using Multigrid Gauss-Seidel. More-
over, it can be parallelized in blocks (for a multicore CPU)
or in cellular automata (for a GPU based implementation,
CUDA or OpenCL). This is beyond the scope of the cur-
rent work but we have a CUDA based implementation for
binary segmentation at a rate of 60 frames per second on
an NVIDIA 8800 GT. Our implementation is based on the
QMMF algorithm reported in [RD09].

7. Conclusions

We have presented a three stage interactive image and video
editing procedure. The first step consists of scribbles made
by a user over the image. The second step consists of com-
puting a probabilistic segmentation and in the third step the
color or effect properties are specified.

The proposed interactive editing method is based on the
multiclass probabilistic image segmentation algorithm. The
segmentation process consists of the minimization of a lin-
early constrained positive definite quadratic cost function
and thus the convergence to the global minima is guaranteed.
We associate an image transformation (colorization, recol-
orization, directional blur, edge enhancement, etc) to each
class and then the pixel color components are a linear com-
bination of a set of operators applied over regions defined by
the classes. The color component values depend on the com-
puted probability of each pixel belonging to the respective
class.

We have demonstrated the flexibility of the presented
scheme by implementing different image and video edit-
ing applications, as for instance: colorization, recolorization,
blending, blur and combinations. Our method can success-
fully be used for applying particular transformations to iso-
lated objects. It also accepts different source images. As re-
sult, complex artistic effects are obtained.

A quasi-automatic recolorization version is presented that
could be very useful in video color restoration and video re-
colorization.

We have extended the QMMF models to accept mixture of
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likelihoods. New likelihoods can effectively codify the seg-
mentation of other methods. In particular, we investigate the
pixel connectivity through the shortest–path distance. The
shortest–path based likelihood was computed by the random
walker segmentation method. We included a video coloriza-
tion application that relies on this approach.

Acknowledges. This research was supported in part
by CONACYT (grant 61367) and PROMEP (grant
103.5/08/2919). O. Dalmau was also supported in part by
a PhD scholarship from CONACYT, Mexico. The authors
thank the anonymous reviewers for their advice and com-
ments that helped to improve the quality of the manuscript

References

[AM09] A LARCÓN T. E., MARRQUÍN J. L.: Linguistic color im-
age segmentation using a hierarchical Bayesian approach.Color
Res Appl 34(August 2009), 299–309.

[AP08] AN X., PELLACINI F.: Appprop: all-pairs appearance-
space edit propagation. InSIGGRAPH ’08: ACM SIGGRAPH
2008 papers(New York, NY, USA, 2008), ACM, pp. 1–9.

[BK69] BERLIN B., KAY P.: Basic Color Terms: Their univer-
sality and Evolution. Berkeley: University of California, 1969.

[BR03] BLASI D., RECUPEROR.: Fast Colorization of Gray Im-
ages. InEurographics Italian Chapter 2003(2003).

[CWSM04] CHEN T., WANG Y., SCHILLINGS V., MEINEL C.:
Grayscale Image Matting and Colorization. InIn Proceedings of
Asian Conference on Computer Vision (ACCV 2004)(Jan. 27–30,
2004), pp. 1164–1169.

[DHS01] DUDA R. O., HART P. E., STORK D. G.: Pattern Clas-
sification, second ed. John Wiley & Sons, Inc., New York, 2001,
pp. 164–165.

[DRM07] DALMAU O., RIVERA M., MAYORGA P. P.: Comput-
ing the alpha-channel with Probabilistic Segmentation forImage
Colorization. InIEEE Proc. Workshop in Interactive Computer
Vision (ICV’07)(2007), pp. 1–7.

[GG84] GEMAN S., GEMAN D.: Stochastic relaxation, Gibbs
distributions and Bayesian restoration of images.IEEE PAMI
6 (1984), 721–741.

[GL00] GUO P., LYU M. R.: A Study on Color Space Selec-
tion for Determining Image Segmentation Region Number. In
Proc. of the 2000 International Conference on Artificial Intel-
ligence (IC-AI’2000), Monte Carlo Resort, Las Vegas, Nevada,
USA(2000), vol. 3, pp. 1127–1132.

[Gra06] GRADY L.: Random walks for image segmentation.
IEEE Trans. on Pattern Analysis and Machine Intelligence 28,
11 (Nov. 2006), 1768–1783.

[GW02] GONZALEZ R. C., WOODS R. E.: Digital Image Pro-
cessing, second ed. Prentice Hall, Upper Saddle River, New Jer-
sey, USA, 2002, pp. 76–107.

[GWE04] GONZALEZ R. C., WOODSR. E., EDDINS S. L.:Dig-
ital Image Processing using Matlab. Prentice Hall, Upper Saddle
River, New Jersey, USA, 2004, pp. 204–207.

[Hol88] HOLZMANN G. J.: Beyond Photography - The Digital
Darkroom. Prentice Hall, Englewood Cliffs, NJ, 07632, 1988,
pp. 109–114.

[Hor02] HORIUCHI T.: Estimation of color for gray-level im-
age by probabilistic relaxation. InProc. IEEE Int. Conf. Pattern
Recognition(2002), pp. 867̋U–870.

[HS80] HORN B. K., SCHUNCK B. G.: Determining Optical
Flow. Tech. rep., Cambridge, MA, USA, 1980.

[HTF09] HASTIE T., TIBSHIRANI R., FRIEDMAN J.: The El-
ements of Statistical Learning: Data Mining, Inference, and
Prediction, second ed. Springer Science+Business Media, 233
Spring Street, New York, NY 10013, USA, 2009, pp. 208–209.

[ICOL05] IRONY R., COHEN-OR D., LISCHINSKID.: Coloriza-
tion by Example. InEurographics Symposium on Rendering
2005 (EGSR’05)(2005), pp. 201–210.

[KV06] K ONUSHI V., VEZHNEVETSV.: Interactive Image Col-
orization and Recoloring based on Coupled Map Lattices. In
Graphicon’2006 conference proceedings, Novosibirsk Akadem-
gorodok, Russia(2006), pp. 231–234.

[LFUS06] LISCHINSKI D., FARBMAN Z., UYTTENDAELE M.,
SZELISKI R.: Interactive local adjustment of tonal values. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers(New York, NY,
USA, 2006), ACM, pp. 646–653.

[Li01] L I S. Z.: Markov Random Field Modeling in Image Anal-
ysis. Springer-Verlag, Tokyo, 2001, pp. 11–15.

[LK81] L UCAS B. D., KANADE T.: An iterative image regis-
tration technique with an application to stereo vision (ijcai). In
Proceedings of the 7th International Joint Conference on Artifi-
cial Intelligence (IJCAI ’81)(April 1981), pp. 674–679.

[LLW04] L EVIN A., L ISCHINSKI D., WEISS Y.: Colorization
using Optimization.ACM Transactios on Graphics 23, 3 (2004),
289–694.

[LRAL08] L EVIN A., RAV-ACHA A., L ISCHINSKI D.: Spectral
Matting. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30, 10 (2008), 1699–1712.

[MAB03] M ARROQUIN J. L., ARCE E., BOTELLO S.: Hidden
Markov measure field models for image segmentation.IEEE
PAMI 25(2003), 1380–1387.

[McA04] M CANDREW A.: Introduction to Digital Image Pro-
cessing with Matlab. Thomson Course Technology, 2004,
pp. 87–139, 449–466.

[MFTM01] M ARTIN D., FOWLKES C., TAL D., MALIK J.: A
Database of Human Segmented Natural Images and its Appli-
cation to Evaluating Segmentation Algorithms and Measuring
Ecological Statistics. InProc. 8th Int’l Conf. Computer Vision
(2001), vol. 2, pp. 416–423.

[MVRN01] M ARROQUIN J. L., VELAZCO F., RIVERA M.,
NAKAMURA M.: Gauss-Markov Measure Field Models for Low-
Level Vision. IEEE PAMI 23(2001).

[OKS80] OTHA Y., KANADE T., SAKAI T.: Color information
for region segmentation.Comput. Graphics Image Processing 13
(1980), 22–241.

[PD84] PORTERT., DUFF T.: Compositing Digital Images.Com-
puter Graphics 18, 3 (1984), 253–259.

[QG05] QIU G., GUAN J.: Color by linear neighborhood em-
bedding. InIEEE International Conference on Image Processing
(ICIP’05) (Sept. 11–14, 2005), pp. III – 988–91.

[QWCO∗07] QING L., WEN F., COHEN-OR D., LIANG L., XU
Y. Q., SHUM H.: Natural Image Colorization. InRendering
Techniques 2007 (Proceedings Eurographics Symposium on Ren-
dering) (2007), Eurographics.

[RAGS01] REINHARD E., ASHIKHMIN M., GOOCH B.,
SHIRLEY P.: Color transfer between images.IEEE Computer
Graphics and Applications 21, 5 (2001), 34–41.

[RCC98] RUDERMAN D. L., CRONIN T. W., CHIAO C. C.:
Statistics of cone responses to natural images: Implications for

submitted to COMPUTER GRAPHICSForum(5/2010).



14 O. Dalmau, M. Rivera & T. Alarcón /

visual coding.J. Optical Soc. of America A 15, 8 (1998), 2036–
2045.

[RD09] RIVERA M., DALMAU O.: Quadratic Programming for
Probabilistic Image Segmentation.submitted to IEEE Transac-
tions on Image Processing(2009).

[RDT08] RIVERA M., DALMAU O., TAGO J.: Image segmenta-
tion by convex quadratic programming. InICPR(2008), pp. 1–5.

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: “Grab-
cut”: Interactive Foreground Extraction using Iterated Graph
Cuts. 309–314.

[ROM05] RIVERA M., OCEGUEDAO., MARROQUIN J. L.: En-
tropy Controlled Gauss-Markov Random Measure Fields for
Early Vision. InVLSM, LNCS 3752(2005), pp. 137–148.

[ROM07] RIVERA M., OCEGUEDA O., MARROQUÍN J. L.:
Entropy-Controlled Quadratic Markov Measure Field Modelsfor
Efficient Image Segmentation.IEEE Transactions on Image Pro-
cessing 16, 12 (2007), 3047–3057.

[SBv04] SÝKORA D., BURIÁNEK J., ŽÁRA J.: Unsuper-
vised Colorization of Black and White Cartoons. InNPAR
’04: Proceedings of the 3rd international symposium on Non-
photorealistic animation and rendering(New York, NY, USA,
2004), ACM, pp. 121–127.

[TJT05] TAI Y. W., JIA J., TANG C. K.: Local Color Transfer
via Probabilistic Segmentation by Expectation-Maximization. In
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05)(2005), vol. 1, pp. 747–754.

[WAM] W ELSH T., ASHIKHMIN M., MUELLER K.: Transfer-
ring color to greyscale images.

[WC05] WANG J., COHEN M.: An interactive optimization ap-
proach for unified image segmentation and matting. InICCV
(2005), vol. 2, pp. 936–943.

[WG04] WON C. S., GRAY R. M.: Stochastic Image Processing.
Kluwer Academic/Plenum, New York, 2004, pp. 11–21.

[WH04] WANG C. M., HUANG Y. H.: A Novel Color Transfer
Algorithm for Image Sequences.Journal of Information Science
and Engineering 20, 6 (2004), 1039–1056.

[WOZ02] WANG Y., OSTERMANNJ., ZHANG Y.-Q.: Video Pro-
cessing and Communications. Prentice Hall, 2002, pp. 18–19.

[WS82] WYSZECKI G., STILES W.: Color Science: Concepts
and methods, quantitative data and formulae, second ed. Wiley,
1982, pp. 165–168.

[YK03] YANG C. C., KWOK S. H.: Efficient gamut clipping for
color image processing using LHS and YIQ.Opt. Eng. 42(March
2003), 701–711.

[YS06] YATZIV L., SAPIRO G.: Fast Image and Video Col-
orization Using Chrominance Blending.Image Processing, IEEE
Transactions on 15, 5 (2006), 1120–1129.

[YVW ∗05] YEN L., VANVYVE D., WOUTERS F., FOUSS F.,
VERLEYSENM., SAERENSM.: Clustering using a random walk
based distance measure. InESANN 2005: European Symposium
on Artificial Neural Networks(2005), pp. 317–324.

submitted to COMPUTER GRAPHICSForum(5/2010).


