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Entropy–Controlled Quadratic Markov Measure
Field Models for Efficient Image Segmentation

Mariano Rivera, Omar Ocegueda, and Jose L. Marroquin

Abstract—We present a new Markov Random Field (MRF)
based model for parametric image segmentation. Instead of
directly computing a label map, our method computes the
probability that the observed data at each pixel is generated by a
particular intensity model. Prior information about segmentation
smoothness and low entropy of the probability distribution maps
is codified in the form of a MRF with quadratic potentials, so
that the optimal estimator is obtained by solving a quadratic
cost function with linear constraints. Although for segmentation
purposes the mode of the probability distribution at each pixel is
naturally used as an optimal estimator, our method permits the
use of other estimators, such as the mean or the median, which
may be more appropriate for certain applications. Numerical
experiments and comparisons with other published schemes are
performed, using both synthetic images and real data of brain
MRI for which expert hand-made segmentations are available.
Finally, we show that the proposed methodology may be easily
extended to other problems, such as stereo disparity estimation.

Index Terms—Markov random fields, Bayesian methods, image
segmentation, energy minimization, MRI segmentation.

I. I NTRODUCTION

I MAGE segmentation is an important task in image analy-
sis and image editing tasks. Its importance for low-level

image processing stems from several facts: boundaries be-
tween segmented regions may be highly correlated with per-
ceptually significant edges or contours; thus, the relevance
of segmentation for edge detection, edge-preserving filtering
and piecewise image reconstruction and restoration. Besides,
there are many problems for which the core of the solution
procedure is a segmentation algorithm; for instance: medical
image analysis (including the localization of tumors and
other pathologies; measurement of tissue volumes; computer-
aided surgery; anatomical studies, etc.) [1], [2]; foreground
extraction (image matting) [3], [4]; motion computation [5],
[6], [7], [8], [9]; interactive image segmentation (trimap)
[3], [10], [11], [12], [13]; pattern recognition systems, etc.
Therefore any improvement to segmentation methods in their
computational complexity, reduction in memory requirements
or error reduction will have an important impact in many
image processing and computer vision applications.

In its general form, image segmentation may be formulated
as follows: an imageI may be regarded as a mapping from a
pixel lattice L to a state spaceE. A segmentationS of I is
a partition ofL into a set of non-overlapping (not necessarily
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connected) regions{Ri, i = 1, . . . ,M} such thatL =
⋃

i Ri

and I is uniform in some sense over every regionRi. In
particular, one may consider the case in which the values of
the imageI in each regionRi may be represented as the sum
of some fixed deterministic functions plus noise. Considering
these functions as parametric models whose parameters are
constant for each region, one obtains :

I(x) =

M
∑

k=1

bk(x)Φ(x; θk) + n(x) (1)

wherex denotes a pixel inL; Φ(x; θk) is a function (paramet-
ric model) Φ : L 7→ E that depends on the parameter vector
θk; {n(x) : x ∈ L} is a set of independent random variables
and bk is the indicator function of regionRk, i.e., bk(x) = 1
iff x ∈ Rk and

M
∑

k=1

bk(x) = 1 (2)

for all x ∈ L. In what follows, b(x) will denote the vector
(b1(x), . . . , bM (x)) andb will denote the set{b(x) : x ∈ L}.

The appearance of the imageI will depend on the nature
of the functionsΦ; for example, if each functionΦ(x; θk) is
smooth,I will be a piecewise smooth image, with discon-
tinuities located at the boundaries between adjacent regions
Ri, Rj . A particular instance of this case is related to the
segmentation of brain Magnetic Resonance Images (MRI)
in terms of tissue type; in this caseΦ(x; θk) represents the
intensity associated with tissue typek andRk represents the
portion of the image classified as tissuek (see section 3.2).
Other important problems that may also be formulated in these
terms include: edge-preserving smoothing [14], [15], [16],
[17]; color-based segmentation [18], [19]; stereo disparity
estimation [20], [21], [22], [23], motion-based segmentation
[24], etc.

This problem has been approached from different perspec-
tives: if the parameters{θk} are known, the segmentation
problem has been solved using, for instance: the k-means
algorithm and its variants [25], [26]; region merging [19];
region-growing [17], [27] and active contour [28] approaches;
eigendecomposition-based partitions [29], [30], [31]; varia-
tional methods [5], [32] and probabilistic (Bayesian) formula-
tions [14], [33], [34]. Of these, the Bayesian formulationsare
one of the most powerful and general, since they allow for
the inclusion of spatial coherence constraints that regularize
the solution (via Markov Random Field (MRF) models) and
makes it more robust with respect to noise, although they may
be computationally expensive. In the general case, when the
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parameters{θk} are not known, some of these methods may
be extended using 2-step algorithms, in which one is given an
initial estimate{θ(0)

k }, and then one iterates the steps:
1) EstimateS given θ̄;
2) Estimateθ̄ given S;

where θ̄ denotes the collection of all parameter vectorsθk,
until convergence [17], [35], [36], [37], [38] .

One particularly important class of these 2-step methods is
derived from the Expectation Maximization (EM) algorithm,
which was originally proposed for computing maximum like-
lihood estimators from incomplete data [35]. This approach
has also been used for computing estimators with respect to
posterior distributions for segmentation tasks (classification)
in image analysis and computer vision problems where the
class model parameters are unknown [14], [33]. However, prior
probability distributions based on MRF models introduce high
correlation among the variables (labels in the segmentation
task) that increments the computational complexity of the EM
algorithm [1], [2], [39], [40], [41], [42] . For this reason,in-
stead of Monte-Carlo Markov Chain methods, approximations
such as mean field theory [43] or Gauss Markov Measure
Fields [44]) have been used for computing the marginal
probabilities in the Expectation (E) step with relative success.

The problem with these approaches is their high compu-
tational complexity, and their high sensitivity with respect to
noise and to the choice of{θ(0)

k }. The reason for this is that
these 2-step approaches can be guaranteed to converge only
to a local maximum of the posterior distribution [35]; sincein
most cases this distribution has multiple maxima, if one starts
the iterations from a “bad” point{θ(0)

k }, the local maximum to
which the method converges may not be the global maximum,
i.e., one may get suboptimal solutions [16].

One may get more robust methods if one formulates the
problem in such a way thatS and θ̄ are progressively refined
at the same time, e.g., by the iterative minimization of a
differentiable function that depends onθ̄ and on the probability
of assigning models to each pixel (i.e., on a “soft” version of
the segmentationS). These direct methods, such as the one
in [16], do exhibit a better performance than that of 2-step
approaches; their computational complexity, however, is still
relatively high, since the solution involves the minimization of
a highly non-linear function, and the hyperparameters of the
corresponding algorithms are in general not easy to tune.

The purpose of this work is to present a direct method,
which is rigorously based on a Bayesian framework, which
is computationally efficient — since the solution is found by
minimization of a quadratic function with linear constraints —
and whose hyperparameters are easy to tune. The derivation of
the method and its implementation are presented in Section 2;
in Section 3 the experimental performance of this approach is
compared with other published schemes, using both synthetic
images and real MRI volumes where expert segmentations are
available. Finally, in Section 4, some properties and extensions
of the method are discussed and some conclusions are drawn.

II. T HEORETICAL DERIVATION AND IMPLEMENTATION

This section presents the mathematical derivation of the
proposed probabilistic segmentation method. The method is

initially presented by assuming that the noise,n in (1), has
a Gaussian distribution and the intensity models’ parameters,
θ̄, are given; then the generalization to other noise distribu-
tions and the problem of parameter estimation is presented.
Throughout this section we will use the following notation:
r(x) will denote the region to which pixelx belongs, i.e.,
r(x) = k iff x ∈ Rk; δ(·) will denote the Kronecker delta
function; θ̄ will denote the collection of all the parameter
vectors{θk, k = 1, . . . ,M} that correspond to each parametric
modelΦ(x; θk); Nx will denote the first order neighborhood
of pixel x, i.e., N(x) = {y ∈ L : ‖y − x‖ = 1} and ♯Nx will
denote its cardinality.

A. The Entropy Controlled Quadratic Markov Measure Field
model

Assuming at first that the parameters{θk} are known, the
goal is to estimate the fieldb defined in (1). To this end,
one may use a Bayesian approach and modelb as an MRF,
so that prior constraints may be introduced as a prior Gibbs
distribution

Pb(b) =
1

Zb

exp[−Ub(b)] (3)

whereZb is a constant andUb is an “energy” function, which
we would like to be differentiable with respect tob. To achieve
this, one may relax the constraint (2), and replace it by:

bk(x) ≥ 0 , k = 1, . . . ,M , x ∈ L (4)

M
∑

k=1

bk(x) = 1 , x ∈ L (5)

bk(x) ≈ δ(k − r(x)) , k = 1, . . . ,M , x ∈ L. (6)

Also, one would likeb to be spatially smooth almost every-
where, to control the granularity of the regions, i.e., to avoid
the proliferation of very small regions assigned to a particular
model, which may occur due to noise in the data. All these
constraints may be expressed by the prior energyUb in (3):

Ub(b) =
∑

<x,y>

βxy‖b(x) − b(y)‖2 − µ
∑

x∈L

M
∑

k=1

b2
k(x). (7)

The first term embodies the smoothness constraint: the sum
is taken over all nearest-neighbor pairs of sites< x, y >, and
the interaction fieldβ controls the granularity of the resulting
regions; in what follows we assume for simplicity a constant
interactionβxy = λ, where λ is a positive hyperparameter
(see however section IV). The second term, together with the
constraints (4) and (5), enforces constraint (6) as explained
below; one may say thatb is a Markov Random Measure
Field (MRMF) —since constraints (4) and (5) imply that each
b(x) is a discrete probability measure, wherebk(x) represents
the probability thatr(x) = k, i.e., we are assuming that
given b, each labelr(x) is obtained as an independent sample
from b(x), so thatP (r(x) = k|b) = bk(x). The entropy of
each one of these discrete distributions is equal to minus the
expected value ofln bk(x), taken with respect to the same
distribution, i.e.,−∑k bk(x) ln bk(x). To obtain a quadratic
form, one may take instead the expected value ofbk(x) itself,
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to get−
∑

k b2
k(x). This quantity (plus an additive constant) is

known in the machine learning community as the Gini index
[45], and it is known to closely resemble the behavior of the
entropy [46]: it is minimal when the distribution becomes a
delta function, and it is maximal for a uniform distribution.
Thus, for positive values ofµ, (7) constrains eachb(x) to
have low entropy, i.e., to approach a delta function.

If one assumes that the random variables{n(x), x ∈ L}
in (1) are independent, zero-mean Gaussian random variables
with varianceσ2, the likelihood of the observed imageI is
obtained from (1) as:

P (I|b, θ̄) =

1

Z
exp



− 1

2σ2

∑

x∈L

(

I(x) −
M
∑

k=1

bk(x)Φ(x; θk)

)2




(8)

whereZ is a constant. Since the prior onb, whose Gibbsian
energy is given by (7) depends only on the spatial granularity
of the segmentation and not on the model parameters, we have
that P (b|θ̄) = Pb(b), with Pb given by (3). Also, noting that
P (I|θ̄) is just a normalizing constant — since the observations
are given — one gets from (7) and (8), using Bayes rule, the
posterior distribution:

P (b|I, θ̄) =
1

Z
exp

[

−U(b, θ̄)
]

whereZ is a normalizing constant and

U(b, θ̄) =
1

2σ2

∑

x∈L





(

I(x) −
M
∑

k=1

bk(x)Φ(x; θk)

)2

−µ
M
∑

k=1

b2
k(x)

]

+ λ
∑

<x,y>

‖b(x) − b(y)‖2.

(9)

Note that, because of (5),

I(x) −
M
∑

k=1

bk(x)Φ(x; θk) =
M
∑

k=1

bk(x) (I(x) − Φ(x; θk)) .

In the low entropy limit, for eachx, only one of thebk(x)
becomes almost equal to one, and all the others become almost
equal to zero, so that (6) holds and

[

M
∑

k=1

bk(x) (I(x) − Φ(x; θk))

]2

≈

M
∑

k=1

b2
k(x) (I(x) − Φ(x; θk))

2 (10)

so that one may write the posterior energy in the simple form:

U(b, θ) ≈
∑

x∈L

M
∑

k=1

b2
k(x)

[

1

2σ2
(I(x) − Φ(x; θk))

2 − µ

]

+λ
∑

<x,y>

‖b(x) − b(y)‖2. (11)

The Maximum a Posteriori (MAP) estimator forb may
therefore be found by minimization of the quadratic form (11)

subject to the constraints (4) and (5). This is the basis for the
main contribution of this work.

It is possible to remove the Gaussian assumption forn and
obtain a more general expression. Let

vk(x) = P (I(x)|r(x) = k, θk) (12)

Note that in the model we are using, given thatr(x) = k, I(x)
is obtained byI(x) = Φ(x; θk) + n(x), so thatI(x) is not
affected by the probability with whichr(x) = k was selected,
namely,bk(x), and also, ifr(x) = k, I(x) is independent of
θj , for j 6= k. Therefore, one may write:

P (I(x)|r(x) = k, θk) = P (I(x)|r(x) = k, b, θ̄)

Similarly, because the probability with whichr(x) = k is
selected does not depend on̄θ, one has thatP (r(x) =
k|b, θ̄) = P (r(x) = k|b) = bk(x). We may therefore write:

P (I(x)|b, θ̄) =
M
∑

k=1

P (I(x)|r(x) = k, b, θ̄)P (r(x) = k|b, θ̄)

= v(x) · b(x) =

M
∑

k=1

vk(x)bk(x). (13)

Using Bayes rule as before, one obtains the posterior dis-
tribution P (b|I, θ̄) = 1/Zb exp[−U(b, θ̄)], where the energy
U(b, θ̄) is:

U(b, θ̄) = −
∑

x∈L

[

log (v(x) · b(x)) − µ
M
∑

k=1

b2
k(x)

]

+ λ
∑

<x,y>

‖b(x) − b(y)‖2

but in the low entropy limit, since only one of thebk(x)
becomes almost equal to one, and the rest become almost equal
to zero, one may write:

log
(

v(x, θ̄) · b(x)
)

≈
M
∑

k=1

b2
k(x) log vk(x, θk)

so that one finally gets the general expression:

U(b, θ̄) ≈
∑

x∈L

M
∑

k=1

b2
k(x) [− log vk(x) − µ]

+λ
∑

<x,y>

‖b(x) − b(y)‖2 (14)

which in the Gaussian case, noting that the normalizing con-
stantlog(

√
2π)σ may be absorbed inµ, reduces to (11). Note

that even in the general case, (14) is still quadratic inb. For
this reason, we call models (11) and (14) Entropy Controlled
Quadratic Markov Measure Field (ECQMMF) models.

The equality constraints (5) may be easily handled using
Lagrange multipliers: the Lagrangian associated with the ob-
jective functionU is:

L(b, θ̄, γ) = U(b, θ̄) − 2
∑

x∈L

γx

[

M
∑

k=1

bk(x) − 1

]

(15)
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where{γx} are the Lagrange multipliers. Setting the gradient
of (15) with respect tob andγ equal to zero, solving forbk(x)
and substituting in the equality constraint (5) to eliminate the
γ multipliers, one obtains the update equation:

bk(x) =
αk(x)

βk(x)
+

1 −∑M

i=1
αi(x)
βi(x)

∑M

i=1
βk(x)
βi(x)

(16)

where
αk(x) = λ

∑

y∈Nx

bk(y) (17)

and
βk(x) = − log vk(x) − µ + λ♯Nx. (18)

Note thatb(x) computed with (16) does not necessarily satisfy
the non-negativity constraint (4). If this constraint is violated, it
is necessary to projectb(x) back to the feasible region, which
is the M-dimensional simplex defined by the constraints (4)
and (5). A simple way to perform this projection is to make
the negativebk(x) equal to zero (so that (4) is satisfied) and
re-normalize the vectorb(x) so that (5) is satisfied. Note that
other projection schemes are possible, e.g., finding the point in
the simplex that is closest tob(x), but we have found that the
proposed projection is faster and works properly. In order to
guarantee the convergence of this method, one should check
if the energy (12) does not increase at the updatedb(x); if
it increases, it is necessary to find a linear combination of
the old and updatedb(x) where the constraints are satisfied
and the energy does not increase, and replace the updated
b(x) with this point. In our experiments, however, we have
found that this additional checking is unnecessary, since the
method always converges with the simple projection and re-
normalization procedure that enforces the constraints.

B. Model parameter estimation

If the parameters̄θ are not known, one may apply Bayes
rule again to obtainP (b, θ̄|I). With a uniform prior onθ̄, the
posterior energy is still given by (11) and (14), and the optimal
estimators forb and θ̄ may be obtained by minimization of
either one of these functions with respect to both groups of
variables, subject to the constraints (4) and (5). In order to
get estimators that are robust with respect to the initial values,
it is desirable that in this minimization the values of bothb
and θ̄ are incrementally updated; one usually starts with a
coarse estimate for̄θ and bk(x) = 1

M
for all k and x, i.e.,

a completely “fuzzy” segmentation that sharpens gradually,
as the estimates for̄θ become more reliable. In contrast, a
typical 2-step procedure (e.g., [17] based on theα–β swap
graph-cut algorithm [7]) may produce sharp segmentations at
the beginning of the procedure which are based on wrong
estimates for̄θ, which may send the algorithm off-track to a
local minimum from which it cannot recover.

In the Gaussian case, and assuming that the functions
Φ(x; θk) are linear inθk, i.e., are of the form:

Φ(x; θk) =

m
∑

j=1

θkjBj(x) (19)

where{Bj , j = 1, . . . ,m} are some basis functions (which in
general may be non-linear inx), that are chosen depending
on the particular application, this minimization problem is
particularly simple, since (11) is quadratic inb given θ̄ and also
quadratic inθ̄ givenb. In this case, the incremental updates ofb
andθ̄ may be effected very efficiently by a generalized Gauss-
Seidel scheme:b is updated using equation (16) as before. The
θ̄ update is effected by solving the linear system that results
from setting the gradient of (11) with respect tōθ equal to
zero. This system is:

m
∑

i=1

θki

∑

x∈L

b2
k(x)Bi(x)Bj(x) =

∑

x∈L

b2
k(x)Bj(x)I(x) (20)

for k = 1, . . . ,M and j = 1, . . . ,m.
In the special case wheren = 1 and B1(x) = 1 (i.e., the

case of constant models), thēθ update is simply:

θk =

∑

x∈L b2
k(x)I(x)

∑

x∈L b2
k(x)

(21)

for k = 1, . . . ,M (note that in this caseθk is a scalar). In the
general case, however, one cannot give an explicit formula and
the Mn × Mn system (20) must be solved numerically.

This scheme for the minimization of (11) bears some
resemblance with a generalized EM procedure in which the
M step is only partially implemented [36], improving the
likelihood, but not necessarily maximizing it. Theb update,
however, is different from the one that would be obtained from
a classical EM formulation; moreover, if one uses a different
optimization scheme this resemblance will be lost.

C. Hyperparameters selection

An important issue for the successful application of this
method is the determination of appropriate values for the
hyperparameters of the system. In the case of equation (11),
these hyperparameters are: the noise varianceσ; the entropy
control parameterµ and the regularization parameterλ. The
noise varianceσ can usually be obtained from the data, for
instance, as the mode of the empirical distribution of the local
variance, which may be estimated using sliding windows (e.g.,
of 3×3 pixels). For the determination ofµ, one notes that the
numerical stability of the iterative procedure described above
can only be guaranteed if the quadratic functionU is positive
definite. A sufficient condition for this to happen is that the
coefficients ofb2

k(x) in the first term of (11) are non-negative
for all k andx, which happens if

µ ≤ min
k,x

1

2σ2
(I(x) − Φ(x; θk))

2
.

We have found, however, that in practice this condition may
be relaxed, and it is enough if it holds on average, i.e. if

µ ≤ 〈min
k

1

2σ2
(I(x) − Φ(x; θk))

2〉x (22)

where 〈·〉x denotes average over allx. Since under the
Gaussian noise assumption,

〈min
k

(I(x) − Φ(x; θk))
2〉x ≈ E

[

(

I(x) − Φ(x; θr(x))
)2
]

= σ2

(23)
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Fig. 1. Mean Squared Error (MSE) as a function of the noise level.
First acronym indicates the potential used in the data term. Second acronym
indicates the potential used in the regularization term.

the constraint (22) is simplyµ ≤ 0.5. Since one wantsµ to
be as large as possible in order to have an adequate entropy
control, an appropriate choice isµ = 0.5.

Regarding parameterλ, we have found that a value of
λ = 4 gives very good results, regardless of the noise level.
Therefore, for all the experiments reported in the next section,
we use:σ estimated from the data;µ = 0.5 andλ = 4.

III. E XPERIMENTAL RESULTS

In the first set of experiments, we compare the performance
of the ECQMMF method with 3 of the most competitive
published schemes: a 2-step algorithm based on a multi-way
(α–β swap) Graph-Cut method [7], [17]; the MPM-MAP
algorithm of [37] and the Hidden Markov Measure Field
(HMMF) direct method of [16].

In the first case, following [17], the hard segmentation was
computed by alternating minimizations with respect to the
label map, b, with the α–β swap algorithm [7] and with
respect to the parameters,θ̄, by performing a half-quadratic
minimization [47], [48], [49], [50]. In our notation, that
corresponds to the minimization of the cost function

Uh(b, θ) =
∑

x

∑

k

ρ1

(

I(x) − θT
k b(x), γ1

)

+λ
∑

〈x,y〉

ρ2

(

θT
k b(x) − θT

k b(y), γ2

)

(24)

whereρi(·) (with i = 1, 2) are robust potentials, such as [7],
[47], [48]: Ising: ρ(z) = 1 − δ(z); L1: ρ(z) = |z|; truncated
quadratic (TQ):ρ(z) = min{z2, γ} or Leclerc:ρ(z) = 1 −
exp(−γz2), whereγ is a parameter. In Fig. 1 we show the
computed MSE for different combinationsρ1, ρ2. According
to our experiments, using Leclerc’s potential for bothρ1 and
ρ2 is better for non-parametric graph cut based segmentation
than using any of the potentials proposed in [7].

The synthetic test images were generated with the model:

I(x) =
5
∑

k=1

bk(x)θk + n(x) (25)

i.e., with piecewise constant intensity modelsΦ(x; θk) = θk

(a scalar) and withn(x) ∼ N(0, σ2). The task is to estimate
both the segmentation (i.e., the fieldb) and the parameters
{θk, k = 1, . . . , 5}. The actual parameter values (assumed
unknown) were{θk = k, k = 1, . . . , 5}, and the actual images
appear in Fig. 2. We tested the performance of the 4 methods
for noise levelsσ = 0.5+0.15j, j = 0, . . . , 15. In all cases the
initial estimate for the models was obtained by dividing the
dynamic range of the observed image into 4 equal intervals
and setting{θk} equal to the extremes and dividing points.
The hyperparameters for the MPM-MAP, HMMF and GC
methods were determined by sampling the parameter space
near the parameter values recommended in the corresponding
publications; a total of 200 sets of values for each noise level
were explored in each case, and the best set (in terms of Mean
Squared Error (MSE)) was selected for each noise level; for
the ECQMMF method the same value for the hyperparameters,
with σ estimated from the data as explained above, was used in
all cases. Examples of the results of typical runs are shown in
Fig. 2 in Ref. [51] . Average performances, over 10 realizations
for each noise level, are shown in Fig. 2. As one can see,
the performance of direct methods (HMMF and ECQMMF)
is better than that of 2-step approaches based on “hard”
segmentations, such as MPM-MAP and GC. This confirms
the results in [16]. The performance of ECQMMF, however,
is better than that of HMMF. The computational load is also
significantly smaller, as one can see in Fig. 2.

The second set of experiments is meant to illustrate the
performance of the ECQMMF method in a practical, more
complex application, namely, the segmentation of brain MRI
in terms of tissue type (White Matter (WM), Gray Matter
(GM) and Cerebrospinal Fluid (CSF)). This is an important
problem in biomedicine, which has received a lot of attention
[37], [52], [53], [54], [55]. What makes it difficult is that
the intensity of each tissue type is, in general, not constant
across the volume, due to irregularities in the magnetic fields,
spatially varying magnetic properties of the biological tissues,
etc. The methods used to perform this segmentation involve,
in general, several steps, computational processes and model
specifications that influence the results [56], [57], [58], [59];
some of these factors are:

1) The use of spatially varying intensity models for each
tissue type: in many cases a single smooth multiplicative
bias field is assumed to affect equally the mean intensity
of all tissues [1], [60]; other choices are finite element
membrane models [37]; spline functions [16], etc.

2) The use of spatially varying prior probabilities for each
tissue type, taken from statistical studies [37], [61]. This
requires the registration of the specimen to be segmented
with a reference volume (anatomical atlas), and the
registration method used clearly affects the result.

3) Preprocessing of the data: sometimes edge-preserving
filtering (e.g., anisotropic diffusion [62]) is used to
eliminate noise prior to the segmentation; also, some
form of intensity normalization is often applied.

4) The use of separate intensity models for each slice vs
the use of coupled 3-D models.
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5) The use of a 2-D segmentation algorithm for each slice
vs a 3-D segmentation scheme.

Since we are interested in the evaluation of precisely the
image segmentation algorithm, we make the simplest choices
for the other factors; specifically, we use the 2-D ECQMMF
segmentation scheme described above and assume no spatially
varying prior probabilities and no preprocessing. To model
the spatially varying intensity of each tissue on each slice,
we use a 2-D spline-based model with a Gibbsian prior on the
corresponding coefficients. In particular, the intensity of tissue
type k is modeled by (19), where the basis functionsBj(x)
are tensor product quadratic splines:

Bj(x) = T

(

x1 − xj1

δ

)

T

(

x2 − xj2

δ

)

T (x) =











(1.5−2x2)
2 , |x| ∈ [0, 0.5)

(x2−3|x|+2.25)
2 , |x| ∈ [0.5, 1.5)

0, |x| ≥ 1.5

where x = (x1, x2) are the pixel coordinates and{xj =
(xj1, xj2), j = 1, . . . , J} are the coordinates of the nodes of
a coarse grid, whereδ is the node spacing (see Fig. 4). The
coefficients{θkj} are assumed to have a prior Gauss-Markov
distribution:

Pθ(θ̄) =
1

Z
exp



−η
∑

<i,j>

∑

k

(θki − θkj)
2





whereZ is a normalizing constant and the sum is taken over
nearest-neighbor pairs of nodes< i, j > of the coarse grid.
This model produces smoothly varying intensities, with the
degree of smoothness controlled by the parameterη.

Assuming additive, Gaussian observation noise, one gets
the following ECQMMF posterior energy for the segmentation
problem:

U(b, θ̄) =
∑

x∈L

M
∑

k=1

b2
k(x)

[

1

2σ2
(I(x) − Φ(x; θk))

2 − µ

]

+λ
∑

<x,y>

‖b(x) − b(y)‖2 + η
∑

<i,j>

‖θi − θj‖2

(26)

The performance of this simplified segmenter is evaluated
using a set of 20 real brain MRI volumes which can be
obtained from [63], and for which expert hand made segmen-
tations are available. In this data set, each voxel corresponds to
an actual volume of1×1×3mm, where the higher resolution
corresponds to coronal slices. Due to the low resolution (3mm)
in the other dimension, the partial volume effect is significant;
in particular, when considering a coronal slice, there is a
substantial number of voxels whose intensity corresponds to a
mixture of GM and CSF; although there are several strategies
for dealing with this partial volume effect [54], [64], in this
case we simply consider 4 tissue classes: CSF (0); CSF+GM
(1); GM (2) and WM(3). Observing the expert segmentations,
one can see that there are only 3 classes, since classes (1) and
(2) are assigned to GM. Therefore, we performed the same
grouping after the 4-class segmentation.
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Fig. 2. EC-QMMF performance comparison. (a) Average Mean Squared
Error (MSE) for 10 independent realizations of the noise fields for the images
of Fig. 2, as a function of the noise level. (b) Average execution time (in
hundredths of seconds) over 10 images distorted with the firstnoise level
(σ = 0.5), as a function of the number of models. All methods were run
until convergence.

Fig. 3. Control points in the Tensor Product B-splines model.

The results are summarized in Fig. 4 and Table I. To
evaluate the performance of our method with higher resolution
and better quality data, we also tested it with 18 additional
volumes with 1 × 1 × 1.5mm resolution, which are also
available in [63]; the results, presented in Figs. 5 and 7 and
in the second column of table II, indicate a good, consistent
performance in this case as well. In all cases we used the same
parameter values as before:λ = 4, µ = 0.5 and σ estimated
from each slice as explained above. For the parameters related
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Fig. 4. Tanimoto coefficient for the segmentation results on the 201× 1×
3mm thick MRI volumes data set of [63]. Sample volumes in the same order
as in Table II. (a) White matter. (b) Gray Matter (see text).

to the spline model we usedη = 5 andδ = 256/31 (32 × 32
control points). The comparison with the expert (ground truth)
segmentations is done using theTanimoto coefficient(Jaccard
similarity measure), which is defined as:

TC(k) =
Vp∩g(k)

Vp∪g(k)

where Vp∩g(k) denotes the number of voxels classified as
classk by both the proposed method and the expert (taken
in this case as ground truth) andVp∪g(k) denotes the number
of voxels classified as classk by either the proposed method
or the expert. In all cases, the brain parenchyma was pre-
segmented by hand.

A meaningful comparison with other published methods
for this task is not easy to do, since, as we pointed out
above, published approaches include different processes and
model specifications, besides the image segmentation algo-
rithm itself. As a reference, however, we also include in
Fig. 4 and Table I the performances (in the 3 mm slices
data set) of other published schemes taken from [63] and
also with the method of [37] (labeled MPM-MAP). In Fig.
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Fig. 5. Tanimoto coefficient for the segmentation results on the 1.5 mm
thick in the data set of [63]. Sample volumes in the same order as in Table
II. (see text).

6 we show as an example, the segmentation of a “difficult”
volume (i.e., volume ibsr2-4 from [63]), where most published
methods show poor accuracy, mostly due to the high spatial
inhomogeneities that are present in this case. The segmentation
obtained by the method in [37] is also shown as a reference.
As one can see, the performance of ECQMMF, even with the
simplified algorithm used, is highly competitive. This good
performance should be attributed mainly to the superiorityof
the segmentation algorithm itself, which was also shown in the
experiments with synthetic images described above. Another
reason may be related to the fact that the noise variance is
estimated for each individual slice separately, which effectively
adapts the amount of smoothing to the local granularity of the
data.

Our method may be extended to 3-D in a straightforward
way; it is enough to add to the energy (14) the term:

λinter

∑

<x,y>I

‖b(x) − b(y)‖2 (27)

where the sum is taken over all nearest-neighbor pairs of
voxels that belong to different slices andλinter is a positive
parameter that controls the degree of inter-slice coupling. We
performed the segmentations of the 18 1.5 mm thick volumes
from [63] using the 3-D version, hand-adjusting the value of
λinter to 0.1, which gave the best results. The computation
time increased from an average of 3.2 hours per volume in the
2-D version to 4.1 hours per volume (on a 3GHz machine),
and we obtained only a marginal increase (less than 0.5 %
) in the average Tanimoto coefficients, so that it may not be
worthwhile to use this additional complexity. We think that
the reason why one obtains such a small improvement with
the 3-D version is twofold: on one hand the performance of
the 2-D segmenter is already quite good, and it introduces
practically no artifacts, as one can verify from the axial and
sagittal views of the segmented volumes (see Fig. 7 for an
example segmentation). On the other hand, the hand-made
expert segmentations are quite likely also done slice by slice,
so that a good 2-D method should approximate them quite
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Fig. 6. Segmented results for the volume 2-4 from [63] (1×1×3 mm). From
top to bottom: data, expert segmentation, MPM-MAP segmentation and EC-
QMMF segmentation. The columns correspond to coronal, axial and sagittal
views, respectively. Note that the pixels in columns 2 and 3 are rectangular
to reflect the voxel size.

well.

IV. D ISCUSSION ANDCONCLUSIONS

We have presented a general model for parametric seg-
mentation based on a hidden QMMF model with controlled
entropy. This method is closely related to the ones in [37]
and [16], which also use a Markov measure field model with
prior quadratic potentials. The main contribution of this work
derives from a new quadratic term that is included in the prior
energy, which controls the entropy of the discrete distributions
associated with each pixel. This term plays a crucial role,
since it permits the derivation of a data term which, unlike
the one in [16], is quadratic on theb variables given̄θ, and,
in the important case of Gaussian noise, is also quadratic in
θ̄ given b, unlike [37] and [44]. This term also improves the
convergence of the method when̄θ and b are simultaneously
estimated , so that it leads to optimal estimators that are both
accurate and efficient to compute, with hyperparameters that
are easy to tune. This scheme is quite flexible: it allows for
piecewise constant or piecewise smooth solutions, such as
the ones presented in the previous section. Besides, unlike
other methods that produce only “hard” segmentations, the
fact that in our case one has a probability vector associatedto
each pixel, opens the possibility of using optimal estimators
different from the mode, such as the mean or median, which
in certain cases may be preferable. As an example, consider
the edge-preserving image restoration problem illustrated in
Fig. 8. UsingM = 15 piecewise constant intensity models
Φ(x; θk) = θk, where θk now denotes a scalar, one may

Fig. 7. Segmented results for the volume ibsr02 from [63] (1×1×1.5 mm).
From top to bottom: data, expert segmentation and EC-QMMF segmentation.
The columns correspond to coronal, axial and sagittal views,respectively.
Note that the pixels in columns 2 and 3 are rectangular to reflect the voxel
size.

segment the noisy input image of panel (a) and obtain, taking
the mode of each probability vector, the piecewise constant
restoration of panel (b); as one can see, the noise has been
eliminated, but the discretization causes many artifacts.If one
takes the mean or the median (obtained via linear interpolation
of the cumulative distribution) of eachb(x), however, one
obtains the piecewise smooth restorations of panels (c) and
(d), respectively, that have a much better appearance.

In the examples presented so far, we have used a constant
regularization parameter for the complete image. It is also
possible to use the general, spatially varyingβ field that
was introduced in Eq. (7) to introduce a coupling between
different perceptual modalities via a spatially varying field
that modulates the amount of smoothness imposed over the
field b. As an illustration, consider the problem of stereo
disparity estimation, which is one of the most extensively
studied problems in computational vision (see, for instance,
references in [65] and recently [21], [22], [23], [66], [67],
[68]). Consider, without loss of generality, that the optical
axes of the 2 cameras that take the stereo pair are parallel,
so that the epipolar lines are horizontal (otherwise, the images
may be pre-wrapped, so that this condition is fulfilled). The
observation model takes the form:

IR(x) = IL(x + d̄(x)) + n(x) (28)

whereIL, IR are the right and left images,̄d(x) = (d(x), 0)
is the disparity vector associated to pixelx, andn is a zero-
mean, Gaussian, white noise field with varianceσ2. If one
assumesM constant, integer-valued disparity models{θk, k =
1, . . . ,M} that span the total disparity range of the stereo pair,
one may compute the likelihood as:

vk(x) =
1

Z
exp

[

− 1

2σ2

(

IR(x) − IL(x + d̄k(x)
)2
]
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Fig. 8. Edge preserving image restoration using different estimators provided
by EC-QMMF (see text).

Fig. 9. (a) A frame from the Tsukuba sequence. (b) Simple edge detection
(see text). (c) and (d) Computed piecewise constant disparity without and with
edge information, respectively (see text).

whered̄k(x) = (θk, 0) andZ is a normalizing constant.
One may now modify the model (14) by including in

the prior a term that expresses the constraint that disparity
discontinuities often coincide with intensity edges in the
reference image. In particular, if one defines an edge indi-
cator variableexy to be equal to 1 if there is an intensity
edge between pixelsx and y of IR, and equal to zero
otherwise, one may use the general prior energy (7) with
βxy = λ [ǫexy + (1 − ǫ)(1 − exy)], where ǫ is a parameter

(we useǫ = 0.1), so that the presence of an intensity edge
partially decouples the measure fieldb at sitesx and y and
thus, favors the appearance of a disparity discontinuity. As a
result, the termλ

∑

<x,y> ‖b(x) − b(y)‖2 in (14) is replaced
by

λ
∑

<x,y>

‖b(x) − b(y)‖2 [ǫexy + (1 − ǫ)(1 − exy)]

The fielde may be pre-computed in a variety of ways; here we
simply setexy = 1 if there is a zero crossing of the Laplacian
of IR between pixelsx andy and |IR(x) − IR(y)| is greater
than 0.2 times the dynamic range ofIR.

A piecewise constant disparity field may now be estimated
by running the procedure described in section 3. Note that
one is using fixed, integer-valued models in this case, so that
the model update step is omitted. An example of the obtained
results (using the standard “Tsukuba” stereo pair [65], [69],
[70]) is presented in Fig. 9. Panel (c) shows the disparity field
estimated with the constant interaction fieldβxy = λ. As one
can see, there is an apparent over-smoothing of some of the
boundaries between constant disparity regions, due to the fact
that in areas with low texture (i.e., almost constant intensity)
disparity is not well defined, since the likelihood term may
give almost the same value for a whole range of disparities;
hence, the smoothness term of the posterior energy dominates
and produces a partial “spilling” over these areas.

The disparity obtained using the spatially varying interaction
field β is shown in panel (f). As one can see, the inclusion of
this field effectively improves the localization of the disparity
discontinuities; note that this is possible only because ofthe
entropy control term, which makesb(x) and b(y) peaked at
different disparities at opposite sides of a discontinuity. These
results should be taken only as an illustration of the potential
of this approach for solving the stereo disparity computation
problem. A competitive approach should incorporate features
like automatic occlusion detection, use of color information,
more refined models that obtain disparities with sub-pixel
accuracy, etc. What we think we have shown, however, is
that the ECQMMF model presented here may be used as a
flexible and computationally efficient component to develop
sophisticated systems that produce high quality solutionsfor
this and other specific problems.

This paper extends our previous results in [51].
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