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Entropy—Controlled Quadratic Markov Measure
Field Models for Efficient Image Segmentation

Mariano Rivera, Omar Ocegueda, and Jose L. Marroquin

Abstract—We present a new Markov Random Field (MRF) connected) region$R;,i = 1,..., M} such thatL = J, R;
based model for parametric image segmentation. Instead of and I is uniform in some sense over every regi®. In
directly computing a label map, our method computes the narticylar, one may consider the case in which the values of

probability that the observed data at each pixel is generated by a . . .
particular intensity model. Prior information about segmentation the imagel in each region; may be represented as the sum

smoothness and low entropy of the probability distribution maps Of some fixed deterministic functions plus noise. Consiugri

is codified in the form of a MRF with quadratic potentials, so these functions as parametric models whose parameters are
that the optimal estimator is obtained by solving a quadratic constant for each region, one obtains :

cost function with linear constraints. Although for segmentation

purposes the mode of the probability distribution at each pixel is M

naturally used as an optimal estimator, our method permits the I(z) = Z bi(2)®(x; 01) + n(x) 1)

use of other estimators, such as the mean or the median, which b1

may be more appropriate for certain applications. Numerical

experiments and comparisons with other published schemes are wherex denotes a pixel ifl; ®(x; ;) is a function (paramet-

performed, using both synthetic images and real data of brain ric model)® : L — E that depends on the parameter vector

MRI for which expert hand-made segmentations are available. 0, {n(z) : x € L} is a set of independent random variables
Finally, we show that the proposed methodology may be easily _"’ N . . . N
extended to other problems, such as stereo disparity estimation. ?fnd bé l‘; ﬂ;]('jndlcator function of regior, i.e., by.(z) =1

I x k

Index Terms—Markov random fields, Bayesian methods, image M
segmentation, energy minimization, MRI segmentation. Zbk(l') -1 2)
k=1

| INTRODUCTION for all z € L. In what follows, b(z) will denote the vector

I MAGE segmentation is an important task in image analy, (1), ... by, (z)) andb will denote the se{b(z) : = € L}.
sis and image editing tasks. Its importance for low-level T appearance of the imagewill depend on the nature
image processing stems from several facts: boundaries Bethe functions®: for example, if each functio®(z; 6;,) is
tween segmented regions may be highly correlated with pginooth, 7 will be a piecewise smooth image, with discon-
ceptually significant edges or contours; thus, the relevang,yities located at the boundaries between adjacent megio
of segmentation for edge detection, edge-preservingifiler . 2. A particular instance of this case is related to the
and piecewise image reconstruction and restoration. Besidsegmentation of brain Magnetic Resonance Images (MRI)
there are many problems_for WhiC!’l the core of the soluti_qﬁ terms of tissue type; in this case(z;6;) represents the
procedure is a segmentation algorithm; for instance: mm(;ntensity associated with tissue typeand R, represents the
image analysis (including the localization of tumors anfortion of the image classified as tisske(see section 3.2).
other pathologies; measurement of tissue volumes; cOmpUBther important problems that may also be formulated ingthes
aided surgery; anatomical studies, etc.) [1], [2]; forem terms include: edge-preserving smoothing [14], [15], [16]
extraction (image matting) [3], [4]; motion computation],[5 [17]; color-based segmentation [18], [19]; stereo didgari
[6], [7], [8], [9]; interactive image segmentation (frimap estimation [20], [21], [22], [23], motion-based segmeiatat
[3], [10], [11], [12], [13]; pattern recognition systemstce [24], etc.
Therefore any improvement to segmentation methods in theirry;g problem has been approached from different perspec-
computational complexity, reduction in memory requiretsenjyes: if the parameterg6,} are known, the segmentation
or error reduction will have an important impact in manyroplem has been solved using, for instance: the k-means
image processing and computer vision applications. algorithm and its variants [25], [26]; region merging [19];
In its genera} form, image segmentation may be'formulatt?. gion-growing [17], [27] and active contour [28] approash
as follows: an imagd may be regarded as a mapping from @jgendecomposition-based partitions [29], [30], [31]riaa
pixel lattice L to a state spac. A segmentationS of I IS tional methods [5], [32] and probabilistic (Bayesian) farar
a partition of L into a set of non-overlapping (not necessarilyqng [14], [33], [34]. Of these, the Bayesian formulaticare
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parametergd;} are not known, some of these methods maiyitially presented by assuming that the noisejn (1), has
be extended usmg 2-step algorithms, in which one is given arGaussian distribution and the intensity models’ pararagte

initial estlmate{9 } and then one iterates the steps: 0, are given; then the generalization to other noise distribu
1) EstimateS given 6, tions and the problem of parameter estimation is presented.
2) Estimated given S; Throughout this section we will use the following notation:
where  denotes the collection of all parameter vectérs 7(z) will denote the region to which pixet belongs, i.e.,
until convergence [17], [35], [36], [37], [38] . r(z) = k iff € Ry; §(-) will denote the Kronecker delta
One particularly important class of these 2-step methodsfigiction; 6 will denote the collection of all the parameter
derived from the Expectation Maximization (EM) algorithmyectors{fy,k =1,..., M} that correspond to each parametric

which was originally proposed for computing maximum likemodel & (z; 0y); Nx will denote the first order neighborhood
lihood estimators from incomplete data [35]. This approadH pixel z, i.e., N(z) = {y € L: |ly —z[| = 1} and{N, will
has also been used for computing estimators with respectdgnote its cardinality.

posterior distributions for segmentation tasks (clasHifi)

in image analysis and computer vision problems where th¢ The Entropy Controlled Quadratic Markov Measure Field
class model parameters are unknown [14], [33]. Howeveny primodel

probability distributions based on MRF models introduaghhi . '
correlation among the variables (labels in the segmemtatiq Assuming at first that the parametef} are known, the

task) that increments the computational complexity of tivk Egﬁzl r:]satou:t?gtae EZ?arf]Ie;ﬂ (rjsggﬁ darllrd (ri)b og ;:'SMeRr::d’
algorithm [1], [2], [39], [40], [41], [42] . For this reasotip- y Y bp

stead of Monte-Carlo Markov Chain methods, approximat|0r(1j§,)S tt:;jtlr:)rrl]or constraints may be introduced as a prior Gibbs
such as mean field theory [43] or Gauss Markov Measure

Fields [44]) have been used for computing the marginal Z

probabilities in the Expectation (E) step with relative cegs. whereZb is a constant and, is an “energy” function, which

The problem with these approaches is their high compu
tational complexity, and their high sensitivity with respeo we would like to be differentiable with respectioTo achieve

. . . this, one may relax the constraint (2), and replace it by:
noise and to the choice ({W,E,O)}. The reason for this is that y int (2), P toy:

Py(b) = — exp[-Uy(b) ©)

these 2-step approaches can be guaranteed to converge only bp(z) >0,k=1,...,M ,z €L 4)
to a local maximum of the posterior distribution [35]; sirine
most cases this distribution has multiple maxima, if onetsta Zbk(w) 1. zel (5)

the iterations from a “bad” poin{t@,&o)}, the local maximum to

which the method converges may not be the global maximum,

i.e., one may get suboptimal solutions [16]. br(z) #o(k —r(2)  k=1,.... M ze L. (§)
One may get more robust methods if one formulates thgso one would likeb to be spatially smooth almost every-

problem in such a way thaf andd are progressively refined ywhere, to control the granularity of the regions, i.e., toidv

at the same time, e.g., by the iterative minimization of ge proliferation of very small regions assigned to a pakic

dlfferent|able function that depends 6rand on the probab|llty model, WhICh may occur due to noise |n the data AII these

the segmentatior$). These direct methods such as the one

in [16], do exhibit a better performance than that of 2-step 2 2
approaches; their computational complexity, howevertils s Uy (b Z Bryllb(z) = by)I" — “Z Zbk(w)
relatively high, since the solution involves the miniminatof sy veb k=1
a highly non-linear function, and the hyperparameters ef tdhe first term embodies the smoothness constraint: the sum
corresponding algorithms are in general not easy to tune. is taken over all nearest-neighbor pairs of sies,y >, and
The purpose of this work is to present a direct methothe interaction field? controls the granularity of the resulting
which is rigorously based on a Bayesian framework, whidiggions; in what follows we assume for simplicity a constant
is computationally efficient — since the solution is found bynteraction3,, = A, where X is a positive hyperparameter
minimization of a quadratic function with linear constrisin— (S€e however section 1V). The second term, together with the
and whose hyperparameters are easy to tune. The derivatiof@nstraints (4) and (5), enforces constraint (6) as expthin
the method and its implementation are presented in SectiorPglow; one may say thak is a Markov Random Measure
in Section 3 the experimental performance of this approachfield (MRMF) —since constraints (4) and (5) imply that each
compared with other published schemes, using both synthédtiz) is a discrete probability measure, whéjgx) represents
images and real MRI volumes where expert segmentations Hte probability thatr(z) = k, i.e., we are assuming that
available. Finally, in Section 4, some properties and esiters  givenb, each labet(z) is obtained as an independent sample

of the method are discussed and some conclusions are draff@n b(z), so thatP(r(z) = k|b) = bx(z). The entropy of
each one of these discrete distributions is equal to mines th

Il. THEORETICAL DERIVATION AND IMPLEMENTATION expected value ofn b (z), taken with respect to the same
This section presents the mathematical derivation of tligstribution, i.e.,— ", bx(x)Inbs(x). To obtain a quadratic
proposed probabilistic segmentation method. The methodféem, one may take instead the expected valué¢f) itself,
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to get— ), b7 (). This quantity (plus an additive constant) issubject to the constraints (4) and (5). This is the basisHer t
known in the machine learning community as the Gini indemain contribution of this work.

[45], and it is known to closely resemble the behavior of the It is possible to remove the Gaussian assumptiomfand
entropy [46]: it is minimal when the distribution becomes abtain a more general expression. Let

delta function, and it is maximal for a uniform distribution

Thus, for positive values ofi, (7) constrains each(x) to vk(z) = P(I(2)|r(z) = k,br) (12)
have low entropy, i.e., to approach a de_lta function. Note that in the model we are using, given that) = k, I(z)

_ If one assumes that the random varlab{eﬁ{a:),x € L}_ is obtained byl(z) = ®(x;6;) + n(z), so thatl(z) is not
in (1) are independent, zero-mean Gaussian random vasiali§ected by the probability with which(z) = k was selected,
with varianceo?, the likelihood of the observed imageis namely, b, (z), and also, ifr(z) = k, I(z) is independent of
obtained from (1) as: 0;, for j # k. Therefore, one may write:

P o = : PU@)r(@) = k) = PU@)r(2) = k.b.0)
lexp {_ 1 <I(:c) _ Z%(I)‘N%%)) ] Similarly, because the probability with which(z) = & is
g k=1

Z 2l selected does not depend @h one has thatP(r(z) =
(8) klb,0) = P(r(z) = k[b) = bi(x). We may therefore write:

where Z is a constant. Since the prior @nwhose Gibbsian P(I(x)[b,0) =

energy is given by (7) depends only on the spatial granylarit M ~ ~
of the segmentation and not on the model parameters, we have > P(I(x)|r(x) = k,b,0)P(r(z) = kb, 0)
that P(b|0) = Py(b), with P, given by (3). Also, noting that k=1

P(I|0) is just a normalizing constant — since the observations M
are given — one gets from (7) and (8), using Bayes rule, the =v(z)-b(z) = > vk(x)by(z). (13)
posterior distribution: k=1

_ 1 _ Using Bayes rule as before, one obtains the posterior dis-
P(b|,6) = — exp [~U(b,0)] tribution P(b|1,0) = 1/Z, exp[-U(b,0)], where the energy
where Z is a normalizing constant and U(b.0) is:
M 2 _ M
H - L _ . Ub.0)= — Y |log(v(z)-b(x)) —p)_bi(z)
up.o) = 5 ; [(1(35) ;bk(x)Cb(m,Hk)) Z 2
M + A Y b)) = b))
B @)| A Y b)) — b))
k=1 <zy> but in the low entropy limit, since only one of thig,(x)
(9)  becomes almost equal to one, and the rest become almost equal
Note that, because of (5), to zero, one may write:
M M _ M
I(@) =Y be(2)®(x;0,) = > bi(x) (I(z) — D(x;01)). log (v(x,6) - b(x)) = Y by () log vk (, 61)
k=1 k=1 k=1

In the low entropy limit, for eachr, only one of theb,(x) so that one finally gets the general expression:
becomes almost equal to one, and all the others become almost

M
equal to zero, so that (6) holds and Ub,0) =~ Z Zbi(ﬂf) [~ log vk (z) — 4]
M 2 z€L k=1
[Z be(x) (I(x) — <1>(x;9k))] ~ +A D llb(z) - b(y)|)? (14)
k=1 <z,y>
M
sz (z) (I(z) — <I>(:c'9k))2 (10) which in the Gaussian case, noting that the normalizing con-
" ’ stantlog(v/27)o may be absorbed ip, reduces to (11). Note

that even in the general case, (14) is still quadratié.ifror

so that one may write the posterior energy in the simple forrﬁ!iis reason, we call models (1) and (14) Entropy Controlled

M 9 1 9 Quadratic Markov Measure Field (ECQMMF) models.
U9 ~ Z Zbk(m) {%2 (I(x) = ®(2;64))" — The equality constraints (5) may be easily handled using
vel k=1 Lagrange multipliers: the Lagrangian associated with the o
A > (b(x) = b(y)]1*. (11) jective functionU is:

<z,y>

M
The Maximum a Posteriori (MAP) estimator fdr may L(b,8,~) =U(b,0) — 2 Z Ve [Z by, () — 1] (15)

therefore be found by minimization of the quadratic form)(11 el =1
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where{~,} are the Lagrange multipliers. Setting the gradiemthere{B;,j = 1,...,m} are some basis functions (which in
of (15) with respect td and~ equal to zero, solving fdbi,(z) general may be non-linear im), that are chosen depending
and substituting in the equality constraint (5) to elime#te on the particular application, this minimization probles i

~ multipliers, one obtains the update equation: particularly simple, since (11) is quadratictigivend and also
) M o(a) quadratic i givenb. In this case, the incremental update$ of

bi(z) = ag(x) " — i1 Bi(z) (16) andd may be effected very efficiently by a generalized Gauss-
Br(x) 2?11 ‘;kf;”)) Seidel schemei is updated using equation (16) as before. The
‘ 0 update is effected by solving the linear system that results

where from setting the gradient of (11) with respect doequal to

ap(z) =X D be(y) (17)  zero. This system is:
YEN, m
and S 0k > bR (@) Bi(x) Bj(x) = > b3 (2) Bj(x)I(x) (20)
Br(z) = —logvg(z) — p + MN,. (18) =1 zel zel

. ) Cfork=1,...,.Mandj=1,...,m.
Note thath(x) computed with (16) does not necessarily satisfy | the special case where = 1 and B;(z) = 1 (i.e., the

the non-negativity constraint (4). If this constraint istaited, it 55 of constant models), tAeupdate is simply:
is necessary to projeétx) back to the feasible region, which

is the M-dimensional simplex defined by the constraints (4) 0, — >eer bi(@)(x) 1)
and (5). A simple way to perform this projection is to make D wer b (@)
the negativeb,. () equal to zero (so that (4) is satisfied) angor 1, — 1,... M (note that in this casé, is a scalar). In the

re-normalize the vectads(z) so that (5) is satisfied. Note thatgeneral case, however, one cannot give an explicit formmuda a
other projection schemes are possible, e.g., finding the poi he Arrn x Mn system (20) must be solved numerically.

the simplex that is closest fgz), but we have found that the  Thjs scheme for the minimization of (11) bears some
proposed projection is faster and works properly. In or@er tesemplance with a generalized EM procedure in which the
guarantee the convergence qf this method, one shoulq Ch&fkstep is only partially implemented [36], improving the
if the energy (12) does not increase at the updadied; if jikelihood, but not necessarily maximizing it. THeupdate,

it increases, it is necessary to find a linear combination gbwever, is different from the one that would be obtainedrfro
the old and updated(x) where the constraints are satisfieq) c|assical EM formulation; moreover, if one uses a differen

and the energy does not increase, and replace the updgjggimization scheme this resemblance will be lost.

b(x) with this point. In our experiments, however, we have

found that this additional checking is unnecessary, sihee t .
; . ) C. Hyperparameters selection

method always converges with the simple projection and ré-

normalization procedure that enforces the constraints. An important issue for the successful application of this
method is the determination of appropriate values for the

o hyperparameters of the system. In the case of equation (11),

B. Model parameter estimation these hyperparameters are: the noise variandde entropy

If the parameter® are not known, one may apply Bayesontrol parametep and the regularization parameter The
rule again to obtainP(b, A|I). With a uniform prior ond, the noise variancer can usually be obtained from the data, for
posterior energy is still given by (11) and (14), and thempti instance, as the mode of the empirical distribution of trealo
estimators forb and § may be obtained by minimization of variance, which may be estimated using sliding windows.(e.g
either one of these functions with respect to both groups of 3 x 3 pixels). For the determination ¢f, one notes that the
variables, subject to the constraints (4) and (5). In order numerical stability of the iterative procedure describbdve
get estimators that are robust with respect to the initiales can only be guaranteed if the quadratic functidrs positive
it is desirable that in this minimization the values of bath definite. A sufficient condition for this to happen is that the
and # are incrementally updated; one usually starts with epefficients oft? (z) in the first term of (11) are non-negative
coarse estimate fof and bx(z) = 4 for all k and z, i.e., for all k andz, which happens if
a completely “fuzzy” segmentation that sharpens gradually 1 )
as the estimates fof become more reliable. In contrast, a [T Igglﬁ (I(z) — @(2:0k))" .
typical 2-step procedure (e.g., [17] based on the5 swap . . . .
graph-cut algorithm [7]) may produce sharp segmentatidmsvé(e have found, .h(_)wever, tha}t in practice this cond|_t|on_ may
the beginning of the procedure which are based on wroHS relaxed, and it is enough if it holds on average, i.e. if

estimates fod, which may send the algorithm off-track to a 1 2
) ' Y < — (I(z) — ®(x;0,)) )2 22
local minimum from which it cannot recover. o= <m1§ 202 (I(z) (2368))") (22)
In the Gaussian case, and assuming that the functiGigere (-), denotes average over aif. Since under the
(I)(I,ek) are linear inGk, i.e., are of the form: Gaussian noise assumption,

Basb) = 3 00y (2) (ag) min (1) = 2(w;00))) = B (1) = 0(w:0)))°| = o?
(29)
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—— o0 i.e., with piecewise constant intensity moddiéz; 0;.) = 6
ossf g%izﬁm ] (a scalar) and witt(z) ~ N(0,02). The task is to estimate
oal | both the segmentation (i.e., the fiell and the parameters
{0,k = 1,...,5}. The actual parameter values (assumed
unknown) were{6,, = k,k =1,...,5}, and the actual images

oaf 1 appear in Fig. 2. We tested the performance of the 4 methods
for noise levelss = 0.54-0.155,57 = 0,...,15. In all cases the
initial estimate for the models was obtained by dividing the
dynamic range of the observed image into 4 equal intervals
015l 4 and setting{6;} equal to the extremes and dividing points.
The hyperparameters for the MPM-MAP, HMMF and GC

methods were determined by sampling the parameter space

%025
Qo.

0.1p =

008 7 near the parameter values recommended in the corresponding
%ﬁs - - ! publications; a total of 200 sets of values for each noisellev
Noise level were explored in each case, and the best set (in terms of Mean

Fig. 1. Mean Squared Error (MSE) as a function of the noisellev SQuared Error (MSE)) was selected for each noise level; for

First acronym indicates the potential used in the data teeno®d acronym the ECQMMF method the same value for the hyperparameters,

indicates the potential used in the regularization term. with o estimated from the data as explained above, was used in
all cases. Examples of the results of typical runs are shawn i

. L , Fig. 2 in Ref. [51] . Average performances, over 10 real@ai
the constraint (22) IS S'”.‘p'w < 0.5. Since one want to fo? each nois[e I]evel arg s%own in Fig. 2. As one can see
be as large as pos_S|bIe n .ord_er to have an adequate entrgpe}/ performance of (’jirect methods (HMMF and ECQMMF) ’
cogtéo;rzinnapp;(:grr:]aetti; hs\'lzer’tz jeogun d that a value Ofis better than that of 2-step approaches based on “hard”
garding p ' . slegmentations, such as MPM-MAP and GC. This confirms
A =4 gives very good results, regardless of the noise Iev?He results in [16]. The performance of ECQMMF, however

Therefqre, fo_r all the experiments reported in the nextisact is better than that of HMMF. The computational load is also
we use:os estimated from the data; = 0.5 and A = 4.

significantly smaller, as one can see in Fig. 2.

1. EXPERIMENTAL RESULTS The second set of experiments is meant to illustrate the
egrformance of the ECQMMF method in a practical, more

In the first set of experiments, we compare the performancom lex application, namely, the segmentation of brain MRI
of the ECQMMF method with 3 of the most competitivem teems oFf)ptissue t’ e (W)aite Mat?er (WM), Gray Matter
published schemes: a 2-step algorithm based on a multi-w, yp ' y

i (‘a/M) and Cerebrospinal Fluid (CSF)). This is an important
(a—ﬂ-swap) Graph-Cut meth.od [71, [17]; the MPM'MAP roblem in biomedicine, which has received a lot of attentio
algorithm of [37] and the Hidden Markov Measure Fiel o e .
. 37], [52], [53], [54], [55]. What makes it difficult is that
(HMMF) direct method of [16]. the intensity of each tissue type is, in general, not constan
In the first case, following [17], the hard segmentation was y ype is, in g '

) A ; across the volume, due to irregularities in the magnetidsiel
computed by alternating minimizations with respect to the ’ g gnetidsj

label map, b, with the a—3 swap algorithm [7] and with Spatially varying magnetic properties of the biologicakties,

respect to the parametedd, by performing a half-quadratic gtc. The methods used to perform this segmentation involve,

Sne ; in general, several steps, computational processes andlmod
minimization [47], [48], [49], [50]. In our notation, that e .
corresponds to the minimization of the cost function specifications that influence the results [56], [57], [S&R

some of these factors are:
Un(b,0) = I(x) — 0Fb(x), . . .
n(0,6) %:zk:m ( (@) = b b(z) %) 1) The use of spatially varying intensity models for each

tissue type: in many cases a single smooth multiplicative

+A Z P2 (eka(x) B G{b(y),yg) (24) bias field is assumed to affect equally the mean intensity
(@y) of all tissues [1], [60]; other choices are finite element

wherep; () (with ¢ = 1,2) are robust potentials, such as [7], membrane models [37]; spline functions [16], etc.
[47], [48]: Ising: p(z) = 1 — &(2); L1: p(z) = |z|; truncated ~ 2) The use of spatially varying prior probabilities for each
quadratic (TQ):p(z) = min{z2,~} or Leclerc:p(z) = 1 — tissue type, taken from statistical studies [37], [61].SThi
exp(—~z?), where~ is a parameter. In Fig. 1 we show the requires the registration of the specimen to be segmented
computed MSE for different combinations, p2. According with a reference volume (anatomical atlas), and the
to our experiments, using Leclerc’s potential for bathand registration method used clearly affects the result.
p2 is better for non-parametric graph cut based segmentatior8) Preprocessing of the data: sometimes edge-preserving
than using any of the potentials proposed in [7]. filtering (e.g., anisotropic diffusion [62]) is used to

The synthetic test images were generated with the model:  eliminate noise prior to the segmentation; also, some
5 form of intensity normalization is often applied.
I(z) = Zbk(x)Hk + n(z) (25) 4) The use of separate intensity models for each slice vs
= the use of coupled 3-D models.
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5) The use of a 2-D segmentation algorithm for each slice 14 ‘
vs a 3-D segmentation scheme.
Since we are interested in the evaluation of precisely the i
image segmentation algorithm, we make the simplest choices
for the other factors; specifically, we use the 2-D ECQMMF
segmentation scheme described above and assume no gpatiall
varying prior probabilities and no preprocessing. To model &
the spatially varying intensity of each tissue on each slice .l
we use a 2-D spline-based model with a Gibbsian prior on the

corresponding coefficients. In particular, the intensityissue 04l 1
type k is modeled by (19), where the basis functiaBg(x)
are tensor product quadratic splines: ozf .
Bj(x) =T (”"1 5“’71) T (”32 5”312) % 4 E 2 ,
(a)
15-22%) |z| € [0,0.5)

2
T(a)={ GE=3214225) 10 ¢ [0.5,1.5)
O, ‘$| Z 1.5 1800 | —+ EC-QMMF

where z = (z1,x2) are the pixel coordinates anflr, =

(xj1,242),7 = 1,...,J} are the coordinates of the nodes of
a coarse grid, where is the node spacing (see Fig. 4). The 12001
coefficients{6;; } are assumed to have a prior Gauss-Markov ¢, |
distribution: i

_ 1 600
Py(0) = Eexp —n Z Z(eki - ekj)z

<i,j> k 400

where Z is a normalizing constant and the sum is taken over  *|
nearest-neighbor pairs of nodess,j > of the coarse grid. =
This model produces smoothly varying intensities, with the ””(mr;;”""e‘s
degree of smoothness controlled by the parameter

Assuming additive, Gaussian observation noise, one gets , EC-QMMF performance comparison. (a) Average Mean Gmlia

the following ECQMMF posterior energy for the segmentatiogrror (MSE) for 10 independent realizations of the noiselfidbr the images

problem; of Fig. 2, as a function of the no_ise Ievel._(b) Avera_ge exier,y_time (in
hundredths of seconds) over 10 images distorted with the rfoite level
(o = 0.5), as a function of the number of models. All methods were run

B M ]
Up,0) = Z Z bi () [W (I(z) — ®(x;6;))° — 4 until convergence.

zel k=1
AN Y b)) = b I1P Y 16— 650
<z, y> <i,j>
(26) 2o

The performance of this simplified segmenter is evaluated
using a set of 20 real brain MRI volumes which can be
obtained from [63], and for which expert hand made segmen- Vi
tations are available. In this data set, each voxel corredpto ‘
an actual volume of x 1 x 3mm, where the higher resolutionFig. 3. Control points in the Tensor Product B-splines model.
corresponds to coronal slices. Due to the low resolutiom3m
in the other dimension, the partial volume effect is sigaifit;
in particular, when considering a coronal slice, there is aThe results are summarized in Fig. 4 and Table I. To
substantial number of voxels whose intensity corresponds tevaluate the performance of our method with higher resmiuti
mixture of GM and CSF; although there are several strategmsd better quality data, we also tested it with 18 additional
for dealing with this partial volume effect [54], [64], inith volumes with1 x 1 x 1.5mm resolution, which are also
case we simply consider 4 tissue classes: CSF (0); CSF+@Mailable in [63]; the results, presented in Figs. 5 and 7 and
(1); GM (2) and WM(3). Observing the expert segmentations) the second column of table Il, indicate a good, consistent
one can see that there are only 3 classes, since classesl(1)panformance in this case as well. In all cases we used the same
(2) are assigned to GM. Therefore, we performed the samparameter values as before:= 4, x = 0.5 and o estimated
grouping after the 4-class segmentation. from each slice as explained above. For the parametergdelat

oy
~a
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Fig. 5. Tanimoto coefficient for the segmentation results an 1tb mm
1 : : : : : : : : : thick in the data set of [63]. Sample volumes in the same orden dable
II. (see text).

6 we show as an example, the segmentation of a “difficult”

volume (i.e., volume ibsr2-4 from [63]), where most pubdigh

methods show poor accuracy, mostly due to the high spatial

inhomogeneities that are present in this case. The segtioenta

obtained by the method in [37] is also shown as a reference.

As one can see, the performance of ECQMMF, even with the

simplified algorithm used, is highly competitive. This good

performance should be attributed mainly to the superiarfty

the segmentation algorithm itself, which was also showién t

. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ experiments with synthetic images described above. Anothe
Sample reason may be related to the fact that the noise variance is
® estimated for each individual slice separately, whichatiely

) ) o ) adapts the amount of smoothing to the local granularity ef th

Fig. 4. Tanimoto coefficient for the segmentation results @201 x 1 x data.

3mm thick MRI volumes data set of [63]. Sample volumes in the samerord . .

as in Table II. (a) White matter. (b) Gray Matter (see text). Our method may be extended to 3-D in a straightforward

way; it is enough to add to the energy (14) the term:

Tanimoto Index (White Matter)

— GC
—# EC-QMMF

to the spline model we usegd= 5 andd = 256/31 (32 x 32 Ainter Y [Ib(x) = b(y)||? (27)
control points). The comparison with the expert (groundhiru <zy>1
segmentations is done using thenimoto coefficienfJaccard where the sum is taken over all nearest-neighbor pairs of
similarity measure), which is defined as: voxels that belong to different slices ang,., is a positive
Vg (k) parameter that controls the degree of inter-slice cpupr
TC(k) = Vooo(h) performed the segmentations of the 18 1.5 mm thick volumes
pruUg

from [63] using the 3-D version, hand-adjusting the value of

where V,n4(k) denotes the number of voxels classified a%;,;.. to 0.1, which gave the best results. The computation
classk by both the proposed method and the expert (takéime increased from an average of 3.2 hours per volume in the
in this case as ground truth) afd,, (k) denotes the number 2-D version to 4.1 hours per volume (on a 3GHz machine),
of voxels classified as clagsby either the proposed methodand we obtained only a marginal increase (less than 0.5 %
or the expert. In all cases, the brain parenchyma was pjen the average Tanimoto coefficients, so that it may not be
segmented by hand. worthwhile to use this additional complexity. We think that

A meaningful comparison with other published method$ie reason why one obtains such a small improvement with
for this task is not easy to do, since, as we pointed otite 3-D version is twofold: on one hand the performance of
above, published approaches include different processaés the 2-D segmenter is already quite good, and it introduces
model specifications, besides the image segmentation algeactically no artifacts, as one can verify from the axiatlan
rithm itself. As a reference, however, we also include igagittal views of the segmented volumes (see Fig. 7 for an
Fig. 4 and Table | the performances (in the 3 mm slicesxample segmentation). On the other hand, the hand-made
data set) of other published schemes taken from [63] ap®pert segmentations are quite likely also done slice log sli
also with the method of [37] (labeled MPM-MAP). In Fig.so that a good 2-D method should approximate them quite
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Fig. 7. Segmented results for the volume ibsr02 from [@3} (. x 1.5 mm).
From top to bottom: data, expert segmentation and EC-QMMF sefgtien.
The columns correspond to coronal, axial and sagittal vieespectively.
Note that the pixels in columns 2 and 3 are rectangular to tefftecvoxel
size.

Fig. 6. Segmented results for the volume 2-4 from [G3% (Ll x 3 mm). From

IO&K;'JFbottomi dtZi%neprr?g scﬁﬂmﬁ?iﬂ?rl’s“’m?ﬁiéﬁ%ﬁ"ﬂg ?ni-l segment the noisy input image of panel (a) and obtain, taking

\%ews, rZi%?(iir\]/ely. Note that the pixels inpcolumns 2 and’esractan%ular the mo‘?'e of each probability vector, the pleceW|_se constant

to reflect the voxel size. restoration of panel (b); as one can see, the noise has been
eliminated, but the discretization causes many artifdttme
takes the mean or the median (obtained via linear interipolat

well. of the cumulative distribution) of each(z), however, one
obtains the piecewise smooth restorations of panels (c) and

IV. DiscussiON ANDCONCLUSIONS (d), respectively, that have a much better appearance.

We have presented a general model for parametric segln the examples presented so far, we have used a constant
mentation based on a hidden QMMF model with controlleggularization parameter for the complete image. It is also
entropy. This method is closely related to the ones in [3PPSsible to use the general, spatially varyifgfield that
and [16], which also use a Markov measure field model witfas introduced in Eq. (7) to introduce a coupling between
prior quadratic potentials. The main contribution of thierky different perceptual modalities via a spatially varyingldie
derives from a new quadratic term that is included in therprighat modulates the amount of smoothness imposed over the
energy, which controls the entropy of the discrete distiims field b. As an illustration, consider the problem of stereo
associated with each pixel. This term plays a crucial roldisparity estimation, which is one of the most extensively
since it permits the derivation of a data term which, unlikétudied problems in computational vision (see, for inséanc
the one in [16], is quadratic on thevariables giverd, and, references in [65] and recently [21], [22], [23], [66], [67]
in the important case of Gaussian noise, is also quadratic[@®])- Consider, without loss of generality, that the optic
6 given b, unlike [37] and [44]. This term also improves theAxes of the 2 cameras that take the stereo pair are parallel,
convergence of the method whénand b are simultaneously SO that the epipolar lines are horizontal (otherwise, theges
estimated , so that it leads to optimal estimators that ate béhay be pre-wrapped, so that this condition is fulfilled). The
accurate and efficient to compute, with hyperparameterts tig@servation model takes the form:
are easy to tune. This scheme is quite flexible: it allows for -
piecewise constant or piecewise smooth solutions, such as Ir(z) = Ip(z + d(z)) + n(z) (28)

the ones presented in the previous section. Besides, “n%ﬁereIL I are the right and left imaged(z) = (d(z),0)
other methods that produce only “hard” X ’ i

: rd” segmentations, fi€y,q gisparity vector associated to pixelandn is a zero-
fact that in our case one has a probability vector assoctateq,nean Gaussian. white noise field with varianez If one

each pixel, opens the possibility of using optimal estim@to, oo mes/ constant, integer-valued disparity modéfs, k —

different from the mode, such as the mean or median, whi¢h 3 1 that span the total disparity range of the stereo pair,
in certain cases may be preferable. As an example, cons@gg may compute the likelihood as:

the edge-preserving image restoration problem illustrane

Fig. 8. Using M = 15 piecewise constant intensity models 1

= —exp 1 (IR(CU) —Ip(z+ d_k(x))

2
®(z;6,) = 0, whered, now denotes a scalar, one may vk() Z 202
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(¢) Mean (d) Median

Fig. 8. Edge preserving image restoration using differetitnagors provided
by EC-QMMF (see text).

(a)

©

Fig. 9. (a) A frame from the Tsukuba sequence. (b) Simple edgeciien
(see text). (c) and (d) Computed piecewise constant digpaitivout and with
edge information, respectively (see text).

wheredy (r) = (6%,0) and Z is a normalizing constant.

(we usee = 0.1), so that the presence of an intensity edge
partially decouples the measure fididat sitesz andy and
thus, favors the appearance of a disparity discontinuity.aA
result, the term\>-_ - [Ib(z) — b(y)||? in (14) is replaced
by

A7 k() = b1 [eeay + (1 — €)(1 = exy)]
<z,y>
The fielde may be pre-computed in a variety of ways; here we
simply sete,,, = 1 if there is a zero crossing of the Laplacian
of Ir between pixelst andy and|Ir(x) — Ir(y)| is greater
than 0.2 times the dynamic range bf.

A piecewise constant disparity field may now be estimated
by running the procedure described in section 3. Note that
one is using fixed, integer-valued models in this case, sb tha
the model update step is omitted. An example of the obtained
results (using the standard “Tsukuba” stereo pair [65]],[69
[70]) is presented in Fig. 9. Panel (c) shows the disparitg fie
estimated with the constant interaction figlgd, = A. As one
can see, there is an apparent over-smoothing of some of the
boundaries between constant disparity regions, due tcettte f
that in areas with low texture (i.e., almost constant initghs
disparity is not well defined, since the likelihood term may
give almost the same value for a whole range of disparities;
hence, the smoothness term of the posterior energy dominate
and produces a partial “spilling” over these areas.

The disparity obtained using the spatially varying intéac
field 8 is shown in panel (f). As one can see, the inclusion of
this field effectively improves the localization of the disjty
discontinuities; note that this is possible only becausghef
entropy control term, which makdgz) and b(y) peaked at
different disparities at opposite sides of a discontinuliyese
results should be taken only as an illustration of the pdaent
of this approach for solving the stereo disparity compatati
problem. A competitive approach should incorporate festur
like automatic occlusion detection, use of color inforroati
more refined models that obtain disparities with sub-pixel
accuracy, etc. What we think we have shown, however, is
that the ECQMMF model presented here may be used as a
flexible and computationally efficient component to develop
sophisticated systems that produce high quality solutfons
this and other specific problems.

This paper extends our previous results in [51].
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