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Abstract

In the last decade, several authors have proposed edge preserving regularization (EPR) methods for

solving ill posed problems in early vision. These techniques are based on potentials derived from robust

M–Estimators. They are capable of detecting outliers in the data, finding the significant borders in noisy

images and performing edge–preserving restorations. These methods, however, have some problems: they

are computationally expensive, and often produce solutions which are either too smooth or too granular

(with borders around small regions). In this paper we present a new class of potentials that permits

to separate robustness and granularity control, producing better results than the classical ones in both

scalar and vector-valued images. We also present a new fast, memory-limited minimization algorithm.

Keywords. Half–Quadratic Regularization, Edge–Preserving Regularization, Image Restoration, Non-

linear Filtering, Conjugated Gradient Algorithms.

1 INTRODUCTION

In the fields of image processing, image analysis and computer vision, one deals with the problem of re-

constructing an image f̂ from noisy and degraded observations g. Consider the following model of the

observations:

g = F
(
f̂
)

+ η, (1)

where η is additive noise and F is a linear operator that is assumed to be known. For example in optical

blurring, F corresponds to the convolution with the Point Spread Function (PSF) of the imaging system.
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In other cases, F can be a linear approximation of a non-linear transformation (e.g. in the computation of

optical flow).

The information provided by the data and the direct model (1) is, in general, not enough for an accurate

estimation of f̂ , so that the regularization of the problem is necessary. That means that, a priori information

or assumptions about the structure of f̂ need to be introduced in the reconstruction process. The regularized

solution f∗ is computed by minimizing an energy functional U :

f∗ = arg min
f

U(f) (2)

where

U(f) = D(f) + λR(f). (3)

The data term D establishes that the reconstruction f should be consistent with the data g. The regu-

larization term R imposes a penalty for violating the a priori assumptions, and the relative contribution of

each term to the global energy is weighted by the parameter λ. The Data term can been written as

D(f) =
∑

r

ρD (tr (f))

where t is the residual error defined by

tr (f) = F (f)r − gr,

where r = (x, y) represents a site in the pixel lattice L, and ρD is a potential function that defines the error

norm; the subindex denotes that this potential is associated with the data term. In the framework of Bayesian

regularization [1], D is chosen as the negative log–likelihood and the prior constraints are incorporated in

the form of a priori (Markov Random Filed) model for f , so that R(f) takes the form of a sum, over the

cliques of a given neighborhood system, of a set of “potential functions” supported on those cliques. One

may take for instance as the neighborhood N of a pixel r its 8 closest neighbors:

Nr = {s : |r − s| < 2}

and cliques of size 2 〈r, s〉 that correspond to horizontal, vertical and diagonal pixel pairs, so that R(f) takes

the form:

R(f) =
∑

r

∑

s∈Nr

ρR(urs (f)).

where the residual error for the regularization term is defined by

urs (f) = fr − fs. (4)

and ρR is a potential function. For instance, the homogeneous spring model RS is obtained by assuming

that η corresponds to Gaussian noise:

ρD (tr (f)) = (F (f)r − gr)
2
. (5)
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and choosing ρR as a quadratic potential over the first differences:

ρR(urs (f)) = drs (fr − fs)
2 (6)

where drs is a constant that depends on the distance between pixels r and s, for instance: drs = |r − s|−1.

This quadratic potential corresponds to the a priori assumption that the original data f̂ is globally smooth.

Then, assuming that F is linear, the cost functional that results from potentials (5) and (6) is quadratic:

U1(f) =
∑

r

{
|tr (f)|2 + λ

∑

s∈Nr

drs |urs (f)|2
}

(7)

This cost functional is not robust to outliers. In the image restoration context, the outliers are located

at those sites where the assumptions implicit in the cost function are not fulfilled. In particular, for a

regularization term that assumes global smoothness, the outliers correspond to the edges in the image. As

a consequence, the potential function (6) will produce an over–smoothing of the real edges of the image.

To alleviate this problem, there have been proposed robust potential functions for the data and regular-

ization terms. This regularization technique is usually based on potentials derived from robust M–Estimators

and is capable of detecting outliers in the data, finding the significant edges of a noisy image and performing

an edge–preserving restoration. However, there are some problems: the robust potentials that are in use have

a single parameter that controls the minimum residual magnitude that corresponds to an outlier; it often

happens in noisy images that if this parameter is too small, many small regions generate edges around them

so that the solutions appear granular, while if the value of this parameter is increased, some true edges are

not preserved Another problem is that the convergence of the algorithms that have been proposed for the

minimization of the corresponding cost function are relatively slow, making these methods computationally

expensive.

The purpose of this paper is to present a formulation for robust potentials that produces faster and better

behaved algorithms that result in better reconstructions and a significant time processing reduction.

The organization of the paper is as follows: in section 2, a brief introduction to robust regularization is

presented. Section 3 introduces the new formulation for robust potentials. Also, in that section, we show how

to write robust energy terms for vector valued data. In section 4, we present a non-linear Conjugated Gradient

algorithm for half–quadratic regularized functionals with minimal memory requirements. Experiments that

demonstrate the performance of the new potentials and the algorithm introduced herein are presented in

section 5. In section 6, we present a heuristic method for selecting good values for the parameters of the

method. Finally, our conclusions are given in section 7.
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2 REVIEW OF ROBUST REGULARIZATION BASED ON M-

ESTIMATORS

To solve the problem of over–smoothing the real borders in f , potential functions for the data and regular-

ization terms that increase at a smaller rate than the quadratic potential have been used; see Refs. [3][4][5]

[6][7][8][12] [10] and first order ARC potentials in [11]. These robust potentials ρ(t) (that correspond to

robust objective functions used in the statistical literature[7],) have the following characteristics [8][13][14]:

1. ρ(t) ≥ 0 ∀t with ρ(0) = 0,

2. ψ (t) ≡ ∂ρ (t) /∂t exists.

3. ρ(t) = ρ(−t), the potential is symmetric

4. ω (t) ≡ ψ(t)
2t exists

5. limt→+∞ ω (t) = 0

6. limt→0+ ω (t) = M , 0 < M < +∞.

(8)

Condition (8.1) establishes that a residual equal to zero must produce the minimum cost. Condition

(8.2) constrains ρ to be differentiable, so that one can use efficient deterministic algorithms for minimizing

the cost function (really, to compute a local minimum). Condition (8.3) constrains ρ to penalize equally

positive and negative values of t. Finally, conditions (8.4 to 8.6) imposes the robustness condition. A robust

potential corresponds to (in general) a non-convex potential that grows at a slower rate than the quadratic

one. A local minimum of the robust–potential–based energy functional

U2(f) =
∑

r

{
ρD (tr (f)) + λ

∑

s∈Nr

ρR(urs (f))

}
(9)

is computed by solving the system

ψD (tr (f)) + λ
∑

s∈Nr

ψR(urs (f)) = 0. (10)

where the derivatives

ψD(tr(f)) = ∂ρD(tr(f))/∂fr and ψR(urs (f)) = ∂ρR(urs (f))/∂fr

are called the influence functions. One can also define:

ωr =
ψD(tr(f))

2tr(f)
and ωrs =

ψR(urs (f))
2urs (f)

(11)
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as the weight functions. Then (as was shown in [4][5][8][13]), one can solve the non–linear system (10) with

the following two–step iterative algorithm:

Algorithm 1. Weighted Linear System

Given an initial guess for f,

Repeat:

1. Compute the weights ωr and ωrs using (11).

2. Solve the system

ωrtr(f) +
∑

s∈Nr

ωrsurs (f) = 0

for f , keeping ωr and ωrs fixed.

Until convergence.

(12)

The ARTUR algorithm reported in [8] corresponds to algorithm 1 but using as starting point for f an

homogeneous image equal to zero.

In References [7] and [8] one can find pictorial summaries of the robust potential function used in robust

regularization. One may define a classification of potentials functions based on the shape of the influence

functions ψ [14]:

1. Monotone ψ (MT). ψ(t) is constant for |t| ≥ k. Where k is a given threshold An example is the Huber’s

potential function [13]:

ρh(t; k) =





t2 |t| ≤ k

k (2|x| − k) otherwise.
(13)

2. Soft redescender ψ (SR). One has ψ(∞) = 0. An example is the Cauchy’s potential function:

ρc(t; k) = log(1 + (t/k)2),

where k is the scale parameter.

3. Hard redescender ψ (HR). One has ψ(t) ≈ 0 for |t| ≥ θ, where θ is a given threshold. This kind includes

the widely used Welsh’s potential function:

ρw (x, k) = 1− 1
2k

exp(−kx2), (14)

and Tukey’s (biweight) potential function:

ρb(t; k) =





(1− (1− (2t/k)2)3) |t/k| < 1/2

1 otherwise;
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where k is the scale parameter.

The corresponding influence functions and the weight functions are also illustrated. In order to choose

the “right” ρ–function for computer vision problems, we need take into account the following:

1. Robustness to outliers. That is, one wants to reduce the effect of large errors in the solution.

2. Computational difficulties. The minimization algorithm must be stable and have fast convergence.

In the robust statistics literature [17] one can find measures of robustness for potential functions. These

measures are derived from the influence function; they show the influence of large errors (outliers) and small

errors (measurement errors); other common measure is the breakdown point (that in general does not depend

on the shape of the potential ρ) that measures the robustness with respect to a large quantity of outliers.

The HR (potentials that reject extreme outliers completely) and SR (potentials that reduce considerably

the effect of extreme outliers) classes are preferred for regression and estimation problems in both contexts:

statistics [14][16][17] and image processing–computer vision [3][4][6] [7][8][10][18] [19][20][21][22].

For the case that concerns this paper (image restoration), the robust methods are capable of detecting the

significant outliers in the data, finding edges (outliers with respect the prior assumption) of a noisy image

and performing an edge–preserving restoration. However, the HR–potentials do not guarantee uniqueness

of the solution [7]. As a consequence, a good initial guess must be provided in order to avoid to be trapped

by a “bad” local minimum. Another problem is that there is no explicit control of the granularity of the

solution, and as a result one may have either inaccurate definition of edges or an over detection of small

details (see Figure 2). Finally, the convergence rate of the minimization algorithm 1 is relatively slow, so

that it is computationally demanding.

In an attempt to solve these problems, in [8] the initial point is chosen as an homogeneous image equal

to zero (algorithm ARTUR). This reduces the granularity, but it also reduces the accuracy of the computed

edges (see 2–f) and does not contribute to the reduction of the computation time. Another improvement,

introduced in [7], is to make the potential in the data term robust, which allows one to eliminate unstructured

outliers; this however, may cause Algorithm 1 to become unstable because the weights ωr and ωrs can both

be equal to zero (because of condition (8.5)), or produce ill–conditioned systems for small values of these

weights. Also, this formulation does not consider that in the image processing context, outliers in the data

may be structured (there may be small and well defined noisy regions, see Figure 2–c), so that it is not

clear how to constrain granularity. In [7][9][10] and [19] potentials that penalize thickness and promote the

continuity of the borders are introduced. The result is a better definition of the edges, but the computational

time is increased because there is no closed formula for the weights, so that they must be computed for each

iteration as the solution of a non–linear system which causes a significant slow–down of the algorithm.
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3 POTENTIALS FOR EDGE PRESERVING REGULARIZATION

WITH GRANULARITY CONTROL

In this section we propose a method for stabilizing edge-preserving potentials that produces faster and better

behaved algorithms. First, we note that condition (8.5) needs to be redefined in order to avoid that the

weights ωr and ωrs can both be close to zero, ill–conditioning the system (10). The new condition is:

lim
t→+∞

ρ′R (t)
2t

= µ (15)

where µ ∈ (0, 1] is a positive parameter. Now, the granularity of the solution has to be controlled, so that

a large and well defined region is preferred over a group of small regions (well defined regions are such that

the weights at their borders are zero if a HR–potential is used). In order to introduce this control in the

robust potential, it is necessary to include an additional term in the cost functional (9), that assigns a small

additional cost to large jumps that are assigned a constant cost by the potential ρQ. An easy way to stabilize

the system and at the same time control granularity is simply to add a quadratic term to the HR–potential

ρH , so that it has heavier “tails”. The resulting regularization potential ρQ is given by

ρQ(urs (f) , k, µ) = µdrs[urs (f)]2

+ (1− µ)drsρH (urs (f) , k) , (16)

where the µ parameter controls the granularity of the solution and k is a positive scale parameter. Note that

for the extreme value µ = 1, ρR is quadratic (non-robust) and strongly penalizes the granularity. When µ is

close to zero 0, the potential is HR–robust and promotes piecewise smooth reconstructions. Small values for

µ allow smooth changes inside the regions and control the size of the grain in the reconstruction. The form

of the ρQ potential together with its influence and weight functions is presented in Figure 1. This type of

influence function corresponds to the so–called Quasi–robust estimators in the statistics literature [23]. In

all our experiments we use the Welsh’s potential (14):

ρH (x, k) = ρw (x, k) ,

in (16) and for the data term we use a quadratic potential

ρD(t) = |t|2,

then we have:

UN (f) =
∑

r

{
ρD (tr (f)) + λ

∑

s∈Nr

ρQ (urs (f) , µ, k)

}
, (17)
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The minimization of (17) with respect to f is computed by solving the non–linear system

∂

∂fr

{
ρD (tr (f)) + λ

∑

s∈Nr

ρQ (urs (f) , k, µ)

}
= 0

this non–linear system can be written in matrix form:

Wff = ĝ (18)

where the matrix Wf depends on f and ĝr = [ωD]rgr, with ωD as the corresponding vector of weights for

the data term. As ρQ satisfies (8) but condition (8.5) is replaced by (15), then, (18) cannot become singular.

In section IV, we present an efficient Conjugate Gradient algorithm for solving (18), which has a better

convergence rate than Algorithm 1.

3.1 Robust Regularization for Vectorial Data

In the restoration or analysis of vector-valued images f = [f1, f2, . . . , fM ]T (e.g. optical flow and color image

processing) given the data g = [g1, g2, . . . , gM ]T , it is necessarily to couple the process over the M channels.

For illustration proposes, we assume that the channels of f are independently acquired, so that the outlier

rejection in the data term is decoupled. On the other hand, the outliers corresponding to the regularization

term are coupled because we expect that the joint contribution of all channels results on a better detection

of the edges. Then the robust potentials for the data and the regularization terms (respectively) are

D(f) =
∑
m

∑
r

ρD (tr (f))

and

R(f) =
∑

r

∑

s∈Nr

ρQ

(∣∣urs

(
f
)∣∣ , k, µ

)

with m = 1, ...,M, where
∣∣urs

(
f
)∣∣2 = (f1,r − f1,s)

2 + (f2,r − f2,s)
2 + . . . + (fM,r − fM,s)

2. The solution f is

computed by solving
∂

∂fm,r

[
ρD (tr (f)) + λ

∑

s∈Nr

ρQ

(∣∣urs

(
f
)∣∣ , k, µ

)
]

= 0. (19)

4 MINIMIZATION ALGORITHM

The robust cost functionals presented above are non–quadratic functions with a large number of variables.

The minimization algorithms based on the iterative solution of a weighted linear system [e.g., based on

Algorithm 1 (10)] as the one used in [4][8] are relatively slow. This is particularly critical in the case

of processing three–dimensional (3D) data as in the case of 3D image registration [22]. If one wants to
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accelerate the computation of the solution, the use of specialized algorithms for directly solving the non–

linear equation system (18) (as the non–linear conjugate gradient (NLCG)[24] or the Newton–type ones[25],)

are not a good choice. The reason its that, for example, in order to guarantee convergence, the NLCG

algorithms require that at each iteration, the partial solution guarantees a sufficient reduction in the cost

U(f) [26], that is

U(fn+1) ≤ (1− ε) U(fn).

where ε ∈ (0, 1) is a small positive constant. In order to satisfy this constraint, the NLCG algorithm must

perform the expensive evaluation of the cost function at each iteration. On the other hand, the Newton–type

algorithms (say, the Gauss–Newton method), additionally need to compute the product of an approximation

to the Hessian of U(f) and a vector, this computation being more expensive than evaluating the energy.

This section presents an efficient conjugate gradient algorithm for minimizing (computing a local min-

imum of) non–quadratic functionals U(f) that are sums of half-quadratic potentials [i.e., potentials that

satisfy conditions (8) in its original form or with (15) instead (8.5)]. Before introducing the Half–Quadratic

Conjugate Gradient (HQCG) algorithm, we analyze the alternated minimization strategy used by Algorithm

1.

If a potential ρ is half–quadratic, then it has an equivalent representation:

ρ(z) = min
ω

ρ̃(z, ω),

where ρ̃(z, ω) = z2ω + Φ(ω) for a given convex potential Φ that penalizes the over detection of outliers

[4][5][7] [8]. In the equivalent half–quadratic formulation, one may consider that the weights [given by (11)]

result from minimizing the potential ρ̃ w.r.t. ω. Thus, Algorithm 1 performs an alternated minimization

w.r.t. f , ωr, and ωrs. This means that the non-linear system (18) is solved by the iterative scheme:

Wfnfn+1 = ĝn, (20)

where the subindex n denotes the iteration number. In a half-quadratic sense, the computation of the matrix

Wfn corresponds the minimization w.r.t. the weights.

The problem with the alternated minimization strategy is that the computation of the weight matrix

W and the minimization of the weighted linear system (20) are decoupled, which decreases the efficiency

of the method. The method we propose is based instead in the direct minimization of (17) using non–

linear conjugated gradient. This general algorithm, however, can be made more efficient, in this case taking

advantage of the half–quadratic structure; in particular, this structure allows one to derive a formula for the

optimal step size at each iteration: since the minimizer of (15) satisfies (20), where Wfn is a positive definite

matrix, the optimal step size αn = minα U(fn + αsn) may be computed as

αn =
rT
n rn

sT
nWfnsn

,
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where rn and sn are the currents residual vector and descent direction, respectively.

The resulting HQCG algorithm is:

Algorithm 2. HQCG

Set n = 1, β = 0, f0 equal to an initial guess.

Repeat:

1. Set An = Wfn
.

2. rn = ĝn −Anfn

3. if(n 6= 1) β = max
{

0,
rT

n (rn−rn−1)

rT
n−1rn−1

}

4. sn = rn + βsn−1

5. αn = rT
n rn

sT
n Ansn

6. fn+1 = fn + αnsn, n = n + 1.

Until |rn| < ε.

Now, we explain each step in detail. Step 1 corresponds to updating the weights ωr, and ωrs, i.e., one

step of the alternated minimization in the half–quadratic sense. The gradient r is updated in step 2. As

system A is changing at each iteration, we cannot guarantee that the gradient at iteration n is normal to the

last descending direction sn−1(i.e. in general rT
n sn−1 6= 0); so that we compute β with the Fletcher–Reeves

(FR) formula with restarting, which is the one generally used in the NLCG algorithms. This FR formula has

demonstrated to have better performance in the case of non–linear systems than the Polak–Riviere formula

[27].

Note that since we are computing the optimal step size, the condition

U(fn + αnsn) < U(fn).

is automatically satisfied.

5 EXPERIMENTS

We present a set of experiments that illustrate the performance and viability of the robust potential with

granularity constraint. To isolate the effect of k and µ, for these experiments we use a quadratic potential

for ρD.
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5.1 Segmentation

In the first set of experiments, we study the influence of the 2 parameters that control edge preserving and

granularity [i.e. k and µ, respectively in (16)] in the filtered image. The input image (Fig. 2–a) is an axial

section of a magnetic resonance image of the brain, with the gray levels normalized in the interval [0,1].

The task in this case is to segment the brain from non–brain tissue, eliminating as much unwanted detail as

possible, without distorting the position of the brain /non-brain (B–NB) boundary.

The starting point for HQCG algorithm was the original image. In all the cases we used λ = 200. Panel

2–b shows the restoration with k = 80, and µ = 0 (maximum granularity). As one can see, there is a lot

of unwanted detail. If the edge preserving parameter k is decreased (by setting k = 60 and µ = 0) the

image of the panel 2–c is obtained. Note that some of detail is eliminated (although not completely), but

the B–NB boundary is lost. On other hand, if µ is increased to 0.03 (for k = 800) one obtains the image

of panel 2–d, in which the unwanted detail is smoothed out without dislocating the B–NB boundary. The

evaluation of the weight function for the potential ρQ(urs (f) , µ, k) is shown in panel 2–e. As a comparison, in

panel 2–f we present the filtered image with the ARTUR algorithm [8], using the Geman–McClude potential

ρGM (t) = t2/(k + t2) [3] in the regularization term, which is considered the one that gives the best results

[8]. The parameters where hand–adjusted to get the best possible results; their value was λ = 10, k = 600.

In this case the starting point was an homogeneous image equal to zero, as is recommended in [8].

5.2 Denoising Vectorial Images

We illustrate the effect of the operation over vectorial images by denoising a color image (channels red (r),

green (g) and blue (b)). First row in figure 3 shows the RGB channels of a color image. Each channel is

independently corrupted by adding uniform noise with amplitude equal to 60% of the dynamic range of the

vector valued image, g, computed by max (max (g1) , max (g2) , max (g3))−min (min (g1) ,min (g2) , min (g3)).

Second row shows the result of processing every channel independently with an HR–potential in the regular-

ization term (λ = 50, k = 300, and µ = 0). As one can appreciate, the edges are not well detected and the

images are still noisy. Third row shows the effect of coupling the HR–potential over all the channels (λ = 50,

k = 75, and µ = 0). In spite the fact that there is an improvement in the computed images, they are still

noisy and the borders are not well preserved. Finally, fourth row shows the computed images that result

from coupling the processing over the three channels and considering a penalization over the granularity

(λ = 50, k = 300, and µ = 0.01). The improvement is evident: the edges are well preserved and the noise is

removed.
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5.3 Performance of the HQCG Algorithm

Here we present a comparison of the performance of the algorithms HQCG and ARTUR. The conditions of

the test correspond to the recommended in Ref. [8] for the ARTUR algorithm: the starting point was an

homogeneous image equal to zero, which contributes to give non–granular results [8], so granularity was not

constrained in this experiment; at each iteration both algorithms “introduce” edges. The parameters were

λ = 30, k = 600 and µ = 0. The minimization of the half-quadratic cost in ARTUR algorithm was computed

by performing 20 iterations of the linear conjugate gradient algorithm (ARTUR–CG).

In figure 4, panel (a) shows the real image used for the test. Panels (b) and (c) show the corresponding

filtered images after 30, and 70 iterations (respectively) of the HQCG algorithm. Panel (d) the resulting

image after 300 iterations of the ARTUR algorithm. One can note that the dial disc of the telephone

is starting to be defined in panel (b) while in the iteration 300 of ARTUR algorithm [panel (d)] is still

imperceptible; besides, the edges in the soccer ball are better defined and allocated by HQCG than by

ARTUR. The computation times in Fig. 4 correspond a pentium III at 800 Mhz based workstation. The

evaluation of the cost function versus the iteration number is plotted in figure 5. As one can see, the HQCG

presents a fast convergence rate and a smoother transition between iterations. Note however that one HQCG

iteration takes 1.5 times an ARTUR iteration.

5.4 Computation of the Optical Flow

The last experiment illustrates the performance of the presented technique in a classical computer vision

problem: the computation of optical flow (OF). Introducing in the Horn-Shunck [28] formulation for OF

robust potentials, one gets the energy functional:

U(w) =
∑

r

{
ρD (tr (w)) + λ

∑

s∈Nr

ρ̂Q (|urs (w)| , k, µ)

}

where tr (w) = wT
r ∇gr,t and urs (w) = wr − ws; the elements of the vector ∇g≡ [gx, gy, gt]

T represent the

partial derivatives of the g image with respect to x, y, and t, respectively. The elements u and v of the

vector field w = [u, v, 1]T represent the component of the OF in the x and y directions, respectively. The

use of standard robust (e.g. HR) potentials for ρ̂Q presents, in the case of OF, some particular problems:

if there is noise in the data, some small regions may get isolated from the rest of the field by the edges

introduced by the algorithm and may then be assigned very large, erroneous displacements. To prevent this

undesirable behavior, the granularity control parameter µ becomes specially useful, since it is possible to

“anneal” its value by moving it from an initial, relatively large value (e.g. µ = 0.3) to a final small one as the

iterations proceed. This results in the final piecewise smooth OF without the undesirable granularity that

otherwise may be present. This is illustrated in Fig. 6: panels (a) and (b) show a synthetic image pair with
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small square (marked in panel (b)) moving 0.5 pixels down and to the right. Each image is corrupted with

Gaussian noise with standard deviation equal to 6% of the dynamic range. Panel (c) shows the magnitude

of the OF obtained with the classical Horn-Schunck quadratic potential. The parameter λ was manually

set to the value that gets the best result ( λ = 5); panel (d) shows the results obtained with the proposed

annealing procedure, where µ(t) = 0.3 × 0.90.02t, until the final value of µ = 0.04 is reached. The other

parameters were manually set to λ = 50 and k = 16000.

6 PARAMETER VALUE SELECTION

The method presented here has basically 3 parameters: the regularization parameter λ; the granularity

control parameter µ and the scale parameter k that controls the robustness of the HR potential. Their

setting depends on the particular application and on the nature of the data. For the case of edge–preserving

filtering of piecewise almost–constant images corrupted with additive Gaussian noise with standard deviation

σ, it is possible to give heuristic rule to perform this tuning. For this kind of images, the field of first

differences, xrs = fr − fs, is a random field with Gaussian probability distribution (with mean equal to zero

and standard deviation σx = 2σ) corrupted by the probability distribution of the gray scale steps at the

edges. The scale parameter in the robust potential ρH (xrs, k) was chosen as k = 1/σ2
x (see Refs. [29] [9] for

a complete discussion). A robust estimator of σx is based on the median of the absolute deviation (MAD)

estimator: σx ≈ 1.4826MAD(x); where MAD (x) = median (|xrs −median(x)|). If only the magnitude is

considered (symmetric case), the problem is reduced to MAD (x) = median (|xrs|); in such case, we can use

the L1− modified norm to compute the MAD estimator:

σx ≈ 1.4826

(
arg min

m

∑
rs

ρh (|xrs| −m; k2)

)
, (21)

where ρh (x; k2) is Huber’s potential defined in (13); this approximation is valid for small values of k2; we fix

this value to k2 = 0.1 of the dynamic range of the image and by setting λ = 30 (a relatively large value), we

enforce the constraint of piecewise almost constant images. We found that, for the regularization potential

used, the scale parameter computed with (21) overestimates the edges. We control this effect by setting

µ = 0.01, and computing the scale parameter k with the empirical rule:

k = k(µ) =
1 + 50µ

2σ2
x

. (22)

Figure 7 shows the results of performing an edge preserving filtering on images of different kinds. First row

shows the original images; second row shows the filtered images and third row shows the detected edges.

The parameters were λ = 30, µ = 0.01 and k = k(µ) [see (22)]. For the images in columns (a) to (d), k was

equal to: 1037, 1263, 2634 and 489, respectively.
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As figure 7 shows, this prescription for setting the parameter values works reasonable well in the general

case: for particular tasks, however, one may want to change interactively the appearance of the filtered

images. Ideally, one would like to do this by moving a single parameter, or better still by monitoring the

evolution of the iterative method and stopping it when one gets the desired solution (as in the case of

robust anisotropic diffusion [9]). To do this, we introduce a positive parameter c and set λ′ = cλ, µ′ = cµ

and k = k(µ′)/c; where the apostrophe denotes the updated parameters. If c > 1, then the granularity

and the detected edges are reduced with respect the filtered image with the original set of parameters;

oppositely, for 0 < c < 1, the granularity and the detected edges are increased. First row in figure 8 shows

a sequence of filtered images computed with c equal to 1, 1.5, 2.0, 2.5,and 3.0; respectively. The second row

shows the evolution of the iterative algorithm HQCG for c = 3. The iteration number for the images in the

temporal sequence are 15, 42, 115, 210 and 550, respectively. Note the similarity between the image sequence

generated with different values of the hyper–parameter c and the one that depends on time. This allows one

to observe this evolution and stop by hand when a solution that is perceptually “optimal” is reached even

when the algorithm has not converged, with the significant computational time reduction. One can also note

in this experiment that the algorithm presents the nice property of being “continuous” with respect to the

parameters, in the sense that a small variation in the parameters produces a small variation in the result.

7 CONCLUSIONS

The main contributions in this paper are the following:

1. We introduced a new class of “Quasi–robust” potentials (QR) for edge–preserving regularization, that

are formed by a convex combination of a robust [hard–redescending (HR)] potential and a quadratic

one. We have shown that this allows one to control both the edge preservation and the granularity of

the solution in a more accurate way. This parametric family of potentials performs a smooth transition

from the non–robust (convex) to the HR case as the µ parameter moves from 1 to 0. This allowed us

to design a novel continuation parameter method (a form of “ Graduate Non-Convexity” [15]) which

is particularly effective for the computation of piecewise smooth optical flow.

2. We presented a novel non–linear minimization method (the HQCG algorithm) for cost functions based

on half–quadratic potentials. The HQCG is a modification of the non–linear conjugate gradient

(NLCG) method and uses a linear CG step to compute the optimal step size in the NLCG proce-

dure. This permits one to obtain restorations that are better of quality that those obtained with other

algorithms considered as the state of the art at a fraction of the computational cost.

3. We presented a heuristic method for the selection of parameter values for an important class of problems
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(edge preserving filtering of piecewise smooth images).

4. We presented a practical procedure, that operates in a similar way as anisotropic diffusion [9], for

interactive edge preserving filtering.

In the experiments presented here, we have only tested the effect of the QR potential in the regularization

term. However, it is also possible to use a hard–redescending robust potential ρw in the data term (as in

[7]) to further improve the solution, particularly for high noise levels.

The added quadratic term in the regularization potential acts as a stabilizer of the conjugate gradient

algorithm avoiding the ill–conditioning of the resulting non–linear system because the weight functions (for

the data and regularization terms) cannot be both zero (or very small) at the same time. The combination

of the QR potentials and the HQCG algorithm allows one to have a more graceful evolution of the solution

at each iteration.
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[10] S. Teboul, L. Blanc-Féraud, G. Aubert and M. Barlaud, “Variational approach for edge–preserving

regularization using coupled PDE’s,” IEEE Trans. Image Processing, vol. 7, 387–397,1998.

[11] M. Rivera and J.L. Marroquin, “Adaptive rest condition potentials : First and second order edge–

preserving regularization,” To Appear in Computuer Vision Image Understanding

[12] T. Kubota and T. Huntsberg, “Adaptive anisotropic parameter estimation in the weak membrane

model,” in Proc. Int WS in EMMCVPR’97, Lecture Notes in Computer Vision 1223, Springer Verlag,

Venice Italy, 179–194, 1997.

[13] P.J. Huber, “Robust Statistics,” Wiley, New York, 1981.

[14] G. Li “Robust Regression,” in Exploring Data Tables, Trends, and Shapes, D.C. Hoaglin, F Mosteller,

J.W. Tukey (eds.), 281–343, Wiley, New York, 1985.

[15] A. Blake and A. Zisserman, “Visual reconstruction, ”The MIT Press, Cambridge, Massachusetts, 1987.

[16] J.E. Dennis and R.E. Welsch, “Techniques for nonlinear least squares and robust regression,” Proc.

Amer. Statis. Ass., 83–87, 1976.

[17] F.R. Hampel E.M. Ronchetti P.J. Rousseeuw and W.A. Stahel, “Robust Statistics: The approach based

on Influence Functions,” Wiley, New York, 1986.

[18] C.V. Stewart, “Robust parameter estimation in computer vision,” SIAM Review, 41, 513–537, 1999.

[19] M.J. Black, D.J. Fleet and Y. Yacoob, “Robusty estimating changes in image appearance,” Comput.

Vision Image Understand. 78, 8–31, 2000.

[20] M. Ben–Ezra, S. Peleg and M. Werman “Real–time motion analysis with linear programming,” Comput.

Vision Image Understand. 78, 32–52, 2000.

[21] S.-H. Lai “Robust Image matching under partial occlusion and spatial varying illumination changes,”

Comput. Vision Image Understand. 78, 84–78, 2000.

16
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FIGURE CAPTIONS

Figure 1.Potential ρQ, influence ψ and weight ω functions with explicit control over the edge definition

and granularity.

Figure 2. Segmentation of brain/non–brain tissue.(a) axial section of a MRI. (b) Restoration with HQGN

with maximum granularity control (k = 80 and µ = 0). (c) Restoration with HQGN algorithm with k is

decreased (k = 60 and µ = 0). (d) Controlling granularity: restoration with HQGN algorithm with k = 800

and µ = 0.03. (e) Boundaries in panel d. (f) Filtered image with the ARTUR algorithm using the Geman–

McClude potential.

Figure 3. Vector–valued image processing (channels red, green and blue of a color image). First row, noisy

data. Second row, independently computed channels with a HR–potential. Third row, coupled computed

channels with a HR–potential. Fourth row, coupled computed channels with a HR–potential and granularity

control (see text).

Figure 4. (a) Real image. (b) Filtered with HQCG after 30 iterations (6 secs.). and (c) after 70 iterations

(14 secs.). (d) Filtered with ARTUR after 300 iterations (40 secs.).

Figure 5. Performance of the algorithms HQCG (bold line) and ARTUR–CG. Values of the cost function

versus iteration number.

Figure 6. Optical flow. (a) and (b) Synthetic image pair (see text for details). (c) and (d) Magnitude of the

OF obtained with the quadratic potential and (d) the proposed annealing procedure, respectively.

Figure 7. Test of the method for automatic parameter selection in the filtering task: first column shows the

original images, second row the filtered images and third row the detected edges. The computed k value and

size in pixels of the images correspond to: (a) 1037 (181× 217), (b) 1263 (256× 256), (c) 2634 (256× 256)

and (d) 489 (448× 448). In all the cases we used λ = 30 and µ = 0.01.

Figure 8. First row, images filtered by varying the hyper–parameter c, see text. Second row, image sequence

that shows the evolution of the result for c = 3.
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