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Abstract: We present a Phase Shifting robust method for irregular and
unknown phase steps. The method is presented as a phase refinement
strategy that uses as initial guess a coarsely computed phase corrupted
with artifacts produce by an unprecise phase steps calibration. Then the
algorithm, iteratively, refines the phase field and estimates the real phase
steps by incorporating, effectively, redundant information in the fringe
pattern set. The method performance is demonstrated by comparison with
results computed using standard filtering and arbitrary phase steps detecting
algorithm.
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1. Introduction

Phase shifting (PS) is a popular interferometric analysis technique that consists of to acquire a
set of fringe patterns each one with a known constant phase displacement, δ (phase step), with
respect the previous one. In this work we proposed an algorithm for computing, simultaneously,
a filtered phase map and the phase steps when the phase steps are unknown and irregular. First,
we introduce our notation and the fringe set model. Let g = {g1,g2, . . . ,gK} the set of K phase
shifted fringe patterns, then the kth fringe pattern, gk, can be modelled by

gkr = akr +bkr cos( fr +∆k +αk)+ηkr, (1)



where r = [x,y]T denotes the pixel position in the image lattice L, ak is the background illumina-
tion component, bk is the fringe contrast, f is the unknown phase, ∆k = kδ is the desired phase
shift, αk is the phase shift error and ηk represents additive independent noise. The k–dimension
is commonly refereed as the time–dimension because it is assumed that the g set is a sequence
of fringe patterns each one differing from the previous one in just a phase step equal to δ .

Recently there has been an intensive research on methods for phase recovering from a single
closed fringe fringe pattern (see [1] and references therein). However PS methods are preferably
used in stable acquisition condition (i.e. the temporal dependency of the illumination compo-
nents, a and b, is eliminated) and the phase shifts can be introduced with high precision (α can
be neglected). In such a case the wrapped phase f̂ , can be recovered by very simple algorithms;

where f̂ = W ( f )
de f
= f +2πn for an integer n such that f̂ ∈ (−π,π] (where we denote by W the

wrapping operator). For instance, for low level noise, f̂ can be computed from 4 fringe pattern
steps (by assuming δ = π/2) with:

f̂ (r) = tan−1
(

g4r−g2r

g1r−g3r

)
. (2)

On the other hand, for high noise levels and unstable temporal condition, but again assuming
precise phase steps (as in fringe projection) one can acquire a large pattern set (for instance for
K = 40 and δ = π/4) and to use the method reported in [2]:

f̂ (r) = tan−1
(

∑k gkr sin(∆k)h(∆k)
∑k gkr cos(∆k)h(∆k)

)
, (3)

where h(·) is a temporal window that reduces the effect of illumination instabilities.
The unwrapping process is an ill posed problem because the wrapped phase may correspond

to multiple unwrapped phase, i.e. there exists many f̃ 6= f such that f̂ =W ( f̃ ). Thus regularized
solutions have been proposed in order to solve such an inverse problem, see for instance [3].
Where we denote by ψ = W−1( f̂ ) the unwrapped phase computed with the unwrapping oper-
ator W−1 that, in general, is implemented as the minimization of a regularized cost function
[3].

In this paper we focus on to reduce the effect of miss-calibrated phase steps. We assume that
the illumination conditions are stable or the fringe pattern set is normalized so the illumination
temporal dependency are eliminated by a preprocess, see [4]. Such a normalized fringe pattern
set is denoted by

ĝkr = cos( fr +∆k +αk). (4)

2. Adaptive Phase Stepping

First, we assume that a fringe pattern set is acquired with a desirable phase step of ∆ =
∆1,∆2, . . . ,∆K but with small unknown residual phase step α = {α1,α2, . . . ,αK} produced by
a miss-calibration of the stepping device. Now, let ψ a coarse unwrapped phase computed with
a standard algorithm by neglecting the residual steps, for instance with (2) in the case of K = 4
and ∆ = 2π/K. Then the relationship between a normalized fringe pattern, ĝk, and the coarsely
computed phase, ψ , is given by:

ĝkr = cos(ψr +∆k +φr +αk). (5)

where φ is a unknown residual phase field that corrects artifacts produced by residual steps, α .
Then the task here is to compute such a residual phase, φr, and therefore to compute the real
phase fr = φr +ψr. For such a purpose we need to estimate the phase steps residuals, α’s.



In Ref. [5] there was proposed a method for computing unknown phase steps, therein is
shown that the steps are easily computed, with a closed formula, if the quadrature fringe pattern
set is known. Thus, the method in [5] proposed a complexus nonlinear optimization procedure
for, simultaneously, computing: the quadrature fringe pattern set, the local frequency and the
corresponding phase steps. More recently was reported an efficient method for computing the
residual phase from a coarse one for a single fringe pattern: Algorithm 1 in [1]. Such method
transforms a, originally, no-linear optimization problem in a sequence of quadratic optimization
problems. Here we extend such a formulation for computing the real phase, ψ +φ , and the true
phase steps, ∆k + αk, in the case of phase shifted pattern sets. Following [1], we assume that
|φr + αk| is relatively small such that the first order Taylor series can be used to define the
residual error:

Ekr(φ ,α)
de f
= ĝkr− cos(ψr +∆k)+(φr +αk)sin(ψr +∆k)≈ 0. (6)

Therefore, we propose to compute the phase correction field, φ , the phase step corrections, α ,
and an outliers detection field, ω , by alternating quadratic minimization of the cost function:

U(φ ,α,ω) =
K

∑
k=1

∑
r∈L

[
ω2

r E2
kr(φ ,α)+ µ (1−ωr)

2
]
+ γ

[
K

∑
k=1

α2
k + ∑

r∈L
φ 2

r

]

+λ ∑
〈q,r,s〉∈R

[ψq +φq−2(ψr +φr)+ψs +φs]
2 , (7)

Cost function (7) extends the proposed in [1] to deal with a set of fringe pattern as data. More-
over, we have included two terms (weighted by the parameter γ) that enforce small values for
the step correction vector, α , and the residual phase field, φ . Such terms improved significantly
the convergence stability of the minimization process. The details of the phase refinement pro-
cedure are formalized in Algorithm 1. It is important to note in Algorithm 1 that once a residual
(φ or α) is computed the corresponding base variable (ψ or ∆) is updated. Such a strategy
reduces iteratively the value of the unknown residual and the fitness of the first order Taylor
approach; consequently the performance of the algorithm.

Algorithm 1 Out of Step Phase Shifts.
Let g = {g1,g2, . . . ,gK} a fringe pattern set with expected phase steps equal to ∆ and ψ an
initial coarse phase.

1: Set, initially φ = 0, ω = 1 and given ε > 0;
2: For all the pixels r ∈ R:
3: while

∥∥ĝ− b̂.∗ cosψ
∥∥ > ε do

4: Compute ψr = ψr +φr and then set φr = 0;
5: Compute α = argminα U(φ = 0,ω,α); {use (8)}
6: Update ∆ = ∆+α and then set α = 0;
7: Compute ω = argminω U(φ = 0,ω,α = 0); {use (9)}
8: Compute φ = argminφ U(φ ,ω,α = 0); {see Appendix A in [1]}
9: end while

Now we discuss how to compute an effective initial guess for Algorithm 1. The initial coarse
phase, ψ , can be computed with standard algorithms by assuming correct phase steps, i.e. by
neglecting the residual steps, α . Such a wrapped phase is corrupted with artifacts introduced by
the residual steps. Then it recommended to use a robust algorithm for unwrapping the coarse
wrapped phase. In particular, we use the half-quadratic convex unwrapping algorithm reported



in [3]. The resultant unwrapped phase, ψ̂ , may have a constant residual step, ∆dc, that can be
coarsely estimated by a reduced search, i.e:

∆dc = argmin
d∈D

‖g− b̂.∗ cos(ψ̂ +d)‖2
2,

where D = {di = 2πi/N}, for i = 0,1,2, . . . ,N − 1, is a N steps set (we use N = 20 in our
experiments) and .∗ denotes the componentwise product of vectors. Alternatively, the method
reported by Cai et al. [6] can be used for the same purpose. However, the accuracy of the
method in [6] is reduced if the fringe patterns are corrupted by additive independent noise, see
experiments in Fig. 4. Nevertheless the ∆dc is estimated, we initialize the coarse phase with:
ψ = ψ̂ −∆dc. On the other hand, the steps ∆k’s can be initialized with the ideal values or, to
avoid large α residuals, can be estimated (as ∆dc).

In the following we present details of the partial minimizations (steps 5, 7 and 8) in Algorithm
1. First, we note that, for φ = 0 and ω fixed, cost function (7) can be written as:

U(φ = 0,ω,α) = ∑
r

[
ω2

r ∑
k

(ĝkr− cos ψ̂kr +αk sin ψ̂kr)
2 + γα2

k

]
+Q(φ = 0,ω),

where ψ̂kr
de f
= ψr +∆k and the potential Q(·) contains the α–independent terms. Equating to zero

the partial gradient with respect to (w.r.t.) α and solving for αk, we obtain a closed formula for
computing the α’s optimum coefficients:

αk = ∑r ω2
r sin ψ̂kr (cos ψ̂kr− ĝkr)
γ +∑r ω2

r sin2 ψ̂kr
. (8)

In a similar way, for φ = 0 and α = 0, we obtain a closed formula for computing the ω field:

ωr =
µ

µ +∑k (ĝkr− cos ψ̂kr)
2 . (9)

Finally, φ is obtained by solving the linear system that results of equaling to zero the partial
gradient w.r.t. φ of U(φ ,α = 0,ω), keeping α = 0 and ω fixed. In particular, we use a Gauss-
Seidel scheme similar to the one proposed in the Appendix A of [1].

3. Experiments

First experiment demonstrates the method performance in synthetic noisy test data. First row
in Fig. 1 shows the noisy fringe pattern set generated from a synthetic phase that has low and
high frequencies product of a slight tilt and sharp gaussian peaks. Then a coarse phase map
in Fig. 2 is computed with (2) by assuming regular phase steps of π/2 [Fig 4(a)] while real
random phase shifts are plotted in Fig. 4(b). As one can note in the Fig. 2 phase artifacts, corre-
lated with the fringe pattern, corrupt the computed phase. Such a coarse phase is used as initial
guess for the proposed method. Note that the proposed method recovers the wide bandwidth
phase, by smoothing spurious artifacts and preserving real high frequencies (see first row in
Fig. 3). Moreover the method recovers effectively the phase steps [Fig. 4(c)]. We performed
experiments for different size of the fringe pattern set, K. As it is expected, the method perfor-
mance is improved as K grows given that cost function (7) effectively incorporates redundant
information in fringe pattern set. On the other hand, a simple low–pass filtering of the coarse
phase despite redundant information. Thus, the spurious artifacts are not eliminated and real
high frequencies are over–smoothed, see second row in Fig. 3. Fig. 4. show obtained results
from electronic speckle pattern interferometry (ESPI) set. The fringe pattern corresponds to a
steel plate under mechanical stress.



Fig. 1. Synthetic fringe pattern set (first Row) and the respective reconstruction with com-
puted phase map and the phase steps

Fig. 2. Computed coarse solution assuming ideal steps (π/2) with Eq. (2). From left to
right: Wrapped phase, phase unwrapped with convex algorithm in [3] and its cosine (re-
constructed fringe pattern), respectively.

Fig. 3. Rewrapped phase, unwrapped phase and its cosine for the results computed with
the proposed method (first row) and the result of a Gaussian filter on the coarse computed
phase (in Fig. 1)



4. Conclusion

We have presented a PS robust method for irregular unknown phase stepping based on a phase
refinement strategy. The method takes advantage of the redundant information in the phase
shifted fringe pattern set for smoothing out artifacts produced by miss–calibrated phase steps
and for preserving real high frequencies. The method, implemented as successive quadratic
minimizations of a nonlinear cost function, guarantees convergence to a local minima and is
computationally efficient. The method performance was demonstrated by experiments.

The authors were partially supported by CONACYT, Mexico: M. Rivera (grants 40722 and
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Fig. 4. Phaser plots: (a) Ideal phase shifts (kπ/4), (b) real phase shifts, (c) phase shifts
computed with the proposed method and (d) phase shift computed with the method in [6].

Fig. 5. Real data experiment: (a) An original ESPI fringe pattern, (b) computed wrapped
phase with a standard four steps (assuming δ = π/2), (c) refined phase computed with the
proposed algorithm (rewrapped for illustration purposes) and (d) computed phase shifts.


