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We present a novel framework for image segmentation based on the Maximum Likelihood
estimator. A common hypothesis for explaining the differences among image regions is that they
are generated by sampling different Likelihood Functions called models. We adopt last hypothesis
and, additionally, we assume that such samples come from independent and identically distributed
random variables. Thus, the probability (likelihood) that a particular model generates the observed
value (at a given pixel) is estimated by computing the likelihood of the sample composed with the
surrounding pixels. This simple approach allows us to propose efficient segmentation methods able
to deal with textured images. Our approach is naturally extended for combining different features.
Experiments in interactive image segmentation, automatic stereo analysis, and denoising of brain

water diffusion multi-tensor fields demonstrate the capabilities of our approach.
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1. INTRODUCTION

Image segmentation, an important issue in computer vision
and image analysis, consists in partitioning an image into
regions with similar characteristics: color, texture, local
orientation, etc.. Image segmentation is an ill–posed
problem that is task and user dependent: a single image
can be hand–segmented by different users in very different
ways, even a same user can propose different segmentation
by depending of the task he/she is accomplishing.

A powerful strategy for segmenting images is to consider
the image lattice as a graph, and by means of spectral
methods to compute a graph–cut [1, 2, 3, 4]. The main
advantage of spectral clustering based methods is that they
are modeless. It means that, given the pixel interactions,
a partition of the image can be computed without previous
knowledge either the number of clusters or the cluster’s
representatives (models). Spectral clustering algorithms
can be seen as exploratory techniques that require a post–
processing in order to obtain a desired solution.

On the other hand, the image segmentation is commonly
presented as the solution of a combinatorial problem.
Popular approaches to combinatorial image segmentation
are based on Markov Random Field (MRF) models [5,
6]. A reason is their flexibility for being adapted to
different circumstances, for example: color [7], motion and
stereo disparity [8, 9]. In that order, max–flow graph–
cut based techniques have successfully been applied for
the direct label map computation [8, 9, 10, 11, 12]. A

different approach is to estimate the uncertainties on the
label assignment (memberships) [13, 14, 15, 16, 17]. In the
Bayesian framework, such memberships can be expressed
in a natural way in terms of probabilities—leading to the
named Probabilistic Segmentation (PS) methods.

In this paper we present a novel framework for
probabilistic image segmentation. As illustrated in
experiment section, the new framework can be used
for solving many problems in image processing and
computer vision. We present four applications: interactive
image segmentation that integrates color and texture clues,
stereo–disparity estimation, denoising and multitensor fields
restoration. We select such applications because: first, they
are active research topics; second, they are different enough
for demonstrating the framework flexibility; and third, they
allow us to illustrate different implementation details. In
spite of the basic implementations presented here, they are
competitive with methods of the state of the art specifically
developed for such tasks.

In the following we introduce the notation used in this
work. We assume that the observed image g : Ω →
Rn (n = 1 for gray scale images and n = 3 for
color images) is generated by sampling unknown probability
density functions named models M = {Mk}Kk=1 with
parameters θ = {θk}Kk=1; r and s denote pixel positions,
Ω is the set of all the pixels in a regular lattice and K =
{1, 2, . . . ,K} the label set such that, the label field c : Ω→
K indicates the source for each pixel (see Figure 1). Then
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FIGURE 1. Illustration of the generative model: Image regions
are generated by independent samples of likelihood functions. In
this example, the generative models are represented with Gaussian
densities, blue and red curves

the task consists of solving the inverse problem: to segment
the image g into K classes (i.e., to estimate c) and, in the
case, the unknown parameters θ. We denote by

vk(r)=P (g(r)|θk, c(r) = k). (1)

the likelihood of observing g(r) given the model k. This
can be seen as the preference of the data g(r) for the
model k. Hence, the Maximum Likelihood (ML) estimator
(classification) is given by

cML(r) = argmax
k

vk(r). (2)

This Winner Takes All (WTA) assignment is used as
estimator of the true label, c(r). A disadvantage of the ML
estimator is its sensibility to noisy data that results in noisy
segmentations. For improving the segmentation of noisy
images one has two choices:

1. To increase the number of samples per pixel, i.e., to
acquire a set of independent observations {gi(r)}Ii=1.
Then the sample noise contributions are averaged and
therefore the ML estimator is improved. The likelihood
of the sample is given by:

vk(r) =
∏
i

P (gi(r)|θk, c(r) = k). (3)

2. To use prior knowledge that promotes smooth solu-
tions. If this prior is coded as the probability P (c),
then, by using the Bayes’ rule, the MAP estimator can
be computed from the posterior probability:

cMAP = argmax
c

∏
r

∏
k

vk(r)P (c). (4)

In any case, one can estimate, simultaneously, the
segmentation and the model parameter. This joint
estimation can be implemented by an EM strategy [18]: to
estimate a segmentation (hard or probabilistic) by fixing the
parameters and then to estimate the parameters by fixing the
classification.

Note that both strategies, to acquire multiple samples per
pixel or to use Bayesian regularization, are not mutually
exclusive: the likelihood in (4) can be improved by using
multiple samples. However, from last two options, Bayesian
regularization is the preferred strategy given that, in general,
we are limited to a single image [5, 6]. In such a

case, one can find broad literature of solution methods for
the optimization problem stated in (4). Such techniques
can be classified as combinatorial optimization approaches
(the ones that try to directly estimate the cMAP , a hard–
segmentation) [1, 6, 10, 19, 20, 21, 22] and probabilistic
approaches (the ones for estimating a hidden real vector field
that represents the probability that c(r) takes a particular
label, a PS) [13, 15, 23, 24].

In this work we present a method for improving
the likelihood in lack of multiple observations. Our
improved likelihoods can directly be used for computing a
segmentation by means of the ML estimator (2) or can be
used as prime matter for a Bayesian segmentation method
that solve (4). The general idea is simple, we assume that all
the pixels values are i.i.d. samples of generative models and
the source is determined by the label map c. Since image
regions are relative large (this assumption is frequently
codified as a prior in Bayesian regularization), then the
pixels in a small neighborhood are very likely samples of
a unique model. Thus, the small pixel neighborhood can
be assumed as multiple observations of the central pixel.
Indeed, this simple idea is the underlaying one of all spatial
filtering techniques in image processing. Inspired on that,
we propose a novel and efficient framework for image
probabilistic segmentation. Our approach, differently from
those frameworks that regularize (smooths) the pixel values,
regularizes discrete likelihood densities.

We organize the paper as follows. The mathematical
derivation of our strategy is presented in Section 2. Then,
a summary of the algorithm is presented in Section
3. Next, applications that demonstrate the performance,
flexibility and generalization capabilities of our framework
are presented in Section 4. Finally, our conclusions are given
in Section 5.

2. SPATIAL SAMPLING

2.1. Likelihood based on spatial samples

LetNr be a neighborhood of pixels centered at r (inclusive)
and Gr = {g(s) : s ∈ Nr} their corresponding
pixels values. For the moment, we assume the simple
neighborhood Nr =

{
s : ‖r − s‖2 ≤ ρ

}
, where we denote

the Euclidean norm by ‖·‖. In subsection 2.3 we will discuss
details about the selection of the neighborhood.

Thus, we can assume Gr a sample of the mixed likelihood:

P (Gr|θ, c;π) =
∑
k

πk(r)

[ ∏
s∈Nr

P (g(s)|θk, c(s) = k)

]
=

(
πT ṽ

)
(r); (5)

where we define the spatial likelihood

ṽk(r)
def
=

∏
s∈Nr

vk(s) (6)

and π(r) ∈ SK is a vector whose components are unknown
mixture coefficients, where we denote by SK the simplex
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with all the vectors with positive entries that sum one:

z ∈ SK ⇐⇒ z ≥ 0,
∑
k

zk = 1 for k = 1, 2, . . . ,K. (7)

Thus, πk(r) is the fraction of the sample Gr generated with
the k–th model.

Then, the image segmentation can be estimated from
an estimator of π if an appropriated Nr is selected, see
subsection 2.3. Following we investigate two estimators of
π:

1. Since (5) is a Linear Programming problem, then it is
easy to prove that the ML estimator is the indicator
vector:

p(1)(r) = ek
∗

(8)

where ek is the k–th basis vector and

k∗ = argmax
k

ṽk(r) = argmax
k

v̂k(r); (9)

where the normalized spatially–computed likelihood,
v̂k(r), is given by

v̂k(r) =
ṽk(r)∑
i ṽi(r)

. (10)

2. A soft estimation of π can be computed by the
maximization:

p(2)(r) = argmax
π

(πT v̂)(r)
‖π(r)‖‖v̂(r)‖

. (11)

That results in

p(2)(r) = v̂(r). (12)

Therefore, in any of the last two cases, the estimation of π
is reduced to the computation of v̂k(r): spatial products of
individual likelihoods, or sums of log-likelihoods:

v̂k(r) ∝
∏
s∈Nr

vk(s) = exp

(∑
s∈Nr

log vk(s)

)
. (13)

Finally, the hard segmentation (or pixels label field) is
computed with

c∗(r) = argmaxk v̂k(r) = argmaxk log ṽk(r). (14)

2.2. Multiple Sources: Combining multiple segmenta-
tions

Now we extend the above introduced probabilistic segmen-
tation to the case of multiple sources, i.e., to combine in-
dependent segmentation from different clues. After that,
we will be in the capability of presenting the neighborhood
choices and their algorithmic implications. First, we note
that (13) can be written as

v̂k(r) ∝ vk(r)uk(r) (15)

(a) (b) (c)

FIGURE 2. ML segmentation (argmaxk v̂k(r)): (a) Binary
image corrupted with Gaussian Noise [N(m= 0, σ = 0.5)], (b)
segmentation based on the pixelwise likelihood v of each pixel r
and (c) segmentation based on the likelihood u that is estimated
with the neighbor pixels except r, see (16).

with
uk(r) =

∏
s∈Nr\{r}

vk(s). (16)

Eq. (15) can be understood as the combination of two
independent sources: the likelihood estimated from the
observed value, vk(r), and the likelihood, uk(r), estimated
with the neighbor pixels except r, see Figure 2. We can give
a further step by generalizing (15) to J independent sources
and introducing their confidence factor:

v̂k(r) ∝
J∏
j=1

[
v

(j)
k (r)

]αj

= exp

 J∑
j=1

αj log v(j)
k (r)

 ;

(17)
where αj is our grade of confidence of the j–th–source (the
v(j) likelihood) and it holds α ∈ SJ . So that αj = 1 means
that the j–th–source has the largest possible confidence and
it becomes irrelevant as αj → 0.

Eq. (17) is a simple form of combining a set of
likelihoods (probabilistic segmentations). The different PS
(sources) can result from the use of different clues as, for
instance, color and local statistical descriptors for texture.
We illustrate this capability in Section 4, Applications and
Experiments.

2.3. On the Neighborhood Selection

We have shown that if the image to segment is composed of
an assemble of relative large regions (i.e., the label field c
is “smooth”), then spatial samples (neighborhood of pixels)
can alleviate the lack of multiple observations for each
pixel. An accurate segmentation depends on selecting a
pixel neighborhood such that its majority belongs to the
correct class. Note that the right side of (14) defines a
spatial filtering of the likelihoods in the log–space. Now we
show that the proposed framework accepts both linear and
nonlinear filters.

Following we present derivations of distinct log–
likelihood filters by choosing a proper neighborhood and
assuming that each pixel neighbor Nr is an independent
source for estimating the likelihood at the pixel of interest,
r. We remark that the proposed PS algorithms can be
constructed on well–known spatial filters, for example the
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FIGURE 3. ML segmentation with a square neighborhood (Nr =
{s : ‖r−s‖∞ ≤ ρ}) for different values of ρ. The data corresponds
to a binary Mexico map (top left) corrupted with Gaussian noise
[N(m=0, σ=0.7)] and the segmentations to ρ = 0, 1, 2, 3 and 4;
respectively.

ones in Refs. [25, 26, 27, 29, 30]. The novelty is the spatial
filtering of log–likelihoods for segmentation purposes.
Homogeneous Windows (HW). The simplest neighbor-
hood is a regular window centered at the pixel r: Nr =
{s : ‖r − s‖m ≤ ρ}, where the parameter ρ controls the
sample size and ‖ · ‖m is a given metric. For instance, if the
L∞ norm is used, then the neighborhood is square–shaped
and (13) is reduced to a box–filter in the logarithmic space
of each likelihood layer [25]. The use of an homogeneous
window is justified by the prior knowledge of relative large
regions with smooth borders. Then, we can assume that, al-
most at any place, the proportion of the sample generated
with the model of the central pixel is greater that the gener-
ated with the rest of the models. Figure 3 shows the segmen-
tation based on the ML estimator for different values of ρ.
Note that for large ρ–values the segmentation granularity is
reduced and small details are over–smoothed.
General Homogeneous Windows (GHW). The use of the
previous HW is equivalent to apply a box-shape linear filter
in the log-domain. This result can be generalized to any ar-
bitrary linear filter if each neighbor pixel is considered an
independent source. Then, similarly to (17), the sources
(neighbor pixels) are combined with a confidence factor that
depends on their spatial distance to the central pixel r:

v̂k(r) ∝
∏
s∈Nr

[vk(s)]α(s) = exp

(∑
s∈Nr

α(s) log vk(s)

)
.

(18)
In particular, the Gaussian filtering results of choosing

α(s) ∝ exp
(
−1

2
(r − s)TΣ−1(r − s)

)
, (19)

where Σ is a covariance matrix. This can be understood
as a variant weight that depends on the Mahalanobis spatial
distance of the source (neighbor pixel) to the central pixel.
Among GHW we can include the linear filters that result of
an Homogeneous Dffusion [26] and a Membrane Potential
[5, 27]. In particular, the homogeneous–membrane based
segmentation, c, is computed by

c∗(r) = argmink d
∗
k(r) ∀r

∏

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0 50 100
0

0.01

0.02

∏
s∈Nr

WTA

v̂ v

Likelihood Functions

FIGURE 4. Illustration of MSL estimator for image segmentation.
See text.

where d∗ = argmind:Ω⊂L→RK U(d) is the minimizer of the
layered membrane energy:

U(d) =
∑
r∈Ω

{
‖d(r)− log v(r)‖2

+
λ

2

∑
s∈Nr

‖d(r)− d(s)‖2
}
, (20)

where Ω is the region of interest and L is the lattice that
corresponds to the pixels of the image. This optimization
problem is equivalent to independently apply a linear filter
to each layer log vk.
Spatially Adapting Windows (SAW). In order to improve
the quality of the spatial sample, the neighborhood shape can
be adapted by depending on the image local properties. For
instance, an anisotropic filtering can be achieved by using
the local structure tensor as an adaptive covariance matrix in
(19):

Σ−1
g,r =

(
Hσ ∗ (∇g∇gT )

)
(r), (21)

where Hσ is a Gaussian kernel with variance σ and ∗ is
the convolution operator [28]. We can make the confidence
factors depending on the range value too. Then by
combining spatial and range confidence factors we have a
sort of bilateral filter in the log–likelihood space [29, 30]:

v̂k(r) ∝
∏
s∈Nr

[vk(s)]α(s)β(s)

= exp

(∑
s∈Nr

α(s)β(s) log vk(s)

)
; (22)

where

β(s) ∝ exp
(
−1

2
[Gr −Gs]TΣ−1

r [Gr −Gs]
)

(23)

is a confidence factor that depends on the range value and
Gr = T{g(r)} is a transformation of the range values.
Instances of T are the identity (G = g) and the likelihood
(G = v).

It is not our aim to present an exhaustive filter list, but
notice that the filter in the log-likelihood space is general
and thus we are not constrained to use a particular filter
kind. Such a log-likelihood filtering corresponds to a
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Algorithm 1 MSL
1: Given the Probability Likelihood functions (models)

then:
2: Compute the individual likelihood vk(r) for all model k

and pixel r.
3: Compute the logarithm of the normalized likelihood:

dk(r) = log

vk(r)/
∑
j

vj(r)

 , ∀k, r.

4: Apply a spatial filtering, F{·}, to each layer of the log
likelihood: dk ← F{dk}.

5: Compute the spatial likelihood

v̂k(r) = exp(dk(r))
/∑

j

exp(dj(r)), ∀k, r.

6: Compute the label map c̃(r) = argmax
k

v̂k(r), ∀r.

particular neighborhood and confidence source factors of the
likelihoods. As we will see in the developed applications
(Section 4), even a simple GHW produce results of excellent
quality.

3. MAXIMUM OF SPATIAL LIKELIHOODS (MSL)
ALGORITHM

As summary of Section 2, we present the algorithm for
estimating likelihoods based on multiple spatial samples.
The procedure is defined in Algorithm 1 and is illustrated
in Figure 4. Note that, the step 5 in Algorithm 1 can be
obviated and the segmentation can directly be computed in
the step 6 with c̃(r) = argmax

k
dk(r), ∀r.

Now, if we have feature vectors, the Algorithm 1 can be
used for computing a set of likelihoods {v̂(j)}, each one
corresponding to a feature. In such a case the final likelihood
is computed by combining the individuals likelihoods by
means of (17), see Figure 5.

4. APPLICATIONS AND EXPERIMENTS

The purpose of this section is to demonstrate the versatility
of our proposal by implementing a variety of applications.
Our main aim is to present a new viewpoint rather than
a specific solution to each problem. Hence, we motivate
the reader to pursuit further implementations by extending
the here presented techniques or by incorporating this
framework in the design of new algorithms. In order to
guide the reader to put in practice our framework, we present
the following applications: interactive image segmentation
that integrates color and texture clues, stereo–disparity
estimation, denoising and multi–tensor fields restoration.

We demonstrate by comparisons with methods of the state
of the art that the use of the proposed framework leads one
to better solutions; in particular, see Sections 4.1 and 4.4.

α(2) ∏∏
s∈Nr

α(1)
∏

s∈Nr

α(J)
∏

s∈Nr

v̂

v v̂(j)

FIGURE 5. Combination of multiple probabilistic segmentations.

4.1. Segmentation from multiples clues

Here, we develop an interactive procedure for multi-class
image segmentation based on the MSL segmentation. The
aim of the application is to demonstrate the importance
of texture features for improving the quality of the
segmentation. In order to present a direct comparison
with methods of the state of the art, we opt for using a
homogeneous filter (a GHW). However, we advise to the
reader that the class edges location could be improved if
a SAW scheme is used; see the presented applications in
Sections 4.2, 4.3 and 4.4.

The models are empirically initialized from user’s
marked data (scribbles) on the image. As any interactive
procedure, our method admits iterative scribble retouching
but this possibility is not investigated here. The results
computed with the initial scribbles are presented as the
final segmentation. The purpose of this application is
to demonstrate that the final segmentation is improved
by combining multiples sources (likelihood vectors) and
the source combination is naturally implemented in our
proposal. Figure 5 illustrates the process.

We assume that the user scribbles define the multimap
C : L → {0} ∪ K such that C(r) = k ∈ K indicates
that pixel r is labeled as member of class k. Therefore,
C(r) = 0 indicates that pixel r is unlabeled and its label
needs to be estimated; i.e., the region of interest is defined as
Ω = {r ∈ L : C(r) = 0}. The segmentation procedure
is as follows. Let g = {gi}3i=1 be the original image
(in the RGB space), then we compute at each pixel and
for each color layer [with (21)] the local structure tensor
Σg(r) = {Σ1(r),Σ2(r),Σ3(r)}; where Σi is a symmetric
semi–positive definite matrix:

Σi(r) =
[
gi11(r) gi12(r)
gi12(r) gi22(r)

]
for i = 1, 2, 3. (24)

Then, we group the original data and tensor’s coefficients
in four feature sets that are considered as four independent
segmentation sources:

g = {gi} (25)
g11 = {gi11} (26)
g12 = {gi12} (27)
g22 = {gi22} (28)
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FIGURE 6. Images segmentation combining multiple clues:
original image (first column), GMMF with color clues (second
column), QMMF with color clues (third column), MSL with color
clues (fourth column) and, MSL with color and texture clues (last
column); see text.

Source’s confidence
Image g g11 g12 g22
Cheetah 0.2284 0.2714 0.2411 0.2592
Cheetah 2 0.2547 0.2603 0.2276 0.2574
Girl 0.2778 0.2510 0.2283 0.2428
Elefant 0.3280 0.2270 0.2156 0.2294
Port 0.4539 0.1667 0.1998 0.1796

TABLE 1. Confidence factors to combine the PS (spatial
likelihoods) for the experiments in Figure 6.

for i = 1, 2, 3. The additional feature sets [(26) to (28)]
codify the local texture information. Then, the Likelihood
Functions are estimated by histograms with 64 × 64 ×
64 bins and the dynamic range of each feature image is
linearly mapped into the interval [1, 64]. Hence, let g =
[g, g11, g12, g22] be the vector of images (25)–(28) such that
g(j)(r) ∈ t, with t = {t1, t2, . . . , tT } and ti ∈ R3, is the
vectorial value of the r–th–pixel in the j–th image. Then,
the regular histogram for the k–th class is computed with:

H
(j)
k (t) =

∑
s∈L δ(k − C(s))δ(‖t− g(j)(s)‖)∑

s∈L δ(k − C(s))
(29)

where δ is the Kronecker’s delta function. Hence,
the pixel–wise likelihoods are computed with v

(j)
k (r) =

H
(j)
k (g(j)(r)). Finally, we compute the final spatial

likelihood v̂ with (17).
Now, we explain how to compute the confidence of

each Likelihood Function set. The confidence factor of a
Likelihood Function set (says the j–th set) is its capability
for predicting the correct pixel class. In our interactive

Algorithm 2 Source Confidence Factors

1: Given the normalized individual likelihood v̂(j)(r)
∀r, j, then to compute the source confidence scores with

α(j) =
∑
k

α
(j)
k ,

where α(j)
k is computed with (30).

2: Normalize the source confidence:

α(j) ← α(j)∑
l α

(l)
.

scheme, such a confidence αj is large if the likelihoods of
the hand-labeled pixels are large for their respective models
(and small for the other ones). In particular, we define the
confidence of the j–th source for the k–th class as follows:

α
(j)
k =

∑
r v

(j)
k (r)δ(k − C(r))∑
r δ(k − C(r))

. (30)

If we normalized the individual likelihoods (
∑
k v

(j)
k (r) =

1,∀j, r) then α(j)
k ≈ 1 represents a high confidence on the

source j–th for predicting the k–th label. Algorithm 2 details
the procedure for computing the source confidence factors.

Figure 6 shows segmented images with the proposed
procedure. First column shows the user scribbles on the
original image. For comparison purposes, next columns
show label maps computed with different algorithms. From
second to fourth columns, we show segmentations computed
using only the color source (g in rgb space). The
compared methods are the Gaussian Markov Measure Field
(GMMF) model [13], the Quadratic Markov Measure Fields
(QMMF) model [15] and the proposed MSL approach,
respectively. Last column shows the segmentation computed
with the proposed MSL method incorporating color and
texture information: the data, g, and the structure tensor
coefficients, [g11, g12, g22]. The confidence scores for the
sources were computed with the procedure in Algorithm 2
and are shown in Table 1. This Table shows in bold font
the most confident source for each image. Note that if
the color source confidence is significantly larger than the
texture confidences, then the color based segmentation is
qualitatively as good as the one with four sources; those are
the cases of the Elephant and Port images. However, the
accuracy of the single source (color) segmentation is reduced
as the confidence on such a source is reduced. Indeed, in
all the cases the best segmentation was computed with the
proposed integration of all the sources. In these experiments
and for all the features (sources), the step 4 in Algorithm
1 was implemented with a simple homogeneous membrane
(20). In our experiments we set the smoothing parameter
λ = 20; i.e., a wide smoothing filter.
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(a) (b) (c) (d)

FIGURE 7. Layered stereo, columns: a) Left image, b) ML
estimator from individual likelihood (no spatial samples), c) MSL
estimator using v̂ and d) MSL estimator using color, texture and
disparity clues [column (c)].

4.2. Layered stereo

From the previous application, we can note that the GHW
filter based algorithms are prone to produce smooth class–
edge and slightly shifted from the image edges (large
gradients). So, as for remaining applications we use SAW
based filters.

In order to demonstrate the flexibility of our model, we
develop a procedure for computing layered disparities. In
this case, SAW filters allow us to prevent disparity over–
smoothing because motion edges are highly like to be
allocated at image edges. This strategy has widely been used
in other approaches for this task [8, 9, 15]. In this work,
we use constant layered motion models, then the disparity
models are assumed to be integer–valued and constant: m =
{mk}Kk=1. Then, we define the residual dk(r)

def
= gL(r) −

gR(r +mk); where gL and gR are a stereo pair. Now, if we
assume Gaussian residuals with mean equals zero, then the
likelihoods are computed with

vk(r) = φσ(‖dk(r)‖) (31)

where φ is the Gaussian kernel defined as:

φσ(z)
def
= exp

[
−z2/(2σ2)

]
(32)

and σ2 is the homogeneous variance of the residuals for all
the classes. As we said, we compute the confidence between
a pair of pixels by taking into account: the spatial, color and
likelihood distances. Hence, the (r, s)–pixels confidence is
computed with

ωrs = φγ1 (‖r − s‖)φγ2 (‖g(r)− g(s)‖)φγ3
(
v(r)T v(s)

)
,

(33)
where the parameters {γ1, γ2, γ3} control the feature
contributions. This produces a kind of trilateral filter that
it is applied to the log-likelihoods (with uncoupled layers):

v̂k(r) ∝
∏
s∈Nr

[vk(s)]ωrs = exp

(∑
s∈Nr

ωrs log vk(s)

)
.

(34)

After filtering with (34) and in order to propagate the
solution to homogeneous regions and reduce isolated pixels,
we apply a soft homogeneous membrane (20) with λ = 0.3.

When a wide spatial neighborhood is used, the combina-
tion of color and likelihood confidence factors promote edge
preservation. The effectiveness of our approach is demon-
strated by our experimental results in Figure 7. First column
shows the first and second frames of the sequences Tsukuba
and Teddy, respectively. The data were taken from the Mid-
dlebury stereo datasets [31]. Column (b) shows the ML es-
timator from non spatially filtered likelihoods. Note that
the 3D structure of the scene is highly corrupted by impul-
sive noise. For the Tsukuba pair (first 2 frames in the se-
quence) the set of disparity models were initialized as {m =
4, 5, . . . , 20}. For a second iteration, the models with less
than 2% of support were removed. The Teddy sequence is
computed using the disparity set m = {4, 5, . . . , 45}. Panel
(c) shows the results after applying three iterations of the
spatial filter (34) with the parameters γ = {20.0, 0.1, 0.3}
and with neighborhood Nr = {s : ‖r − s‖∞ ≤ 20}.

Stereo refinement using color and texture clues: Interac-
tive model initialization (by means of user’s scribbles) is
a useful technique for solving highly ill–posed problems
as, for instance, the segmentation of an image in fore-
ground/background or the general image decomposition.
The generative models of such problems have as character-
istic of being task depending; i.e., the user may segment a
same image in different forms depending of his/her inten-
tion. Here we combine the procedures of automatic stereo
analysis and interactive segmentation for improving the dis-
parity computation. The resulted method is a fully automatic
algorithm (non–interactive). First, we compute the dispar-
ity for a stereo pair with the previously presented algorithm.
Then, the label map computed from the MSL estimator is
used as class scribbles in the procedure developed in Subsec-
tion 4.1. Since the disparity map labels all the image pixels
(i.e., there are not pixels with C = 0) we relax the filter (20)
such that all the pixels are updated. Moreover, given that we
just want a slight label refinement, the smoothing parameter
is set λ = 0.1. Finally, we combine the color, texture (tensor
based) and disparity spatial likelihoods with (17) using the
fixed confidence factors α ∝ [0.2, 0.2, 0.2, 0.2, 0.02], where
0.02 is the confidence of the disparity based hard segmen-
tation (MSL) and the remainder weights are for color and
texture clues. The results of the post-process are shown in
Figure 7, column (d).

4.3. Denoising

In this subsection, we present an image denoising method.
Our propose is to illustrate other potential application of the
our MSL method. Our implementation is based on SAW
filters in order to preserve the edges location and small
image’s structures. Although, the experiments are achieved
in grayscale images, our method can straightforward be
applied to color images. The gray level (color) models are
distributed in the dynamic range of the image according to
θk = k × step. In our experiment, we set step = 25
thus k = 0, 1, . . . , 10. Then, the individual likelihood were
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FIGURE 8. Denoising application. Left column: corrupted
images with Gaussian noise. Right column: filtered images.

computed with

vk(r) = φstep(‖g(r)− θk‖), (35)

where φ is the Gaussian kernel defined in (32). The log-
likelihoods are filtered with a combination of a trilateral
filter (TF) [Eqs. (33) and (34)] and a membrane filter (MF)
[Eq. (20)]. As in the case of stereo analysis, this linear
wide–support filter propagates results from high frequency
regions to homogeneous areas and controls isolated pixels.
The experiments of the denoising technique are shown in
Figure 8. The test images were taken from the Portilla’s web
page [32]. We corrupted the original images with zero-mean
Gaussian noise with standard deviation equal 25% of their
dynamic range. The reconstruction (filtered images) in the
second column are computed with: f(r) = θT v̂(r); where
v̂(r) is computed with three iterations of the TF-MF. We use
{γ1 = 1, γ2 = 0.2, γ3 = 0.2} for TF and λ = 0.5 for
the MF. The parameters are fractions of the image dynamic
range.

4.4. Diffusion Multi-Tensor Filtering

The goal of this application is to reconstruct multi–tensor
fields that corresponds to trajectories of axonal fibers in
white matter of human brain [33]. There are two important
issues to consider in this task. In the first, we want to
preserve fiber orientation edges and, in the second, we need
to allow smooth fiber trajectories. This means that we need
to design a filter that smoothes among models (layers) with
similar orientations.

One of the most challenging goals in neurosciences
is to estimate connectivity patterns for in vivo brains.
Such connectivity patterns help in the study several brain

diseases and brain development [33, 34]. Diffusion Multi–
Tensor Magnetic Resonance Imaging (MTD-MRI) is a
neuroimaging technique useful for computing a local (voxel
per voxel) estimation of the nerve bundles orientation [34].
That technique assumes a fixed set of Diffusion Basis
Functions (DBF). Then, in our notation, the observed signal
S (in the modality Diffusion-Weighted MRI) follows the
model:

S(qn, τ) =
∑K

k=1
vkψkn(qn, τ) + εn; (36)

where εn is a residual, the ψk is the k–th DBF that
corresponds with a signal due to a single fiber oriented with
the unitary vector uk (the vectors are uniformly distributed
in the 3D orientation space, see Ref. [33]). Then, we fix the
DBF by fixing the diffusion base tensors:

T̄k = (1− β)ukuTk + βI (37)

where I denotes the identity matrix and β is a small scalar,
we use β = 0.1. Thus,

ψkn(qn, τ) = S0 exp(τqTn T̄kqn).

where τ (scalar) and qn (the direction of a magnetic
gradient) are parameter determined by the acquisition
protocol [34]. Hence vj denotes the mixture contribution
of each DBF to the signal and it can be understood as the
membership or the likelihood that at the r voxel is present
a fiber with an orientation parallel to the unitary vector uk.
This v likelihood field is computed using

v∗ = argmin
v

‖S −Ψv‖2

s.t. vk(r) ≥ 0; (38)

see [34] for more details.
Here we propose a procedure to spatially filter the

likelihood field v. Our filter procedure needs to take into
account that the local likelihood vector can be multi–modal
because axonal fibers can cross, merge or split. The filtered
likelihood field is commuted with ṽk(r) = exp(d∗k(r)),
where d∗ is the minimizer of the membrane energy:

U(d) =
∑

r:C(r)=0

{
‖d(r)− log v̂∗(r)‖2

+
λ

2

∑
s∈Nr

∑
k,l

wkl [dk(r)− dl(s)]2
}
. (39)

where v̂∗ is the voxelwise normalized version of the
likelihood field v. It is important to note that the weights

wkl = exp[κ(uTk ul)2 − κ]

control the amount interaction between the k and l layers
(smoothness), where κ is a positive parameter. Then W =
[w]k=1,2,...,K;l=1,2,...,K is the confusion matrix between the
models (fiber orientations).

The method performance is demonstrated by experiments
with synthetic and real multi–tensor fields. Figure 9 shows
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FIGURE 9. Diffusion Multi-Tensor restoration. First row: Ground
truth, region of interest in the ground truth, noisy data (SNR=9).
Second Row: GMMF restoration, restoration with the proposed
method.

results computed with our proposal and a multi–tensor
restoration based on the GMMF model [13]. The panels
show the diffusion tensors on the anisotropy map of the S
signal: white represents low anisotropy and light gray means
high anisotropy, see details in Refs. [33, 34]. First row shows
the ground truth, the region of interest in the ground truth
and the noisy multi–tensor synthetically generated using
the method reported in [33] with SNR=9. Second row
shows the multi–tensor reconstructions using the GMMF
based algorithm (just directly regularizing v̂∗ instead of
log v∗) and the proposed method. Note in the ground truth
that the lower anisotropy is allocated at the fiber crossing,
meanwhile a single fiber produces higher anisotropy. When
the data are noise corrupted then the anisotropy coefficient
is low at almost all places and false fiber crossings appear
(right panel in the first row). The solution using GMMF,
basically, diffuses the low anisotropy in the entire image; i.e.,
it does not reduce the number of crosses (left image in the
second row). On the other hand, our proposal increases the
anisotropy in almost the whole image. Thus, our proposal
correctly estimates the fiber crossing and the sites with a
single fiber.

Next we show experimental results of our method in both
synthetic and real data. The first row in Figure 10 shows the
results on a synthetic multi–tensor data that simulate a fiber
crossing. Note that, the restored multi–tensor fields (right
panel) show the correct orientations and smooth transitions
between orientation. This effect is achieved with the inter–
model interaction proposed. The second row shows results
with multi–tensors from a real human brain. This figure
depicts a region of interest that corresponds to an axon fiber
crossing within the superior longitudinal fasciculus. Note
how our proposal improves the crossing fiber orientations,
this is particularly important for the brain axon tractography
task.

FIGURE 10. Comparison of Diffusion Multi-Tensor restorations.
First row: synthetic crossing fibers (multi–tensor field), region of
interest and restored region of interest. Second row (from left to
right): Real multi-tensor diffusion MRI data, region of interest with
fiber crossing and restored (filtered) multi–tensor field in the region
of interest.

5. CONCLUSIONS

We presented a novel framework for image Probabilistic
Segmentation (PS). The presented technique is a probabilis-
tic segmentation strategy: instead of computing the pixel la-
bel, we compute the uncertainty (probability) associated to
each particular label. We start our development by noting
that the spatial sampling is an alternative to the lack of mul-
tiple pixels’ observations. Differently from multiple obser-
vations, the pixel neighborhood is a mixed sample and the
estimated mixture coefficients can be used as the probability
for the labels. We noted that the neighborhood selection is
an important issue to obtain a good segmentation. Moreover,
the mixture coefficients must be as informative as possible in
order to reduce the risk of choosing a wrong label.

We presented a set of PS algorithms that constructs on
well–known spatial filtering techniques. The novelty is the
spatial filtering of log–likelihood. Our strategy allows one
to combine multiple sources (probabilistic segmentations)
in a natural way and is general enough to be applied
in the development of algorithms for different computer
vision applications. In particular, we have explored
interactive segmentation, stereo disparity computation,
image denoising and reconstruction of brain water diffusion
multi-tensor fields. The experiment results demonstrate
that our direct implementations are competitive with ad hoc
sophisticated algorithms of the state of the art.

A preliminary version of this work appeared in the Proc.
of the ISCIS 2010 [35].
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