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Abstract— In this paper, we address the pursuit/evasion prob-
lem of capturing an omnidirectional evader using a Differential
Drive Robot (DDR) in an obstacle-free environment. The goal
of the evader is to keep the pursuer farther than the capture
distance for as long as possible and for the pursuer the goal is to
capture the evader as soon as possible. In [1] an open-loop time-
optimal strategy is proposed for this pursuit/evasion problem.
In [2] a state feedback-based time-optimal motion policy for the
DDR is provided. The time-optimal strategies obtained in [1]
are in Nash equilibrium, meaning that any unilateral deviation
of a player from the optimal strategies does not provide it a
benefit in its payoff. However, Nash equilibrium does not tell
if one player deviates from its optimal policy then, does there
exist a new strategy for the other player that can take advantage
of such deviation? If so, which is the required information to
improve the payoff compared with the worst case scenario? In
this paper we address those questions, analysing the scenario
in which the players deviate from their optimal controls. We
show that when the evader deviates from its optimal speed there
are cases where there exists a new pursuer motion strategy
that reduces the time to capture the evader. The shown cases
where the time to capture the evader is reduced require more
information about the evader’s state. Nevertheless, there are
also cases in which despite the availability of new information,
the pursuer must stick to the worst case strategy, otherwise it
cannot capture the evader.

I. INTRODUCTION

In this paper, we address the pursuit-evasion problem
of capturing an omnidirectional evader using a Differential
Drive Robot (DDR) in an obstacle-free environment. At the
beginning of this game, the evader is at a distance L > l (the
capture distance) from the pursuer. The goal of the evader is
to keep the pursuer farther than this capture distance for as
long as possible. The goal of the pursuer is to capture the
evader as soon as possible.

In previous work, in [1] the authors have proposed a
partition of the playing space into mutually disjoint regions
where time optimal strategies of the players are well es-
tablished. The time-optimal strategies obtained in [1] are in
Nash equilibrium. In [1], the proposed strategies are in open-
loop. Later, in [2], the authors provided a state feedback-
based time-optimal motion policy for the DDR. This later
result was achieved by estimating the state of the evader
based on images using the 1D trifocal tensor.

In [2], the planning stage makes use of the partition
presented in [1]. But the authors analyse the situation, in
which in the execution stage, the pursuer applies its optimal
policy in open loop (without evader state feedback), and the
evader follows a suboptimal policy. In particular, in [2], it

has been shown that if the pursuer executes its optimal policy
in open loop then the pursuer might not be able to capture
the evader. Hence, in the case of an unpredictable evader, it
is crucial for the pursuer to execute a state feedback-based
motion policy based on the evader state. Nevertheless, in
[2], the authors do not analyse whether or not there exists a
pursuer strategy that reduces the time of capture when the
evader deviates from its optimal motion policy.

In this paper, we analyse this last scenario, in which the
players deviate from their optimal controls. In Nash equilib-
rium, any unilateral deviation of a player from the optimal
strategies does not provide it a benefit in its payoff. However,
Nash equilibrium does not tell if one player deviates from
its optimal policy then, does there exist a new strategy for
the other player that can take advantage of such deviation? If
so, which is the required information to improve the payoff
compared with the worst case scenario? In this paper, we
address those questions.

Our system model considers that the controls for the
DDR pursuer are the wheels angular velocities, and for the
omnidirectional evader the speed and the motion direction.
In particular, in this work, we analyse the case where the
evader deviates from its optimal speed and the effects of
this deviation over the pursuer strategy. We show that when
the evader deviates from its optimal speed there are cases
where there exists a new pursuer motion strategy that reduces
the time to capture the evader compared with the worst
case analysis. The shown cases where the pursuer payoff
is improved require more information about the state of
the evader, including now the instantaneous evader speed.
Nevertheless, there are also cases in which despite the
availability of new information, namely the instantaneous
evader speed, the pursuer cannot improve its payoff, as it
must apply the worst case strategy, otherwise the capture of
the evader is not longer guaranteed.

II. RELATED WORK

The problem addressed in this paper is related to pursuit-
evasion games. There has been a considerable amount of
research in the area of pursuit and evasion, particularly in
the area of control [3], [4], [6]. The pursuit-evasion problem
can be framed as a problem in noncooperative dynamic game
theory [6].

A pursuit-evasion game can be defined in several ways.
One variant considers one or more pursuers, which are given
the task of finding an evader in an environment with obstacles
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[7], [8], [10], [11]. A recent survey of this kind of problem
is presented in [12].

Other variant consists of maintaining visibility of a moving
evader also in an environment with obstacles [13], [14],
[15], [16], [17], [20]. Game theory is proposed in [13]
as a framework to formulate the tracking problem, and an
online algorithm is presented. In [20], the authors address the
problem of maintaining visibility of the evader as a game
of degree (i.e. the emphasis is over the optimization of a
given criterion and not over the problem of deciding who is
the winner). The pursuer and the evader are omnidirectional
(holonomic) systems. In [21], the problem of maintaining
visibility of a moving evader is addressed as a game of kind
(deciding which player wins). Again, both the pursuer and
the evader are omnidirectional systems.

Similar to this work, in [17] the author deals with the
information required to achieve the task. In that work, a
robot has to track an unpredictable target. The robot’s sensors
obtain general information about the target’s movements, but
avoiding that detailed information about the target’s position
is accessible to an agent that can damage the target using
it, preserving in that way the target’s privacy. As in the
presented work, in [17] the author is also interested in the
value of information, nevertheless, in [17] the information is
addressed to preserve privacy, while in our work our interest
in information is focused on obtaining optimality in the task
given to the robot.

A third variant of pursuit-evasion problem consists in
giving to the pursuer the goal to capture the evader [3],
[4], that is, move to a contact configuration, or closer than a
given distance. The work presented in this paper corresponds
to this third variant. Other related problems are the lady in
the lake [6] and the lion and the man [18], [19]. In the lady
in the lake problem, there is a circular lake where a lady
is swimming with a maximum speed vl, and there is a man
that is in the side of the lake and runs along the shore with
a maximum speed vm; the man cannot enter the lake and
the lady wants to leave the lake. The man runs with a larger
speed than the one of the lady in the lake (vl < vm). The
man needs to capture the lady as soon as she reaches the
shore, since on land she runs faster than him. In the lion and
the man problem, the players move in a circular arena, both
players have the same motion capabilities, the lion wants to
capture the man and the man wants to avoid the capture.

In the same vein, in [9] the authors address a pursuit-
evasion game in a graph called the cops and robbers game.
The cops win the game if they can move to the robber’s
vertex. Alike the presented work, the authors investigate the
role of the available information, however, in [9] the authors
start from a base case where the players “see” each other at
all times and then the authors reduce the visibility range of
the players, while in the presented work we start from Nash
equilibrium strategies, make the players deviate from them,
and start increasing the available information. Furthermore,
in [9] the authors are interested in the effects of information
on the outcome of the game (which player wins), while we
are interested in the deviations of the players over their time

optimal strategies and the necessary information to detect
such deviations to obtain optimality.

III. SYSTEM MODEL
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Fig. 1. System models

To simplify the problem, the game is modeled in a
coordinate system that is fixed to the DDR (see Fig.1(b)),
called in [3] the reduced space. In the reduced space all
the orientations are measured with respect to the positive y-
axis (DDR’s heading). We denote the state of the system
as x(t) = (x, y) ∈ R2.The model of the kinematics in
the reduced coordinate system is the following (see [1] for
details).

ẋ =

(
u2 − u1

2b

)
y + v1 sin v2

ẏ = −
(
u2 − u1

2b

)
x−

(
u1 + u2

2

)
+ v1 cos v2

(1)

where u1, u2 ∈ [−V max
p , V max

p ] are the DDR’s controls,
and they correspond to the angular velocities of its wheels,
u1 is the angular velocity of the left wheel and u2 of
the right wheel. v1 ∈ [0, V max

e ] and v2 ∈ [0, 2π) are the
evader’s controls associated to its speed and motion direction,
respectively, in the reduced coordinate system. This set of
equations is expressed in the form ẋ = f(x, u, v), where
u = (u1, u2) ∈ Û = [−V max

p , V max
p ]× [−V max

p , V max
p ] and

v = (v1, v2) ∈ V̂ = [0, V max
e ]× [0, 2π).

Inequality (2) gives the maximum rate of rotation ωmax

for the pursuer, given a specified linear speed ν [1], [5].

ω =
u2 − u1

2b

ν =
u1 + u2

2

|ωmax| ≤ 1

b
(V max

p − |ν|)

(2)

where ν is the DDR’s translation speed and ω its angular
speed.

The following definitions are used in the rest of the
paper: ρv = V max

e /V max
p is the ratio between the maximum

translational speed of both players, and ρd = b/l is the
ratio of the distance between the center of the robot and the
wheel location b and the capture distance l. Note that l ≥ b,
otherwise the capture distance would be located inside the
robot.
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IV. STATE SPACE PARTITION FOR MOTION POLICY

In this section a partition of the state space into mutually
disjoint regions is presented. This partition was found in [1]
using Isaacs’ methodology [3], which combines the theory
of optimal control and differential games. To make this paper
self-contained, we include an Appendix with three lemmas
obtained in [1], which are used in this work.

Fig. 2(a) shows a graphical representation of the regions
integrating the partition of the first quadrant of the reduced
space. The frontiers between regions are called singular
surfaces [3]. In this partition, there are 4 singular surfaces
[1]: universal surface (US, black bold line), transition surface
(TS, red curve), the barrier surface (BS, magenta straight
line) and dispersal surface (DS, orange line). If the pursuer
applies its time-optimal motion policy the barrier (BS) cannot
be crossed by the evader. The answer to the capture-escape
question relies on whether or not the barrier divides the
reduced space into two parts. Suppose the barrier separates it
into two parts. If x is in the outer side then the DDR cannot
force the capture. If the barrier fails to separate the playing
space (as in Fig. 2(a)), then capture can always be attained
by the DDR. [1] along with [2] provide an analysis regarding
the BS for our problem yielding the next remark:

Remark 1: If the barrier does not separate the playing
space for a given V max

p and a given V max
e , then the pursuer

guarantees capture regardless of the strategy followed by the
evader.

The universal surface (US) has the property that whenever
the evader is located at it, the time-optimal motion policy for
the pursuer is to move in a straight line to capture the evader.
The limit of the US is at yc = l/ρv (see Fig. 2(a)).

The transition surface (TS) is the place where a control
variable abruptly changes its value. In contradistinction with
the US and the BS, the TS is not a trajectory traveled by the
system in the reduced space. In the first quadrant, the TS
represents the locus of points where the DDR switches one
of its controls, in particular from Lemma 4 in Appendix I,
we found that u∗2 switches from the value V max

p to −V max
p .

The expression defining the control u∗2 at the moment of
the switch characterizes the conditions that must satisfy the
points (x, y) in the reduced space.

A dispersal surface (DS) is defined in [3] as the locus
of initial conditions along which the optimal strategy of
one player or the optimal strategies of both players are not
unique. At the DS, the choice of the control of one player
must correspond to the choice of the control of the other
player. Therefore, a solution will be to employ an instanta-
neous mixed strategy [3], which means the randomizing of a
player’s decision in accordance with some probabilistic law
until the system is no longer on the DS.

The partition also contains the terminal surface and the
usable part (UP). The terminal surface is the set of points that
represents an opportunity for the DDR to capture the evader
[3]. In this game it is a circle of radius l. The usable part
(UP, black bold arc in Fig. 2(a)) is the portion of the space
where the pursuer guarantees capture of the evader regardless

of the choice of controls by the evader [3]. The boundary of
the usable part is the point BUP shown in Fig. 2(a). In [1], the
angle s denotes the angle measured from the positive y-axis
to a point in the usable part, and S = cos−1(ρv) denotes a
bound in s corresponding to the boundary of the usable part
(BUP). A more detailed description of each singular surface
in the partition is presented in [1].

(a) Partition (b) Partition for pursuer’s feedback
motion policy

Fig. 2. Partition of the first quadrant

In the interior of each region, the pursuer always applies its
feedback-based time-optimal motion based on the evader’s
location over the reduced space. This policy for the first
quadrant is summarized in Table I. In the remaining quad-
rants the pursuer time-optimal motion policy is analogous.

Evader in the reduced space u1, u2

US u1 = +V max
p , u2 = +V max

p

I u1 = +V max
p , u2 = +V max

p

II u1 = +V max
p , u2 = −V max

p

III u1 = +V max
p , u2 = −V max

p

DS Randomized strategy

TABLE I
PURSUER’S FEEDBACK-BASED TIME-OPTIMAL MOTION POLICY IN

QUADRANT 1.

If the evader is located in Region I then the DDR moves
in a straight line in the realistic space to capture the evader.
Region II corresponds to configurations in the realistic space
where the DDR initially rotates in place, but it is not neces-
sary to align completely the DDR’s heading with the segment
joining the positions of both players in order to capture
the evader. Region III in the reduced space corresponds to
configurations in the realistic space where the DDR also
rotates in place until it aligns its heading with the segment
joining the players’ position. The frontier between Region
II and Region III is established by the tributary trajectory1

(green dashed line) shown in Fig. 2(a).

1A tributary trajectory is an optimal trajectory of the system in the reduced
space that reach the (US).
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From Table I, we see that the US and Region I have
associated the same optimal controls, and the same happens
with regions II and III. Therefore, the partition shown in
Fig. 2(a) might be simplified to one in which the US and
Region I are merged and Region II and Region III are merged
too. Hence, let RS= US ∪ Region I and RR = Region II ∪
Region III ∪ DS. Refer to Fig. 2(b).

V. INFLUENCE OF THE AVAILABLE INFORMATION ON
THE MOTION POLICY

In this section we analyse the scenario in which the
evader deviates from its optimal controls obtained in [1]. In
particular we consider the case where the evader deviates
from its optimal speed and the effects of this deviation
over the pursuer strategy. As mentioned before, the motion
strategy shown in [1] is in Nash equilibrium, namely, any
unilateral deviation of a player from the optimal strategies
does not provide it a benefit on its payoff. Nevertheless,
Nash equilibrium does not elaborate on the existence of
a new strategy that improves the payoff for a player that
takes advantage over the deviation of other player on its
optimal policy; neither it tells which extra information is
needed in order to apply the new strategy if it exists. In this
section through Theorem 1 we show that for the referred
pursuit-evasion problem, there are cases where such new
strategy for the pursuer exists when the evader deviates from
its optimal speed, and that the extra information that that
strategy uses–apart from the instantaneous evader’s location
(x, y) in the reduced space–, is the instantaneous evader’s
speed. The new motion strategy or policy for the pursuer
is given in Definition 1. We also introduce Lemma 1 that
will be constantly used along this section. Lemma 1 says
that for any two partitions P and P ′ calculated as in [1],
but P considering a maximum evader’s speed V max

e , and
P ′ considering it as V max′

e , with V max′

e < V max
e , then RS

is fully contained in R′S .
Definition 1: To apply the controls dictated by the in-

stantaneous partition corresponding to Ve, is to apply the
controls dictated by a partition constructed as in [1] con-
sidering Ve as the maximum evader speed, where Ve is the
current evader’s speed.

Lemma 1: Let V max′

e < V max
e , and P ′ and P be state

partitions of the reduced space built as in [1], using V max′

e

and V max
e as the respective maximum speeds. Then, RS ⊂

R′S , where RS corresponds to P , and R′S to P ′.
Proof: In this proof we focus on the first quadrant of

the plane but the obtained results can be easily extended to
the other three quadrants. In the first quadrant the interior
of region RS (similarly for R′S) is delimited by the usable
part UP of the terminal surface, the barrier BS, the transition
surface TS, and the portion of the y-axis, name it Y, going
from the TS (point yc) to the UP. What we proceed to do is
to show that the boundaries of RS are contained within the
respective boundaries of R′S or within R′S itself.
a) Both UP and UP′ in the first quadrant run from an angle
s = 0 to the angles cosS = V max

e /V max
p and cosS′ =

V max′
e /V max

p , respectively (see Fig. 3(a)). Since V max′

e <
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Fig. 3.

V max
e , then cosS′ < cosS (this is, S < S′), hence UP
⊂ UP’.

b) Y and Y′ (Y relates to RS and Y′ to R′S) run from UP to
the points yc = l(V

max
p /V max

e ) and yc′ = l(V
max
p /V max′

e ),
respectively (see Fig. 3(a)). Since V max′

e < V max
e , then

yc < yc
′, hence Y ⊂ Y′.

c) TS and TS′ are delimited in the first quadrant by points yc
and yc

′, and the top endpoints of the respective barriers
BS and BS′. The coordinates of the points composing
TS and TS′ can be parameterized making use of angle
s. Making use of s we define four intervals, which
we will use to show that TS is bellow TS′ withing
R′S . The four intervals are built setting s to 0, to
angle sc

′ = tan−1(ρd(V max′
e /V max

p )), to angle sc =
tan−1(ρd(V

max
e /V max

p )), to angle S = cos−1(V
max
e /V max

p )
and to angle S′ = cos−1(V max′

e /V max
p ) (Lemma 5),

yielding the following analysis:
i) s ∈ [0, sc

′] (see Fig. 3(b)) In this interval for each
value of s, for TS the optimal trajectories of the
system do reach the y-axis at yc = l(V

max
p /V max

e )
[1], and for TS′ the optimal trajectories reach yc′ =
l(V

max
p /V max′

e ). As yc < yc
′, it is evident that for this

s interval TS is below TS′ and within R′S .
ii) s ∈ (sc

′, sc] (see Fig. 3(b)) Regarding TS, in this
interval each value of s maps TS to yc, as the optimal
trajectories of the system in retro-time, starting from
the UP, do reach the y-axis at yc since the time τc that
takes the system to reach the y-axis is smaller than
the time τs at which the DDR switches controls [1].
Eq. (3) gives us the y-coordinate, that is y(s), if
for the s values in the present interval we would
have extended the optimal trajectory beyond the y-
axis intersection up to time τs, meaning yc < y(s).
Eq. (4) gives the y-coordinate, that is y′(s), for TS′

in the present interval. By inspecting Eq. (3) and
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Eq. (4), it can be seen that y(s) < y′(s), and since
yc < y(s), then yc < y′(s). Hence, for this s interval
TS is below TS′ and within R′S .

y(s) = b cot s+ l cos s− bV
max
e

V max
p

cos2 s

sin s
(3)

y′(s) = b cot s+ l cos s− bV
max′
e

V max
p

cos2 s

sin s
(4)

iii) s ∈ (sc, S] (see Fig. 3(b)) Inspecting Eqs. (3), (5),
(4) and (6), we have that TS′ can be obtained by
translating to the right and up every point in TS for
every value of s in this interval, therefore, if in this
interval TS and TS′ monotonically decrease on s,
then for this s interval TS is below TS′ and within
R′S . This can be easily proven by calculating the
derivative of Eq. (3) (or Eq. (4)) with respect to s
and verifying that the resulting equation is negative
in the given interval. As a result, for this s interval
TS is below TS′ and within R′S .

x(s) = l sin s− bV
max
e

V max
p

cos s (5)

x′(s) = l sin s− bV
max′
e

V max
p

cos s (6)

iv) s ∈ (S, S′] (see Fig. 3(b)) Inspecting Eqs. (3), (5),
(4) and (6), we know that (x(S), y(S)) is to the left
and below (x′(S), y′(S)), but since RS ends at S
but R′S still continues up to S′, RS no longer exist
for this interval and no comparison against R′S can
be done. Therefore, the three past cases are sufficient
to prove that TS is below TS′ and within R′S .

d) The BS runs from the point in the terminal surface at
angle S towards the point (x(S), y(S)) obtained eval-
uating Eqs. (3) and (5) at angle S. From the analysis
regarding the transition surfaces, we know that such point
(x(S), y(S)) is bellow TS′, and since S < S′ (R′S still
extends from S to S′), then BS is within R′S .

Remark 2: Lemma 1 splits the playing space in the first
quadrant, into three regions: RS , R′S \RS and R′R.

Theorem 1: Call π to the pursuer motion strategy dic-
tated by the state space partition calculated as in [1], that
is, considering pursuer and evader maximum speeds, V max

p

and V max
e . Now, consider that the pursuer has access to the

instantaneous evader speed Ve, with 0 < Ve ≤ V max
e , and

that as its motion strategy the pursuer applies the controls
dictated by the instantaneous partition corresponding to Ve.
Refer to this strategy as σ. There are scenarios where the
strategy σ yields a smaller capture time than applying π.

Proof: Consider the scenario of an evader with a
maximum speed V max

e , but that it will be moving with a
constant speed Ve, with 0 < Ve < V max

e . Let us call P to
the state space partition that encodes strategy π, calculated
considering V max

e as the maximum evader speed. Let us
refer as P ′ to the state partition constructed as in [1] but
considering Ve as the maximum evader speed.
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0.6
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0.9

1

1.1

TS'TS
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UP'

BS

BS'

q1

Fig. 4. Example of Theorem 1

Assume that the game starts with the evader within R′S \
RS (RS refers to P and R′S to P ′) at a point q1, see Fig. 4.
For this configuration, strategy π, making use of P , indicates
the pursuer to rotate until RS (delimited in Fig. 4 by BS
and TS) is reached and then to apply a straight motion until
the capture is achieved. As the evader will be moving with
constant speed Ve, strategy σ will only make use of partition
P ′; for such initial configuration P ′ tells the pursuer to apply
a straight line motion until capture is achieved. Now, consider
the parameters l = 1, b = 0.75, V max

p = 1, V max
e = 0.6,

Ve = 0.3 and q1 = (0.8363, 0.6261). For these parameter
values, the pursuer while applying σ captures the evader in
0.2 time units (cyan–light grey–trajectory in Fig. 4, starting
in q1 moving towards UP′), and while applying π the pursuer
does not even manage to take the evader to RS in the same
0.2 time units (blue–dark grey–trajectory in Fig. 4, starting
in q1 moving towards RS). For this parameters, the strategy
σ yields a smaller capture time than applying π. The result
follows.

Corollary 1: Following a similar reasoning as in The-
orem 1 proof, a family of innumerable examples can be
built where the strategy σ yields a smaller capture time than
applying π.

Nonetheless, there are also cases in which despite the
availability of new information, namely the instantaneous
evader speed, the pursuer cannot improve its payoff, as it
must apply the worst case strategy (the one from [1] that is
in Nash equilibrium), otherwise the capture of the evader
is not longer guaranteed. Lemma 2 presents a family of
pathological examples, such that when the pursuer applies the
controls dictated by the instantaneous partition corresponding
to the evader’s instantaneous speed Ve, then the evader cap-
ture is not guaranteed even when the conditions mentioned
in Remark 1 were met, meaning, the capture was possible
applying the strategy given by the partition corresponding
to V max

e . Making use of Lemma 2 and other arguments we
introduce Theorem 2, which says that there are states in the
reduced space where knowing Ve is not of relevance, hence,
it can be discarded.
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Lemma 2: Consider a pursuer that has access to the
evader’s instantaneous speed Ve, with 0 < Ve ≤ V max

e ,
and that such pursuer applies the controls dictated by the
instantaneous partition corresponding to Ve. Such pursuer’s
strategy can make the evader move in a cycle never reaching
the UP, preventing the pursuer from capturing the evader,
even if in the instantaneous partitions the barrier does not
separate the playing space.

Proof: Assume that the evader will be moving inter-
changing between two speeds, one being V max

e , and the other
Ve, with 0 < Ve < V max

e . Then name P the partition built
considering V max

e as the maximum evader speed, and P ′ the
partition built considering Ve as the maximum evader speed.
Also assume that the barrier does not separate the playing
space in neither P nor P ′, because if that does happen then
from [1] we already know that the capture could be avoided
by the evader. Finally, assume that the evader starts within
R′S \RS (point q1 in Fig. 5), that it starts moving with speed
V max
e and that it will be moving in the direction dictated

by the instantaneous partition corresponding to the instan-
taneous evader speed. For this initial system configuration,
as the evader is moving with speed V max

e , then the pursuer
strategy tells it to move with a rotation on site, moving the
system over the curve C2 shown in Fig. 5. Then consider that
the evader arriving to point q2 it decides to move at speed
Ve, then the pursuer strategy will tell it to move in a straight
line, moving the system along the curve C1 in Fig. 5. If the
evader decides to move again at speed V max

e while arriving
to point q1 then the system would move again towards point
q2. This evader’s speed interchange could be indefinitely
repeated by the evader at points q1 and q2, producing the
system to keep indefinitely oscillating avoiding the evaders
capture. The result follows.2

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88

0.55

0.6

0.65

0.7

0.75

0.8

TS'

UP

UP'

BS

BS'

q1

q2

C2C1

Fig. 5. Example of Lemma 2

Theorem 2: Consider a pursuer that has access to the
evader’s instantaneous speed Ve, with 0 < Ve ≤ V max

e , and
that such pursuer applies the controls dictated by the instan-
taneous partition corresponding to Ve. There are states in the
reduced space, where such pursuer’s strategy has no benefit
apart from the pursuer applying the partition corresponding

2Fig. 5 was produced with a simulation, hence, parameters that produce
the described behaviour do exist.

to V max
e , hence, knowing Ve is not of relevance on those

states and it can be discarded.
Proof: Without lost of generality, suppose that the

evader is currently traveling with a speed V e < V max
e ,

to which the pursuer has access to. Next, we proceed to
give sets of evader’s positions where knowing Ve does not
improve the payoff for a pursuer that applies the partition
corresponding to V max

e .
By Lemma 1, in the partition corresponding to V max

e , let
us call it P , region RS is delimited by any other region R′S
in a partition P ′ tied to a fixed speed Ve < V max

e . If over
the reduced space the evader is within region RS , for both
partitions P and (any) P ′ the dictated pursuer’s control is the
same, hence, the pursuer achieves capture in both partitions
travelling in a straight line. This can be seen as the pursuer
could discard the instantaneous speed and apply the controls
dictated by partition P .

If the evader is within R′S \ RS , partition P dictates the
pursuer to travel in a straight line and P ′ that the pursuer
rotates on site. Furthermore, in R′S \ RS is the place in the
reduced space where the pathological example described in
Lemma 2 exists. At the states where the pathological example
might take place the pursuer does not know if the evader
will have such behaviour by just knowing the instantaneous
evader’s speed. This indicates that in those states the pursuer
should opt for the strategy dictated by P , as such partition
achieves capture for each evader’s speed Ve bounded by
V max
e (Remark 1), and is the most restrictive partition (the

partition with the smallest usable part, Lemma 1) as it is the
only one that guarantees capture of the evader in the worst
case (evader traveling at V max

e ) when it is outside region RS

(any other partition P ′ makes the pursuer move in straight
line before time). In those states the pursuer should forget
about the partition P ′ related to the current instantaneous
speed and concentrate on partition P , that is, to discard the
current instantaneous speed.

If the evader is in R′R, the controls for the pursuer dictated
by partitions P and P ′, are the same, which make the pursuer
to rotate on site. As a consequence the instantaneous evader’s
speed is not useful and the pursuer can discard it. If the
pursuer keeps rotating on site it eventually takes the system
to R′S \RS , which takes us the scenario analysed above, or
to the universal surfaces where the partitions again agree that
the pursuer must travel on a straight line with V max

p and the
evader’s speed can be discarded.

By the past analysis we point out several states in the
reduced space (indeed, states over RS , R′S \ RS , and R′R),
where a pursuer that applies the controls dictated by the
instantaneous partition corresponding to Ve has no benefit
apart from applying the partition corresponding to V max

e ,
hence, knowing Ve is not of relevance on those states and it
can be discarded. Note, that the same analysis can be applied
for any Ve < V max

e . The result follows.
The importance behind Theorem 2 is that a gain in

information does not necessarily translate into a gain in
the game outcome. Indeed, in Theorem’s 2 proof, we have
identified two kind of scenarios where this happens. The first
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one, where the deviations on speed are irrelevant (region RS

in the proof) and therefore knowing the instant value of Ve
is irrelevant; and the second one, where the deviations are
relevant but the extra information is not enough to motivate
the pursuer to leave its worst case strategy (Lemma 2).

In the later scenario, knowing the instantaneous speed
Ve does not foresee the possible speed deviations that the
evader can follow. This means that the lack of certainty
on the future speed will make the pursuer to stick to the
worst case analysis. This suggest that a search for the
useful information is needed, that is information regarding
to relevant deviations (this might depend on the state of the
system), and this information must mitigate uncertainty in
such a way that the pursuer is not obligated to apply a worst
case analysis. (For instance, some other information apart
from the instantaneous speed would be needed in order for
the pursuer to differentiate when it is in the case described
in Theorem 1 from the one in Lemma 2.)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have analysed the scenario in which
the players deviate from their optimal controls. We have
shown that when the evader deviates from its optimal speed
there are cases where there exists a new pursuer motion
strategy that reduces the time to capture the evader; these
cases require more information about the evader’s state,
which was the instantaneous evader’s speed. Nevertheless,
we have exhibited cases in which despite the availability of
new information, the pursuer must stick to the worst case
strategy, otherwise it cannot capture the evader.

Based on the presented analysis, we have introduced the
necessity of finding the required information to identify
relevant deviations from the optimal strategies of the players,
and such information must mitigate uncertainty in such a
way that the players are not obligated to apply a worst case
analysis.

A hypothesis for further research is that in order to achieve
time optimality for any situation in the execution stage, the
necessary information to foresee future deviations must be
found, and such information might be all the necessary com-
ponents to reconstruct the full evader trajectory in advance
in the planning stage, otherwise in the planning stage a worst
case analysis as the Nash equilibrium is needed which might
not produce time-optimal trajectories if the evader deviates
from its optimal policy.
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APPENDIX I
PREVIOUS SUPPORTING RESULTS

In this appendix, we present three lemmas obtained in [1],
which are used in this work. For the proofs please refer to
[1]. In [1] τ = tf − t denotes the retro-time, in which tf is
the termination time of the game.

Lemma 3: The barrier consists of a straight line segment,
and it intersects the y-axis in the first quadrant if ρv ≥
| tanS|/ρd where S = cos−1(ρv) is the angle at the BUP.

This Lemma implies that for S = cos−1(Ve/Vp) then τ =
(b cosS)/(Vp sinS). See [1] for more details.

Lemma 4: The DDR switches controls and it starts a
rotation in place in the realistic space, at τs = | b cos s

V max
p sin s |.

If s ∈ [0, π], u∗2 switches first, otherwise u∗1 does.
Lemma 5: The straight lines trajectories that have an

orientation s ∈ (tan−1(ρvρd), cos
−1(ρv)] in the UP of the

first quadrant terminate when the DDR switches controls.
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