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Abstract— This paper is concerned with determining whether
a mobile robot, called the pursuer, is up to maintaining visibility
of an antagonist agent, called the evader. This problem, a
variant of pursuit-evasion, has been largely studied, following
a systematic treatment by increasingly relaxing a number of
restrictions. In [8], we considered a scenario where the pursuer
and the evader move at bound speed, traveling around a known,
2D environment, which contains obstacles. Then, considering
that, in an attempt to escape, the evader travels the shortest
path to reach a potential escape region, we provided a decision
procedure that determines whether or not the pursuer is up
to maintain visibility of the evader and obtained complexity
measures of this surveillance task.

In this paper, we prove that there are cases for which an
evader may escape only if it does not travel the shortest path
to an escapable region. We introduce planning strategies for
the movement of the pursuer that keeps track of the evader,
even if the evader chooses not to travel the shortest path to
an escape region. We also present a sufficient condition for the
evader to escape that does not depend on the initial positions of
the players. It can be verified only using the environment. All
our algorithms have been implemented and we show simulation
results.

I. INTRODUCTION

This paper is to do with pursuit-evasion. We are concerned

with determining whether a mobile robot, the pursuer, is up

to maintaining visibility of an antagonist agent, the evader.

In a previous paper, [8], we considered a scenario where

the pursuer and the evader move at bound speed, traveling

around a known, 2D environment, which contain obstacles.

To attempt to escape, the evader was assumed to travel the

shortest path to escape. In this paper, we take a step further:

we provide motion planning strategies for a pursuer which

has to keep track of an evader which may choose not to

follow the shortest path to escape policy. This new setting

is of interest, because, as will be shown in this paper, there

exist evasion paths that require the evader not to travel the

shortest path to escape. Unlike [8], the pursuer does not know

about the global paths to be taken by the evader but knows

where it will be after a small progress of time.

A. Contributions

In this paper, we make four main contributions: (1) We

show that, regardless of the relative speed of each player, if

the pursuer does not know the evader motion policy then

there exist cases where the evader can escape only if it

does not follow the shortest path to escape policy. (2) We

show that determining whether or not a pursuer can maintain

visibility of the evader at all times depends on two general

factors: (i) the initial positions of both the pursuer and the

evader; and (ii) the long-term path plans that can be executed

by the evader. (3) We present motion planning algorithms

that enable the pursuer to keep track of an evader who may

not follow the shortest path to escape policy. (4) We present

a sufficient condition for the evader to escape that does not

depend on the initial positions of the players and which

can be verified by looking at the environment only. Our

algorithms have been implemented and simulation results are

shown.

B. Related Work

Keeping track of a moving evader is a popular, long-

standing problem which has been studied from several per-

spectives. For example, [7] approached it applying game

theory. The result is an algorithm which attempts to max-

imize the probability that the evader will remain visible in

the future. [3] suggested a method which, unlike [7], does

not use a global map of the environment; instead, using

a local map, built with the help of a range sensor, [3]

applies a combinatorial algorithm that computes the motion

for the pursuer. [5] approached evader surveillance using

a greedy approach. To drive the greedy motion planning

algorithm, [5] applied a local minimum risk function, called

the vantage time. More related to ours is the work of [4],

which shows how to efficiently compute a pursuer optimal

path in response to a given evader movement in a known

environment. In [10] a related problem is presented, the

authors seek conditions under which the evaders can prevent

being seen by the pursuer. Pursuit-evasion has found to

be use in interesting applications. For example, in [6], the

authors noticed the similarity between pursuit-evasion games

and mobile-routing for networking. Applying this similarity,

they proposed motion planning algorithms for robotic routers

to maintain connectivity between a mobile user and a base

station. A preliminary version of this work is reported in [9].

II. PROBLEM DEFINITION

The evader and the pursuer are modeled as points mov-

ing over a known environment. The environment contains

obstacles, each of which is modeled as a polygon. Every

participant is assumed to accurately know its position at

all times, is equipped with an omni-directional sensor, and

it is limited to move at bound speed. Other than these,

no kinematic nor dynamic constraints are imposed on the

pursuer or the evader.
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The pursuer does not know the motion policy of the

evader, who moves continuously and antagonistically. The

pursuer is not able to predict the evader motion policy or to

learn it. However, it is assumed to know where the evader

will be after a small progress of time, ∆t. So, we assume

a universal clock which ticks every ∆t units of time; clock

ticks are then used to index periods of time. The pursuer is

thus able to know the whereabouts of the evader, from t to

t + ∆t.
Under this setting, we address the problem of discovering

pursuer motion strategies that are able to maintain strong

mutual visibility of the evader, considering that the global

motion policy of it is unknown. As will see in Section II-A,

strong mutual visibility is stronger than classical visibility.

Similarly, it is our goal to seek for sufficient conditions,

independent of the initial position of the players, such that

they imply that the evader is bound to escape.

A. Strong Mutual Visibility

Let R1, . . . , Rn be a partition of the environment, W =⋃
i Ri, such that each Ri (i ∈ {1, . . . , n}) is a convex region.

The evader is under pursuer surveillance if strong mutual

visibility of the evader by the pursuer holds [8]. Two regions

are strongly mutually visible if every point belonging to any

of the two regions is able to see all the points of the other

region. The pursuer maintains strong mutual visibility of the

evader, if it is within the same region where the evader is

or if they both are in regions that are strongly mutually

visible. Thus, maintaining strong mutual visibility of the

evader amounts to maintaining visibility of the entire region

where it is.

III. PRELIMINARIES

Region convexity ensures that a robot with omnidirectional

sensing is able to see all the points within the region of

residence. Our convex partition is similar to the region

decomposition produced by the lines of the aspect graph

in 2D using perspective projection [2], plus an additional

feature, namely: every pair of bitagent vertices are connected.

In our partition, bi-tangent rays are extended outward and

inward from a pair of bi-tangent points [8]. The partition of

the environment yields two graphs, one called Accessibility

Graph (AG) and the other Mutual Visibility Graph (MVG).

In each graph, nodes represent regions. In an AG, two nodes

Ri and Rj are connected, written (Ri, Rj) ∈ AG, if their

associated regions share a region boundary bigger than one

single point. Likewise, in an MVG, two nodes Ri and Rj

are connected, written (Ri, Rj) ∈ MVG, if their associated

regions are strongly mutually visible. Using the MVG and its

current position, each participant is able to know both which

regions are candidates to attempt to escape, called escapable

regions, and which regions the pursuer should move to if

an escape is to be prevented, called prevention-from-escape

regions.

An MVG therefore provides information to find a suf-

ficient condition to maintain evader visibility while an AG

provides possible region transitions that either participant can

carry out. Note that what counts as an escapable (respec-

tively prevention-from-escape) region depends on the current

regions where both the evader and the pursuer are. More

precisely, let Ei (respectively Pj) denote that the evader

(respectively the pursuer) is at region Ri (respectively Rj).

For each pair 〈Ei, Pj〉, denoting a problem configuration,

the set of escapable regions, written Re
(i,j) ⊆ int(W ), is

given by {R : (Rj , R) /∈ MVG}. Moreover, for every

escapable region R ∈ Re
(i,j), there is a set of prevention-

from-escape regions, written Rp

(i,j)(R) ⊆ int(W ), given by

{R′ : (R′, R) ∈ MVG}.

A. Bound Speed

Given a problem configuration, 〈Ei, Pj〉, the primary

constraint governing pursuit-evasion is given as a relation

on two times: the time taken for the evader to reach an

escapable region, te(Re〈i,j〉), for some Re〈i,j〉 ∈ Re
(i,j),

and the time taken for the pursuer to reach one associated

prevention-from-escape region, tpe(Rpe(Re〈i,j〉)), for some

Rpe(Re〈i,j〉) ∈ Rp

(i,j)(Re〈i,j〉).
For the pursuer to prevent the evader from escaping, the

constraint te(Re〈i,j〉) ≥ tpe(Rpe(Re〈i,j〉)) must be satisfied

at all times, for all Re〈i,j〉 ∈ Re
(i,j). Considering that both

pursuer and evader travel a given path, possibly at a different

speed, this constraint can be defined in terms of distances and

relative velocities:

de(E(e), Re〈i,j〉) ≥ dpe(P (pe), Rpe(Re〈i,j〉))
Ve

Vpe

(1)

where Ve and Vpe are respectively the speed of the evader

and the pursuer, and E(e) and P (pe) are the positions of the

evader and the pursuer. It is worth noticing that de and dpe

are, in general, geodesic distances. This formulation holds

for polygons with or without holes. However, in polygons

with holes a faster evader can always escape pursuer surveil-

lance following a simple strategy: turn around the nearest

hole [8].

IV. THE EFFECT OF INCOMPLETE INFORMATION OVER

THE PATHS TO ESCAPE

In [8], we have shown that traveling the shortest-path to

reach an escapable region is the best policy for the evader

if the pursuer knows which escapable region the evader is

aiming to.

We now show that shortest path is not the best escape

policy in the more general case, where the pursuer does

not know which region, among a collection, the evader will

choose to go in an attempt to escape. In fact, we will show

that there exist cases for which evasion is plausible only

under the proviso that the evader does not adopt the shortest

path to escape policy.

The careful reader will have already noticed that our result

takes the form:

∃x.(MayEscape(E, x) ∧ ¬Follows(E, ShortestPath)) (2)

where x ranges over configurations and E stands for the

evader. Theorem (2) accounts for a counterexample to the
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appealing conjecture:

∀x.(MayEscape(E, x) → Follows(E, ShortestPath)) (3)

which happens not to be a theorem.1 Clearly, there are

infinitely too many configurations for which the shortest path

policy enables the evader to escape. Producing any one such

an instance is trivial even for a primary school pupil. Even

though all these success cases, (3) is not a theorem.

Our non-trivial result, (2), holds regardless of whether the

evader is slower or faster than the pursuer. Let us consider

first the case of a faster evader.

Proposition 4.1: There exist cases where a faster evader

can escape only it does not travel the shortest distance from

its initial position to a escapable region.

Proof: Fig. 1 depicts the scenario in which we elaborate

our proof. There, E stands for the evader, P for pursuer. Let

A(p) denote that player A is at distinguished point p ∈ ℜ2.

R A

R Ad(2, )

R A

R A

ε

ε>0

3

2

R
B

R
B’ A’R

d(3, )’

k

d(k,        )

Ve=Vp+

Fig. 1. Evader faster than the pursuer

For the initial system configuration, (E(2), P (3)), there

are two escapable regions, RA and RB , each of which

has two prevention from escape regions, {RA, RA′} and

{RB, RB′}, respectively. Given that strong mutual visibility

holds, then if the evader, traveling the shortest path distance,

goes to either RA or RB , the pursuer is able to prevent

escape correspondingly going to either the nearest point that

belongs to RA′ or RB′ . d(E(2), RA) > d(P (3), RA′)V e
V p

and

d(E(2), RB) > d(P (3), RB′)V e
V p

. Notice that the pursuer

always goes to the nearest prevention from escape region;

this explains why going to RA or RB is not considered as

an option.

Now notice that if the evader first goes to point k,

then it will simultaneously diminish the distance to both

escapable regions. We emphasize that moving this way the

evader is not traveling the shortest path to any of either

escapable region (indeed, along this way it is not even

moving toward an escapable region). But notice that the

pursuer cannot achieve a similar goal: move to a place

where the distance to both prevention from escape regions,

RA′ and RB′ simultaneously diminishes. Once at k, the

evader has a wining move, given that it is faster than the

pursuer. This is because d(E(k), RA) = d(P (3), RA′) and

1Indeed, we arrived at (2) in an attempt to prove (3).

d(E(k), RB) = d(P (3), RB′). It follows, that the evader

can escape only when it does not travel the shortest path to

escape from its initial position.

The rationale behind this escape is that the pursuer does not

know where the evader is heading at in a long term and so

he has to take into account all possible escape regions. We

now consider the second case, where the evader is slower

than the pursuer.

Proposition 4.2: There exist scenarios for which a slower

evader can escape only if it does not travel the shortest

distance from its initial position to a escapable region.

Proof: Refer to Fig. 2.

ab k

L2

L1

L3

ε

ε.>0

Vp=Ve+

R
B’

R A’

RR AB

3

2

Fig. 2. Evader slower than the pursuer

At first, the evader is at position E(2) and the pursuer at

P (3), and thus the system configuration is (E(2), P (3)). Let

a and b respectively be the nearest point both to escapable

regions RA and RB . Notice that in this case these points also

belong to {RA, RA′} and {RB, R′
B}, the associated prevent

from escape regions and they are also the nearest points to

prevent escape. Let L1 = d(k, a), L2 = d(2, a) and L3 =
d(3, a) and assume both that L1 < L2 < L3 and that L1

L2

<
L2

L3

.2 Without loss of generality, assume that both players

move at saturated speed and that Vp = L3

L2

Ve. Then d(3, 2) >
d(2, k). Moreover, assume that the time that the evader needs

to travel L2, denoted, te(L2), equals the time the pursuer

needs to travel L3, denoted tp(L3).
First, notice that, under these conditions, if the evader

attempted to reach a traveling L2, the pursuer would be

able to catch up, traveling L3. However, if the evader went

to k, the pursuer would attempt to move to a place that

simultaneously reduces the distance that separates it from

both a and b; that is, to point 2.3 But then the pursuer is

bound to fail. This is because in the new system configuration

(E(k), P (2)), for the pursuer to catch up the evader it would

need to travel at Vp = L2

L1

Ve, but this contradicts our initial

assumption, namely: L1

L2

< L2

L3

. To see this, notice that to

catch up in the first step Vp = L3

L2

Ve, but in the second step

Vp = L2

L1

Ve but this implies that the velocity of the pursuer

must be bigger than the bound L3

L2

.

2The interested reader will have noticed that this condition is essential
for the argument to follow.

3In what follows, we omit from our reasoning the prevention of a escape
onto b, but recall that the pursuer must deal with both escape points at once.
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Thus, together, propositions 4.1 and 4.2, show that (3) is

indeed not a theorem: there exists cases where an evader can

escape only if it does not take the shortest path to escape,

one of the key contributions of this paper.

V. KEEPING OR ESCAPING PURSUER SURVEILLANCE

Any solution to the problem of determining whether or

not the pursuer is able to maintain evader surveillance

on a given environment depends on two main factors: (i)

the initial position of both participants; and (ii) the long-

term combinatoric paths that the evader can travel over the

environment in an attempt to escape. We will study both

factors below. We formulate our problem as a game and so,

for every match, we will determine which among the pursuer

or the evader has a winning strategy.

A. Initial Conditions

Finding a winner to an instance of our game depends

clearly on the initial position of both players, as well as their

corresponding maximum speed. There might be configura-

tions that either player would find unpleasant. Consider, for

instance, the case where, even though strong-mutual visibility

holds, the players are so apart one another, that, to escape,

the evader may just need to go to the adjacent region. To

see a concrete example of this case, refer to Fig. 2. If the

pursuer and the evader respectively are at point a and b and

if neither player is faster than the other, then the evader will

be in no troubles at all to escape.

Given an instance of the problem, to determine whether

or not there is still a game, we proceed as follows. First, use

the MVG and the AG, together with (1), to find out whether

there is a escapable region that the evader can reach in a time

strictly smaller than that needed by the pursuer to reach a

corresponding prevent-from-escape region. If there does not

exist any one such a escapable region, the game continues;

otherwise, there is a winning path for the evader.

Our method performs similarly to that of [1], even though

the latter method considers classical visibility4. This is

because, in this case, building a compact set is analogous

to identifying whether the evader is able to reach a escape

region before the pursuer prevents the escape.

B. Combinatoric Paths

Determining which player has a winning strategy also

depends on graphs that capture fundamental aspects of

the environment. We have found that such graphs can be

computed when considering the best paths to escape and the

sets of elements in ℜ2 that are up to prevent the escape even

whenever any one such best escape path is taken. We call

any one such set of elements in ℜ2 an Ω-border, since the

elements are all placed in the border between two regions

in the MVG. The evader has a winning strategy, if there

is a path for which an associated Ω-border collapses to

the empty set. Ω-borders are computed without considering

initial conditions; rather, the analysis is performed in a

4In classical visibility, two points see one another if the line segment
between them does not cross an obstacle

steady-state condition, where only the path determines the

size and shape of each Ω-border.

To compute every Ω-border, we made the evader to travel

every single shortest-time path starting on a reflex vertex 5

and visiting any other reflex vertex. These paths are all in the

reduced visibility graph [11]. We are interested only in paths

of the reducibility graph because any one time the evader

reaches a reflex vertex a new possibility for an escape comes

up. This is in turn because every reflex vertex, by definition,

breaks convexity of the environment.

The rationale behind the algorithm below is to find out

whether the pursuer can keep surveillance (respectively, the

evader can escape) at a long-term, assuming valid initial

conditions. The evader travels the reduced visibility graph,

choosing a visit ordering which aims to make the time to

escape smaller than the time to prevent escape. Notice that

this involves dealing with an intractable problem [8].

Below, we present an algorithm which plans pursuer

motions so as to keep track of an evader who does not

necessarily travel the shortest paths to an escapable region.

This algorithm consists of two methods. The first method

uses the network of shortest distance between borders of

escapable regions in order to define valid points for the pur-

suer departure. These points, which depend on the velocity of

both players, form the Ω borders. The second method uses Ω
borders in order to identify regions where the pursuer should

go to upon each move of the evader.

It is important to underline that while the Ω borders

are computed assuming that the evader travels moving in

the network of shortest path between reflex vertices, the Ω
borders are used to prevent the escaping of the evader even

if it does not move traveling those shortest paths.

We use Ω borders to compute a region in the plane where

the pursuer must be in order to prevent the evader from

escaping. We call this region S, for solution set. S ∈ ℜ2

is a set of points, which guarantee that at a given instant of

time, the evader cannot reach a reflex vertex in a time strictly

smaller than the time that the pursuer needs to reach an Ω
border.

1) Ω borders: Before presenting the algorithm to compute

the Ω borders, we need to define some preliminary concepts.

Let vk be a reflex vertex in the polygonal workspace W .

Inciding in vk , there are two segments of W . Conversely,

emerging from vk there are two inflection rays of the aspect

graph [2]. For each vertex vk, we order its associated

inflection rays using a counter-clockwise ordering. Thus, the

first inflection ray of vk on this ordering is called rk1 and

the second one rk2.

Each inflection ray is a potential Ω-border, which is to

be refined by our algorithm below. Ω-border refinement

depends on the paths that the evader travels over the reduced

visibility graph [11]. The evader might turn around any

vertex either clockwise or counter-clockwise. If the evader

turns around counter-clockwise a vertex vk, then it crosses

the rk1 inflection ray first; otherwise, it crosses rk2 first.

5A reflex vertex is one of an internal angle greater than π.
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Let V be the set of all reflex vertices in W . Then, we

have to analyze all permutational paths, each of which is

of the form pk = vk1 → vk2 → · · · → vk|V| → vk1 if

it is a cycle or pk = vk1 → vk2 → · · · → vk|V| if it

is a sequence (note that in the worst case pk has a size

of |V| + 1 or |V| respectively, but it can be shorter). In

particular, the inflection rays to be considered between two

consecutive reflex vertices on the path depend on which

direction the evader turns around the vertices: clockwise

or counter-clockwise. Basically, this analysis determines the

inflection ray to be considered next. For the ordering v ki →
vki+1, the only possible options are rki+1,1 or rki+1,2. The

selection process is as shown in table I.

vki vki+1 rki rki+1

� � rki,2 rki+1,2

� � rki,2 rki+1,1

� � rki,1 rki+1,1

� � rki,1 rki+1,2

TABLE I

INFLECTION RAYS TO BE USED AS Ω-BORDERS

Up to this point, we have a set Ωk for each pk, which

contains a collection of potential Ω borders (the inflection

rays) that the pursuer must visit as the evader goes through

each reflex vertex in the order specified by a given path p k. In

order to prevent an escape, the pursuer would need to reach

the Ω border Ωki at least at the same time that the evader

reaches the reflex vertex vki. What the algorithm shown

below does, it is to refine these potential Ω borders taking

into account the interaction between them (the refinement is

done by taking pairs of potential Ω borders). For example,

supposing that at the beginning the Ω borders are the

respective inflection rays given by a path pk and that the

pursuer starts from Ωk1, it may happen that in a first step

the pursuer will only be able to reach on time some portion

of the initial Ωk2, so when we calculate the reachable portion

of Ωk3 in a second step, we will be restricted to take as an

start set only the portion of Ωk2 that we were able to reach

at the first step; this chain of restrictions must be carried up

to the final Ω border defined by the path.

Our algorithm for computing the Ω borders, see Algorithm

1, takes into account two cases, one when pk is a sequence

and second, when pk is a cycle. When pk is a sequence

we initialize each Ωki in Ωk with its respective rki based

on pk and table I. For the refining process we take pairs

(Ωki, Ωki+1) starting from i = 1 to |V| − 1, where we

generate a reachable area around Ωki and then we intersect

it with Ωki+1 to get the reachable portion of Ωki+1 which

will be reused to perform the same calculations for the

next pair (Ωki+1, Ωki+2). After going through all pairs, we

obtain a refined Ωk|V| that is reachable from Ωk1. The next

step is to go backwards through pairs (Ωki, Ωki−1) with

i = |V| to 2, to recover the valid portions of each Ωki that

gave us the reachable portion of Ωk|V| from Ωk1. This is

done by generating a reachable area around Ωki and then

intersecting it with Ωki−1 to get the correct portion of Ωki−1.

We iteratively do the same procedure for all pairs. At the end

we obtain a valid Ωk1 that is a subset of rk1 which allow us

to reach a valid subset of rk |V| that is Ωk|V|.

Algorithm 1 Computing Ω borders

Input: Work space, W , environment partition.

Output: Ω borders.

for every permutational path of the form

pk = vk1 → vk2 → · · · → vk|V| → vk1

or

pk = vk1 → vk2 → · · · → vk|V|

do

1. Considering the pair vki → vki+1, look up at Table I

to determine the inflection rays: rki and rki+1;

2. Initialization. Ωk = {Ωki : i ∈ N, 1 ≤ i ≤ n}, where

n = |V| for a sequence or n = |V| + 1 for a cycle;

for i = 1 to |V| do

A. Ωki ← rki;

end for

if pk is a cycle then

B. Ωk|V|+1 ← Ωk1;

end if

C. bd ← true;

3. Ωk calculation;

if pk is a cycle then

repeat

A. Ωk|V|+1 ← Ωk1;

B. Ωk ← ΩBdrsInteraction(Ωk, pk, |V|+1, bd);
C. bd ← false;

until Ωk|V|+1 ⊆ Ωk1 ∨ Ωk|V|+1 = φ
else if pk is a sequence then

A. Ωk ← ΩBdrsInteraction(Ωk, pk, |V|, bd);
end if

4. Store(Ωk, pk);
end for

When pk is a cycle the procedure is basically the same as

the one for sequences. The main difference is that the last

Ω border Ωk|V|+1 in Ωk refers to the same inflection ray

as Ωk1. We perform the same refining procedure described

above to get a valid Ωk1 to go to a valid Ωk|V|+1, but

recalling that both Ωk1 and Ωk|V|+1 are subsets of rk1

we have to do some extra analysis here. After refining the

potential Ω borders and supposing that the evader would

take this path, three things can occur. First, if Ωk|V|+1 is

an empty set, this means that the pursuer can’t maintain

visibility of the evader (the evader wins the game). Second,

if Ωk|V|+1 ⊆ Ωk1, this means that the pursuer would be able

to maintain visibility of the evader and he would be able to

keep maintaining it if the evader decides to take this path

again and again. Third, if Ωk1 ⊆ Ωk|V|+1, this means that

the pursuer could maintain visibility of the evader but once

they have completed a cycle, the pursuer could have ended

in a non valid starting position, in which case, we repeat the

refinement procedure again until we find ourselves in the
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first or second case described above. Notice that since the

length of the winning pursuer paths are lower bounded by

tours over the reduced visibility graph (the shortest evader

path), those tours provide a convergence condition for the

algorithm for computing the Ω borders.

Algorithm 2 ΩBdrsInteraction(Ωk, pk, n, bd)

Input: Set Ωk composed by unrefined Ω borders related

to pk, path pk, n length of pk, bd flag that indicates that

the calculation must be done in both directions;

Output: Set Ωk with refined Ω borders due to the inter-

action between them.

if bd == true then

for i = 1 to n − 1 do

1. Ωki+1 ← Refine(Ωki, Ωki+1, vki, vki+1);
end for

end if

for i = n to 2 do

2. Ωki−1 ← Refine(Ωki, Ωki−1, vki, vki−1);
end for

Return Ωk;

Algorithm 3 Refine Ω borders, Refine(Ωka, Ωkb, vka, vkb)

Input: Ω border Ωka, Ω border Ωkb, reflex vertex vka and

reflex vertex vkb.

Output: refined Ω border.

1. A = {x ∈ R
2 : d(p, x) ≤ d(vka, vkb)

Vpe

Ve
, p ∈ R

2, p ∈
Ωka};

Return A ∩ Ωkb;

Consider Fig. 3. In both parts, the environment is the

polygon shown with black solid lines, the region partition

is shown with dashed lines and the regions are labeled with

numbers. The polygon has 4 reflex vertices. The Ω borders,

computed setting V e = V p, are shown in dark gray (green)

color. In Fig. 3 A) the Ω borders were computed using

the vertices {a, b, c}; here, the resulting Ω borders are two

points and one line segment. In Fig. 3 B) the Ω borders

were computed using all the reflex vertices {a, b, c, d}; now

the resulting Ω borders are simply points. Notice that when

the vertex d is considered, the Ω borders are reduced to

the vertices themselves. This is because the border of the

partition regions and the vertices are equally separated one

another. Notice that in this environment, if we set Ve > Vp,

then the Ω borders would be empty sets. Thus, in this

environment, a faster evader will always win.

In general, computing Ω borders requires dealing with

a computationally intractable problem. However, we can

find an approximate solution, for example, by computing

Ω borders for a subset of reflex vertices. This would be

useful if we clustered the vertices, hence dividing the tour

and then compute Ω borders for each part of this tour. This is

equivalent to do local planning; the planning horizon would

be determined by the number of vertices to consider. This

strategy will not guarantee surveillance at all times but it
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Fig. 3. Ω borders

is useful to make short term planning that prevent evader

escaping. Of course, for small polygons, e.g. with around 15

reflex vertices or so, it is actually possible, using a regular

PC, to compute the Ω borders for all reflex vertices.

C. Regions of Local Solution

S is the set of points where the pursuer must be to prevent

the evader from going behind a reflex vertex, vk, and hence

escape. Let V be a subset of all reflex vertices that fulfill

the properties described in Proposition 5.1. Then, considering

that the evader and the pursuer respectively are at region R i

and Rj , S is defined by (4).

Proposition 5.1: V is a subset of all the reflex vertices

which have the next two properties: first, they must share a

point with some region not mutually visible with Rj (region

where the pursuer is located) and second, they must be

visible from the evader’s position.

Proof: First of all, all the the vertices that are part of

a region mutually visible with Rj are not candidates to be

taken as part of V because they do not produce an escape

to the evader. The region related to them is currently visible

to the pursuer. By contrast, due to the condition that the

escapes must take place going through a reflex vertex and

supposing that the evader is at a given position, if the evader

wants to reach a vertex that is not visible to him from that

position, he will need to pass through a reflex vertex that

he can see from the given position. All the posible escapes

through the vertices behind a vertex that is visible to the

evader’s position were already considered in the construction

of the Ω borders related to it, hence the only thing left to do

is to make sure that the pursuer reaches the correct Ω border

before the evader reaches the visible reflex vertex. This is

done by placing the pursuer inside the S set.

In equation (4), Ω(vk) denotes the Ω border associated to

reflex vertex vk , d(p, Ω(vk)) the geodesic distance between

the point p and Ω(vk), d(P (e), vk) denotes also a geodesic

distance, this time between the evader position P (e) and

vertex vk, and V the subset of all the reflex vertices, as

described in proposition 5.1 (that is, we consider only the

reflex vertices that share a point with some R not strong

mutually visible to Rj that are visible from the current

evader’s position.)

The region S is used to define a new valid pursuer position

regardless the trajectory of the evader. Thus, we have a
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S = {p ∈ R : (R, Ri) ∈ MV G)
∧

vk∈V

d(p, Ω(vk)) ≤ d(P (e), vk)
Vpe

Ve

)} (4)

method to compute the pursuer motion, which is independent

of the evader policy and path.

VI. PLAYERS STRATEGIES AND PATHS

We have found that under the definition of strong mutual

visibility, the possible paths that the evader can travel to

escape can be classified in two types: 1) paths where the

evader escapes when it does not touch a reflex vertex in

the environment 2) paths where the evader escapes but the

opposite condition holds.

The first types of paths do not lie on the visibility graph.

Fig. 4 shows a path of type 1). As before, the environment is

the polygon shown with back solid lines, the region partition

is shown with dashed lines and the regions are labeled with

numbers. The evader is at region 1 and the pursuer at region

21. If the evader goes to region 2, then the pursuer must go

to region 12 (the closest prevention from escape region from

the current pursuer position).
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Fig. 4. Paths type 1

Arrows represent paths. P stands for the pursuer and E for

the evader. These paths cannot be characterized based only

on the reflex vertices positions. But notice that Equation (1)

can be used to determine whether or not at a given time

the evader can escape. At all instants of time, based on the

position of the players, together with the MVG and the GV, it

is possible to decide whether or not the evader has a winning

move.

For the evader to travel the second type of paths, it may

move along the reduced visibility graph. The motivation for

the evader to do so is whenever there is an empty Ω border,

it will eventually win (indeed when it reaches the associated

vertex). Notice that this condition is independent of the initial

position of the players and can be determined using only the

map. This is a sufficient condition for the evader to win.

VII. SIMULATION RESULTS

All our simulation experiments were run on a dual core

processor PC, equipped with 2 GB of RAM, running Linux.

Fig. 6 shows snapshots of our simulations. In these figures,

obstacles are shown in gray and the free space in white,

regions are delimited with line segments. The evader position

is the (red) square and the pursuer is the (blue) circle. The

Ω borders are shown in dark gray (green) and the S regions

in light gray (yellow).

In the simulation the velocity of the evader was set equal

to the velocity of the pursuer V e = V p. In Fig. 6, the

evader does not travel the shortest paths to escape. It is

interesting to see that when the pursuer gets close to the

edges of the reduced visibility graph, the associated S set

becomes smaller. In Fig. 6 c), when the evader touches the

obstacle (it is on an edge of the reduced visibility graph), the

S region collapses to a single point (the pursuer must be at

the same position where the evader is). Finally, notice that

the S regions are delimited either by line segments or arcs

of circles. Note that the Ω borders used to compute the S
set will change depending on the regions in which both the

evader and the pursuer reside, and the S set itself depends on

the current position of the players. Recall that all Ω borders

for all possible paths (sequence of reflex vertices) and regions

in which the players may reside are pre-computed and stored,

when the game takes place the appropriate Ω borders are

retrieved. For instance, if the pursuer and the evader are

in the region shown in Fig. 6 b) then the corresponding Ω
borders are points and line segments, but if the players are

in the regions shown in Fig. 6 e) then the Ω borders are only

points.

The running time of our software for computing the Ω
borders of the environment shown in Fig. 6 was 40 ms. The

S regions were computed in approximatively 33 ms. These

very small running times are due to the small number of

reflex vertices (only 4) for this environment.

Fig. 5 shows in dark gray (green) the Ω borders corre-

sponding to the tour of vertices 1 → 2 → 3 → 4 → 5 → 1
(see figure to locate the corresponding vertices). These Ω
borders were computed in 45 ms. Since the environment

is small, in this scenario we compute the Ω borders with

an evader tour that considers all the reflex vertices. We are

currently testing our programs in bigger environments (50

reflex vertices or so).

VIII. CONCLUSION

In this paper we have proved that if the pursuer does

not know the evader motion policy then there are cases

where an evader can escape only if it does not travel the

shortest distance from its initial position to a escapable

region, regardless whether the evader is faster or slower

than the pursuer. We have presented an algorithm which

plans pursuer motions so as to keep track of an evader

who does not necessarily travel the shortest paths to an

escapable region. We have found a sufficient condition for

the evader to escape that does not depend on the initial

positions of the players. It only depends on the environment.

Therefore, this condition can be checked, before the game
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starts, if the condition holds then there is no motivation to

play. Finally, we have implemented all our algorithms and

presented simulation results.
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