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Abstract— This paper investigates an object detection prob-
lem using a mobile robot equipped with a vision sensor. The
main novelty of this work is an approach that combines
localization of the robot relative to an object believed to be
the target and confirmation of this object’s identity. Since
the position of the robot relative to the candidate target is
never exactly known, we model this position by a probability
distribution over a set of cells forming a decomposition of
the workspace around the candidate target. By performing a
series of moves the robot acquires several images and runs
a target detector module on each image. Its goal is not only
to reach a position where the target detector can confirm the
target with high confidence (as this approach would be prone
to false positives). It is also to reach a position where, with
high probability, the target detector will confirm with high
confidence that the candidate target is actually the target. This
twofold goal reduces drastically the likelihood of false positives.
The target confirmation problem is modeled as a Partially-
Observable Markov Decision Process (POMDP), which is solved
using Stochastic Dynamic Programming (SDP).

I. INTRODUCTION

In this paper we investigate an object detection problem
using a mobile robot equipped with a vision sensor. More
precisely, we consider the following scenario: the robot
is instructed to find a certain object T (the target) in its
environment; at some point of the search process (e.g., by
using a coverage software module such as the one described
in [1]), the robot believes that it has encountered a candidate
C for T , but it is not sure yet that C is T ; taking advantage of
its mobility, the robot tries to achieve adequate viewpoints to
confirm (or infirm) that C is actually T . The robot plans its
motion using an appearance-based model of T constructed
during a preliminary training phase.

The main novelty of this work is an approach that com-
bines localization of the robot relative to the object C (the
candidate target) and confirmation of the object identity as
the target. Since the position of the robot relative to the
candidate target C is never exactly known, we model this
position by a probability distribution over a set of cells
forming a decomposition of the workspace around C. By
performing a series of moves the robot can acquire several
images of C and run a target detector module on each image.
The goal of the robot is not just to reach a position where
the target detector can confirm with high confidence that C
is actually the target T (as this approach would be prone
to false positives). It is also to reach a position where with

high probability the target detector will confirm with high
confidence that C is the target T . This twofold goal reduces
drastically the likelihood of false positives.

We believe that the ability of a mobile robot to reliably
confirm the presence of a target object in an environment
has a wide range of applications, specially as an end module
for search problems. There has been much research where
a robot or a team of robots must search an environment to
find an object or a moving agent (adversarial or not) [2], [4],
[5]. Usually in this kind of research the target is considered
found when a robot has established a line of sight with it.
This detection condition is based on a strong assumption
as it requires that the robot will be able to identify the
target from any orientation at any distance. Several research
works try to fulfill this detection condition by creating
powerful detectors [6], [7], [8]. Instead, we believe here that
the motion capabilities of the robot should be exploited to
confirm the presence of the target.

Section II discusses related work. Section III defines
the observation model of a target T . Section IV proposes
a probabilistic model of the target confirmation problem.
Section V describes the probabilistic model underlying the
motion commands available to the robot. Section VI presents
the planning method used to solve the confirmation problem.
Secton VII reports on three experiments carried out in
simulation. Section VIII concludes the paper and suggests
directions for future research.

II. RELATED WORK

There has been a considerable amount of research on
search problems in robotics. One such problem is a pursuit-
evasion problem where a team of robots (the pursuers) must
find an evasive mobile target (the evader). The planner must
compute a path of the pursuers that guarantees that the
evader will eventually be detected, even if it tries to sneak
in areas of the environment that have previously been visited
by pursuers [2], [3], [4]. One possible additional constraint
is, for a given geometry of the environment, to minimize the
number of pursuers. A common assumption made in this line
of work is that the evader is detected as soon as a line of sight
exists between one pursuer and the evader. This assumption
is not very realistic in most applications.

The problem of searching a static object has often been
treated in previous research as an active vision problem [10],
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[11], where the mobility of the robot is exploited to take sev-
eral images and the planner selects the successive viewpoints.
This problem is related to the Next-Best-View problem in
map building and object modeling [12], [13], [14]. A typical
active vision method consists in minimizing the entropy of
an estimator based on the motion of the visual sensor [15].
In this line of work, a method is presented in [9] that
first learns viewpoint detection models for object categories.
These models are then used in a sequential recognition
process, where the robot incrementally infers and updates
the likelihood that an object of a certain category is present
in a scene, as new detector responses are received. The
viewpoint planner uses a greedy approach that selects the
next viewpoint that minimizes the entropy over the posterior
belief of the presence of an object. Like in [9], our work
is also based on the idea that the ability to detect a target
depends on the viewpoints from which it is observed. How-
ever, our approach is not based on entropy minimization.
Instead, it combines robot localization relative to a candidate
target and confirmation of this candidates identity. Moreover,
our planner uses a probabilistic model of robot motion. A
POMDP-based approach for active perception planning has
also been reported in [21].

In [1] we have addressed the problem of covering an envi-
ronment to find a target candidate. The new work presented
here complements this previous work as follows. The method
in [1] is intended to quickly find a candidate C of the target
object T over a large environment by using simple visual
clues (e.g., C has the same color as T ); but it is not reliable
enough for most applications. The new method described
below is intended to confirm that C is, or is not, T with high
probability by making a more thorough use of successive
images of C taken from a small region around C.

III. OBSERVATION MODEL

We assume that the robot moves on a planar horizontal
surface and that it is able to rotate in place (e.g., like a
differential-drive robot). We also assume that during the
target confirmation process, the candidate target will not be
significantly hidden by any obstacle and that the robot will
be able to move freely around it. The position of the robot is
defined as the position of the camera in the horizontal plane.
We assume that the camera is mounted on a turret, so that
it can always point toward the candidate target.

Before it can confirm the presence of a target T , the robot
must be equipped with a software module DT , hereafter
called the detector of T , capable of identifying T , at least
from some viewpoints. Given an arbitrary image taken by
the robot’s camera, DT returns a discrete detection score
y ∈ {o1,o2, ..,on}, where o1 < o2 < ... < on, measuring how
well the image matches the appearance of T , hence the con-
fidence of the identification. The response on indicates very
high confidence, whereas o1 means very poor confidence.
In addition, we expect that DT can sometimes make false
positive mistakes, e.g., because the image contains an object
similar to T or because it is noisy.
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Fig. 1: Space decomposition around candidate target C

At this stage, the method used to create DT is not impor-
tant (any method could potentially be used). In Section VII
we will present the specific method used in our experimental
system.

The observation model is a trained probabilistic model
of the response of DT as a function of the location of the
robot relative to T . To train this model, we first attach a
horizontal two-dimensional coordinate frame to T and we
decompose the space around T into non-overlapping cells
c1, ...,cm. Fig. 1 shows a particular decomposition made of
m = 24 cells created by drawing concentric circles centered
at the origin of the coordinate frame (roughly the center
of T ) and erecting radial rays from this origin. Although
many other decompositions could be used (some perhaps
better), we will use this decomposition throughout the rest
of this paper. We will discuss the potential impact of the
resolution of the decomposition on the efficiency of the
detection process in Section VII.

Given DT and the space decomposition around T , the
observation model of T is then created in the form of
a probability distribution P(o j|ci), i ∈ {1, ...,m} and j ∈
{1, ...,n}, where P(o j|ci) is the probability that the response
of DT is o j given that the input image has been taken from
within cell ci. For each cell ci, a collection of images of T is
taken at random positions of the robot in ci. The normalized
frequency of each response o j of DT for all these images
gives P(o j|ci).

IV. CONFIRMATION PROCESS
Consider now the situation where, using the coverage

module presented in [1], the robot has detected in the current
image the presence of an object C that might be the target T
(hence, C is a candidate target). The goal of the confirmation
process is for the robot to plan and perform a series of moves
that will eventually confirm, or infirm, that C is actually T .

To plan these moves, the robot assumes around C the same
space decomposition X = {c1, ...,cm} that was created around
T to create the observation model of T (see Section III).

It also assumes that it was brought by the coverage module
into one cell of this decomposition, but the robot does not
know which one. In other words, the robot does not know
its position inside the decomposition.

The confirmation process consists for the robot to perform
a series of motion commands ut at times t = 0,1,2, ..., until

6456



the presence of T is confirmed or infirmed. The motion
model underlying ut , which depends on the decomposition
X , will be described in Section V. At each time t, the location
xt of the robot will be modeled at the cell resolution by a
probability distribution over the m cells of X .

Initially (i.e., just before time t = 0), the unknown location
of the robot is assumed to be uniformly distributed over
the m cells. At any time t ≥ 0 the probability distribution
of the robot’s position over X , P(xt |It), can be inferred as
follows from the observation model of T and the history It =
{yt ,ut−1, It−1} of applied motion commands and successive
scores yt returned by the detector DT [16], [17]:

P(xt |It) =
∑

xt−1
P(xt−1|It−1)P(xt |xt−1,ut−1)P(yt |xt)

∑
xt

∑
xt−1

P(xt−1|It−1)P(xt |xt−1,ut−1)P(yt |xt)
(1)

where xt and xt−1 range over {c1, ...,cm}.
One goal of the robot during the confirmation process is

to reach at some time t a position where DT returns a high
score yt ≥ ô, where ô is a given threshold (in our experiment
we usually set ô to on). But this goal is not enough, since it
could be achieved by chance (false positive). In addition, we
require that the robot must have reached a position at t from
which it expects with high probability (i.e., a probability
greater than some given threshold λ ) that DT will return a
score y≥ ô. The resulting twofold goal does not completely
eliminate the risk of a false positive, but drastically reduces
the chances that it happens. Hence, planning a sequence of
moves to confirm the presence of T mixes robot localization
relatively to the candidate target and target identification.

As modeled above, the problem of computing a motion
strategy for the confirmation process can be regarded as a
POMDP [19], [20]. In our implementation, we use Stochastic
Dynamic Programming (SDP) with imperfect state infor-
mation as described in [18] to compute such a strategy.
But, before describing this computation, let us introduce the
motion model underlying the commands ut , t = 0,1,2, ...

V. MOTION MODEL

The purpose of this section is to define the probability
distribution P(xt |xt−1,ut−1).

At each step t, we allow the robot to choose
among 4 motion commands (Fig. 2a): U =
{ f orward, backward, le f t, right}.

The command forward is intended to make the robot move
in the direction of the estimated origin of the candidate
target’s frame. The command backward is intended to make
the robot move in the opposite direction. The commands left
and right are intended to make the robot move tangentially
around the estimated origin, respectively in the clockwise
and counter-clockwise directions.

We estimate the position of the robot up to the resolution
of the cells. This means that when the robot is located
within a cell ci, it can be anywhere in ci with a uniform
distribution over ci. So, when a command ut−1 is executed
from within a cell xt−1 = ci, the transition probability P(xt =
c j|xt−1 = ci,ut−1) is calculated as the ratio of the area of the
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Fig. 2: Motion model

region R(xt−1 = ci,ut−1) that is contained in cell xt = c j,
where R(xt−1 = ci,ut−1) is defined as the set of all the robot
positions resulting from the execution of ut−1 from each
one of the positions within xt−1 = ci. See Fig. 2b, where
the command left was applied from within c9 resulting in
the region c′9 = R(xt−1 = c9,ut−1 = le f t). (Note that here c′9
is not a cell but a region that overlaps several cells.) For
simplicity, we assume that motion control is perfect (i.e.,
the robot moves exactly as expected). This simplification
does not eliminate the fact that the robot’s position is
uncertain (due to both its unknown initial position and space
decomposition). Adding uncertainty in control could be done
easily by enlarging the regions R(xt−1 = ci,ut−1).

The transition probabilities P(xt = c j|xt−1 = ci,ut−1) can
be calculated geometrically for each one of the four com-
mands. An advantage of the concentric cell decomposition of
Fig. 1 is to benefit from symmetries that reduce computation.

VI. COMPUTATION OF MOTION STRATEGY

We compute a motion strategy up to a finite planning hori-
zon N in the form of a policy π(t, It) that gives the motion
command to be applied at every time t = 0,1,2, ...,N − 1
for every possible history It . For this computation, we use
Stochastic Dynamic Programming with Eqs. (2), (3), (4), (5),
and (6) (see [18]), where g̃(It ,ut) is the gain function.

(2)
JN−1(IN−1) = max

uN−1∈UN−1

[
g̃(IN−1,uN−1)

+ E
xN−1

{
E
xN
{gF (xN)|xN−1,uN−1}|IN−1,uN−1

}]

(3)
π(N − 1, IN−1) = arg max

uN−1∈UN−1

[
g̃(IN−1,uN−1)

+ E
xN−1

{
E
xN
{gF (xN)|xN−1,uN−1}|IN−1,uN−1

}]
and for t < N−1

Jt(It) = max
ut∈Ut

[
g̃(It ,ut)+ E

yt+1
{Jt+1(It ,yt+1,ut)|It ,ut}

]
(4)

π(t, It) = arg max
ut∈Ut

[
g̃(It ,ut)+ E

yt+1
{Jt+1(It ,yt+1,ut)|It ,ut}

]
(5)

Since we want the robot to achieve a position where the
condition P(yt+1 ≥ ô|It ,ut) > λ is satisfied, we set the gain
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function g̃(It ,ut) to P(yt+1≥ ô|It ,ut) as given by Eq. (6). This
equation makes use of the observation model, the motion
model, and the current belief on the robot’s location:

P(yt+1 ≥ ô|It ,ut) = ∑
xt+1

P(yt+1 ≥ ô|xt+1)∑
xt

P(xt+1|xt ,ut)P(xt |It) (6)

We also set an execution horizon Ne that is usually much
larger than the planning horizon N. The planner first plans
a motion strategy up to horizon N. This strategy is then
executed. If the goal is achieved–i.e., if the robot reaches at
time t a position where the condition P(yt+1 ≥ ô|It ,ut)> λ

is satisfied and if the detector actually returns a confidence
score greater than ô at time t + 1–then the confirmation
process ends with success. Otherwise, a new strategy is
computed (from the current robot position), again with
horizon N. This iterative process ends whenever the goal
is achieved or when p×N ≥ Ne, where p is the number of
times the planner has been invoked. In the later case, the
robot considers that the object C is not the target T . So, for
instance, if N = 4 and Ne = 100, the planner may be called
up to 25 times, if the presence of the target is not confirmed
sooner.

This approach differs from entropy minimization ap-
proaches commonly used in pure localization problems [16].
Here, minimizing entropy over the state belief could lead
the robot to knowing its position well, but at a location
where DT may return poor scores. Our approach does not
minimize entropy by concentrating the probability mass on
a particular object (the target) among several other objects
as was proposed in [9], [21]. This allows us to only focus
on the target’s appearance and avoids the need to generate
observation models for many objects that are not potential
targets.

However, our approach may get trapped into local maxima
in the function Jt if the horizon N is too small. We will
discuss this issue in Subsection VII-D.

VII. SIMULATION RESULTS
A. General setting

To test our approach and simultaneously have control
over the experimental scene, we built the textured virtual
environment shown in Fig. 3, in which we can obtain
synthetic pictures with realistic appearance while the robot
moves to successive viewpoints.

For all the experiments reported below the planner uses the
24-cell decomposition shown in Fig. 1. For each target T ,
the detector DT uses a deformable part model algorithm [6]
trained on a set of images taken from a single cell cg of
the decomposition. Such algorithm has been tested in large
image databases containing highly variable conditions [6],
e.g., scale and light conditions. Cell cg is selected so that
distinctive features of the target are visible. Therefore the
detector returns high confidence scores when the robot is
in cg. The scores of the detector tend to decrease when the
viewpoint moves away from cg, except in cases where the
target has similar appearance under very different viewpoints.
The scores range over 6 values, i.e., n = 6.

Fig. 3: Virtual environment.

For simplicity, in the motion model we consider determin-
istic controls. As already mentioned, this does not eliminate
the uncertainty regarding the exact robot’s position since
we only estimate it up to the cell resolution and the robot
moves with a constant step S in the 4 predefined directions
(see Section V). We also emulate a range sensor that prevents
the robot from going too close or too far away from the
candidate object C.

B. Experiment #1

(a) Cat target (b) Path generated with N = 3 and
λ = 0.55

(c) Initial view (d) View on detection

Fig. 4: Experiment #1

Here the target is the cat shown in Fig. 4a. To train the
detector we chose cell c10 to be cg. The training set consisted
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o1 o2 o3 o4 o5 o6
c1 0.236 0.324 0.220 0.140 0.068 0.012
c2 0.000 0.000 0.000 0.132 0.644 0.224
c3 0.196 0.376 0.224 0.160 0.044 0.000
c4 0.916 0.084 0.000 0.000 0.000 0.000
c5 0.312 0.560 0.128 0.000 0.000 0.000
c6 0.000 0.876 0.124 0.000 0.000 0.000
c7 0.144 0.688 0.168 0.000 0.000 0.000
c8 1.000 0.000 0.000 0.000 0.000 0.000
c9 0.152 0.412 0.156 0.180 0.092 0.008
c10 0.000 0.000 0.000 0.000 0.428 0.572
c11 0.112 0.360 0.268 0.096 0.144 0.020
c12 0.896 0.104 0.000 0.000 0.000 0.000
c13 0.276 0.616 0.108 0.000 0.000 0.000
c14 0.000 0.420 0.580 0.000 0.000 0.000
c15 0.200 0.540 0.260 0.000 0.000 0.000
c16 1.000 0.000 0.000 0.000 0.000 0.000
c17 0.596 0.204 0.124 0.068 0.008 0.000
c18 0.000 0.040 0.320 0.372 0.260 0.008
c19 0.440 0.244 0.232 0.064 0.020 0.000
c20 1.000 0.010 0.290 0.390 0.290 0.010
c21 0.804 0.196 0.000 0.000 0.000 0.000
c22 0.068 0.880 0.052 0.000 0.000 0.000
c23 0.740 0.260 0.000 0.000 0.000 0.000
c24 1.000 0.000 0.000 0.000 0.000 0.000

TABLE I: Cat observation model P(y = o j|x = ci) (Experi-
ment #1)

of 100 sample images from randomly selected viewpoints
within c10. Then, we generated the detector’s observation
model using 200 images sampled at random over each of
the 24 cells (shown in Table I). As expected, with high
probability, the detector returns high scores (o5 or o6) in
c10. Conversely, the probability that the detector returns the
lowest scores o1 and o2 is greater in cells distant to c10.

Using the method of Section VI, we generated motion
strategies with 4 planning horizons N = 1,2,3 and 4. The
robot was initially in cell c14 (located far away from c10). The
execution horizon was set to Ne = 100. The threshold ô was
set to o6 (the highest confidence score of the detector). Runs
were performed with 3 values of the probability threshold
λ : 0.45, 0.50, and 0.55. Note that, together, the observation
model of Table I and Eq. (6) determine the upper-bound
maxci [P(y ≥ ô|ci)] for λ , beyond which it is impossible to
confirm the target presence. Here this upper-bound is 0.572.
It depends on the shape and resolution of the decomposition.
In general, it is higher for finer decomposition.

Fig. 4b plots the path followed by the robot in a run with
planning horizon N = 3 and probability threshold λ = 0.55.
The initial position of the robot is shown with a black
circle, its final configuration as a red (gray) circle, and
the intermediate sensing locations as squares. The initial
appearance of the cat (then the candidate target) is shown
in Fig. 4c. The detector returns a low score, so that the
robot needs to move to a better viewpoint. Fig. 4d shows
the target’s final appearance when the robot confirms the
presence of the cat. In this case, the confirmation process
required 15 moves (some sensing locations are repeated as
the robot moves back and forth to refine its localization and
eventually confirm the detection).

For comparison, we also ran separately a fixed motion
strategy that consists for the robot to move around the
potential target in clockwise direction. We also ran a random

(a) Fixed strategy path (b) Random strategy path

Fig. 5: Sample Trials with λ = 0.55

strategy that consists for the robot to perform a move
picked uniformly at random at each step. In both cases, the
maximum number of steps was set to Ne = 100. Fig. 5 plots
the path of the robot produced by a run of the fixed strategy
and the path produced by a run of the random strategy. In
either cases the robot was unable to confirm the presence of
the target in 100 steps.

Planning λ # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
0.45 33.698 32.580 9.854 93

1 0.50 42.994 41.837 12.693 88
0.55 42.493 41.385 12.513 88
0.45 12.915 11.816 37.428 100

2 0.50 13.150 12.068 38.004 100
0.55 14.385 13.305 42.443 100
0.45 12.837 11.471 405.655 100

3 0.50 13.120 11.715 415.278 100
0.55 13.875 12.385 440.959 100
0.45 12.230 11.028 35485.734 100

4 0.50 12.587 11.402 37040.285 100
0.55 13.655 12.431 40236.170 100
0.45 55.750 43.344 - 22

Random 0.50 62.962 46.266 - 26.5
0.55 61.354 47.201 - 15.5

TABLE II: Statistics for Experiment #1 (cat)

Table II shows some statistics (averages of number of
sensing locations, path length, and planning time), as well as
the percentage of target confirmation. Each line of the table
was obtained over 200 runs with different initial positions
of the robot within cell c14 (more runs did not produce
significantly different results). Statistics for the fixed strategy
are not included in the table because all 200 runs failed to
confirm the target’s presence. With planning horizons set to
2, 3, and 4, the presence of the target is confirmed by our
method in all runs for all values of λ . When the horizon
is set to 1, the percentage of confirmation drops to about
90%, but it is still much better than for the random strategy.
For all values of λ , the smallest number of sensing locations
and the shortest path lengths are obtained with a planning
horizon of 4. The number of sensing locations and the path
lengths are the largest for the random strategy.

So, as expected, we get better results when the planning
horizon increases. However, the time spent in planning also
increases quickly with N (and also with λ ). Here, planning is
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approximately 90 times longer when N = 4 than when N = 3,
for approximately the same result quality. In general, the best
tradeoff will depend on the specifics of the application.

C. Experiment #2

(a) True bottle (b) False bottle

(c) Path generated with N = 3 and
λ = 0.8 (true bottle)

(d) Path generated with N = 3 and
λ = 0.8 (false bottle)

(e) Final view (true bottle) (f) Final view (false bottle)

Fig. 6: Experiment #2

Here we have two similar bottles, the “true” bottle
(Fig. 6a) and the “false” bottle (Fig. 6b). The true bottle
has a circular label that the false bottle does not have. Apart
from this label, the two bottles are identical. The target is the
true bottle. The purpose of this experiment is to evaluate the
robot’s ability to discriminate between two similar objects.

Like in experiment #1, we created the observation model
of the true bottle by training the detector over a set of 100
images taken from within cell c10, after placing the true bottle
so that its two labels are visible from c10. This model is
shown in Table III. Note that in this table, the probability of

o1 o2 o3 o4 o5 o6
c1 0.000 0.000 0.010 0.477 0.427 0.086
c2 0.000 0.000 0.000 0.000 0.095 0.905
c3 0.000 0.000 0.010 0.558 0.392 0.040
c4 0.000 0.000 0.839 0.161 0.000 0.000
c5 0.000 0.000 1.000 0.000 0.000 0.000
c6 0.000 0.000 1.000 0.000 0.000 0.000
c7 0.000 0.000 0.995 0.005 0.000 0.000
c8 0.000 0.000 0.834 0.166 0.000 0.000
c9 0.000 0.000 0.036 0.472 0.437 0.055
c10 0.000 0.000 0.000 0.000 0.317 0.683
c11 0.000 0.000 0.065 0.518 0.392 0.025
c12 0.000 0.010 0.900 0.090 0.000 0.000
c13 0.000 0.000 1.000 0.000 0.000 0.000
c14 0.000 0.055 0.945 0.000 0.000 0.000
c15 0.000 0.000 1.000 0.000 0.000 0.000
c16 0.000 0.126 0.819 0.055 0.000 0.000
c17 0.000 0.276 0.422 0.251 0.051 0.000
c18 0.000 0.000 0.186 0.523 0.291 0.000
c19 0.015 0.171 0.477 0.292 0.045 0.000
c20 0.070 0.598 0.332 0.000 0.000 0.000
c21 0.216 0.533 0.251 0.000 0.000 0.000
c22 0.256 0.693 0.051 0.000 0.000 0.000
c23 0.241 0.573 0.186 0.000 0.000 0.000
c24 0.312 0.523 0.165 0.000 0.000 0.000

TABLE III: Bottle observation model P(y = o j|x = ci)

getting the score o6 is higher in in cell c2 than in cell c10
(because in c2 the robot is closer to the labels).

Scene λ # of Path Planning % of
object sensing length time (ms) confirmation

locations
0.80 10.820 9.346 367.723 100

True Bottle 0.85 10.825 9.122 361.993 100
0.90 12.030 9.244 415.965 99.5
0.80 21.333 18.002 721.861 1.5

False Bottle 0.85 17 14.561 621.074 0.5
0.90 - - - 0

TABLE IV: Statistics for Experiment #2 (similar bottles)

For each of the two bottles we performed runs with the
planning horizon N set to 3 and the execution horizon Ne set
to 30. We set the probability threshold λ to 0.80, 0.85, and
0.90. (Note that the observation model allows us to select
greater values of λ than in the cat example of Experiment
#1.) In each case, we collected data over 200 runs. Table IV
shows the results. The robot was able to differentiate quite
well between the two bottles. When the true bottle was
present, it confirmed this presence in 100% of the runs when
λ was set to 0.80 and 0.85, and in 99.5% of the runs when
λ was set to 0.90. On the other hand, when the false bottle
is present, the robot incorrectly confirms the presence of the
target (the true bottle) in 1.5% of the runs (3 runs out of
200) when λ was set to 0.80, 0.5% of the runs (1 out 200)
when λ was set to 0.85, and 0% of the runs when λ was set
to 0.90. Figs. 6c and 6d show two paths generated when λ

was set to 0.80, one when the candidate object was the true
bottle, the other when it was the false bottle. In Fig. 6c the
confirmation process ends in cell c2. In Fig. 6d the planner
also guided the robot toward cell c2, but the detector failed to
return high scores and the confirmation process ended with
no confirmation after 30 steps.
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D. Experiment #3

Here, the target is a bottle that looks as in Fig. 6a on one
side and as in Fig. 6b on the opposite side. The detector is
trained in cell c10 after placing the bottle so that the face
with the circular label is visible.

We performed 200 runs with planning horizon N set to 2
and 200 runs with N set to 3. In both cases, the execution
horizon Ne was set to 30 and λ to 0.85. With N = 2 the
robot got trapped into a local maximum in the function Jt
(see Eqs. (2) and (4)) located in c5. It confirmed the presence
of the bottle only in 1% of the runs. With N = 3 the robot
confirmed the presence of the bottle in all 200 runs. This is
not surprising since larger planning horizons are less prone
to get stuck at local maxima. In other words, SDP delivers
the global maximum for a given planning horizon, but such
maximum might correspond to a local maximum for a larger
planning horizon.

To address this local-maxima issue when small planning
horizons are used, we added a second gain function gF in
Eq. (2), in addition to g̃. We defined this second gain function
as a concave function with a maximum in cell cg (here, c10),
so that it gives an incentive for the robot to reach cells in
the neighborhood of cg. With this additional gain function,
all runs with N = 2, as well as with N = 3, confirmed the
presence of the bottle.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a POMDP-based planning
approach to confirm the detection of a candidate target with
a mobile robot equipped with a vision sensor. Our main
contributions are:
• A strategy combining robot localization and target con-

firmation: this strategy uses a cell-based probabilistic
observation model of the target to iteratively refine a
probabilistic estimation of the robot’s location.

• A confirmation process that reduces the risk of false
positives: this process requires that the robot reaches
a position where it is highly probable that the target
detector will return a high confidence score and where
this detector actually returns such a high score.

• A mechanism to avoid local maxima of the objective
function, by adding a term that gives an incentive to
the robot to finish in, or close to, a given cell of the
space decomposition.

• A set of experimental tests in simulation that demon-
strate the ability of our approach to actually confirm the
presence of selected targets and to distinguish targets
from similar objects.

We are currently testing our method on a real mobile robot
in an office environment. In our future research, we plan
to experiment with various detectors, especially detectors
trained over several cells of the space decomposition (instead
of one, as is currently the case) and under several lighting
conditions. We would also like to consider the presence
of obstacles around the target and to add more degrees of
freedom to the camera (e.g., by mounting a manipulator arm

on our mobile robot and fixing the camera at the extremity
of this arm). We hope that detectors trained over several
cells combined with additional degrees of freedom for the
camera will make it possible to deal with both visibility
and collision constraints resulting from the presence of other
objects around the candidate target.
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