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Abstract
This paper investigates the problem of confirming the identity of a candidate object (expected to be a target based

on some crude visual clues) with a mobile robot equipped with visual sensing capabilities. We present a method whose
main novelty is to mix localization of the robot relative to the candidate object and confirmation that it is the sought
target. This twofold approach drastically reduces false positives. Identity confirmation with this twofold goal is modeled
as a Partially-Observable Markov Decision Process where the states are the cells of the space decomposition. It is solved
using Stochastic Dynamic Programming with imperfect state information. A robotic system using this method has been
implemented and tests have been carried out both in simulation and with a real robot. The experiments empirically validate
the method, evaluate its performance using various metrics, and demonstrate its ability to perform well in different settings.
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1. INTRODUCTION

In this paper we investigate the problem of confirming the identity of an object using a mobile robot equipped with a
camera, a range sensor (to avoid collisions), and a vision software module referred to as the target detector (or, more
simply, the detector). More precisely, we will describe a method to perform the third step of the following scenario:
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1. The robot is instructed to find a certain object T , hereafter called the target, in its environment.
2. Using a space coverage method (e.g., the method described in [Espinoza et al. 2011]), the robot detects an object C,

called the candidate, that looks like T based on some crude (but easy to detect) visual clues, such as color, texture, or
general shape.

3. The robot moves on a horizontal floor around C to achieve suitable viewpoints allowing the target detector to eventually
confirm (or infirm) that C is actually T .

The main novelty of our method is to mix localization of the robot relative to the candidate object C and confirma-
tion that C is the target T . This twofold approach drastically reduces false positives. The robot is given a probabilistic
observation model of the response of the target detector trained over a cell decomposition of the space surrounding T

(Section 3). During the confirmation process, the robot never knows its exact position; instead, the robot’s belief about
its position is also modeled by a probability distribution over this cell decomposition (Section 4). By performing suc-
cessive moves (Section 5) the robot acquires several images of C from different viewpoints and runs the target detector
on each image. After each move it uses the observation model to update its position belief. The robot’s goal is twofold
(Section 4). One part of the goal is to compute a motion strategy that will eventually reach a position P where the tar-
get detector confirms with high confidence that C is actually T . But this goal alone would be prone to produce false
positives, especially if other objects look very similar to T from some viewpoints. The other part of the goal is to com-
pute the motion strategy so that the robot expects with high probability that, upon reaching P, the detector will confirm
with high confidence that C is actually T . This twofold goal drastically reduces the risk that the detector incorrectly
confirms that C is T . The identity confirmation process is modeled as a Partially-Observable Markov Decision Process
(POMDP) [Candido and Hutchinson 2011; Kaelbling et al. 1998] where states are the cells of the space decomposition.
Motion policies are computed using Stochastic Dynamic Programming with imperfect state information [Bertsekas 2000].

The ability of a mobile robot to reliably confirm the presence of a target object in an environment has a wide range
of potential applications, especially as an end-module for search problems, as suggested in the above scenario. There has
already been a substantial amount of research studying how a robot or a team of robots should search an environment to find
a static object or a moving agent (adversarial or not) [Chung at al. 2011; Guibas et al. 1999; Tovar and LaValle 2008]. In
this research the target is usually considered found when a robot has established a line of sight with it. However, this condi-
tion requires the robot’s detector to reliably identify the target from any viewpoint at any distance. Some research attempts
to fulfill this condition by creating powerful detectors [Felzenzwalb et al. 2008; Grauman and Darrel 2005; Lowe 2004].
Instead, we consider here that a detector will always be imperfect and that the ability of the robot to move around an object
and take images from different viewpoints should be exploited to overcome the limitations of the detector. This combina-
tion is particularly suitable when the target differs from other objects by few small distinctive features visible only from
limited viewpoints or when elements of the environment (e.g., poor illumination and textured background) may deceive
the detector. For instance, to reliably identify your luggage on a conveyor belt at an airport, you look to it from different
viewpoints in order to detect special features that differentiate it from similar luggage, for which you had no prior models,
and you do not remain static. So, the problem considered here is a target confirmation problem, which differs significantly
from the traditional object recognition problems, as only the observation model of the target is available. Confirming that
an object is a given target and not another, possibly similar object, of unknown model, is a challenging problem.

A robotic system using our method has been implemented and tests have been carried out both in simulation and
with a real robot. Our simulation experiments were intended to perform basic tests of our approach under well-controlled
conditions. We created a textured virtual environment and the detector was applied to synthetic images generated from
the successive robot’s viewpoints. In this paper we report on four experiments in simulation (Section 7). Some of our
goals were to verify that our system is able to discriminate between similar objects and is not confused by targets with
similar appearances from different viewpoints, and to analyze its behavior when localization errors increase. We then
present five experiments with a real robot, a Pioneer P3-DX (differential-drive robot) equipped with an USB camera
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and a Sick-LMS200 range sensor, aimed at further assessing our approach (Section 8). In these experiments, we vary
two sets of parameters. Parameters in one set are related to the planner, e.g.: planning horizon, number of cells in space
decomposition. Parameters in the other set are related to the environment and the target detector: illumination of the
environment, environment background, textures, sizes, and colors of the targets, size of the training set of images. Overall,
the experiments empirically validate our method, evaluate its performance along various metrics (success rate, planning
time, number of sensing operations, length of robot path), and demonstrate its ability to perform well in a broad variety
of settings, even with an imperfect detector. They also reveal interesting insights and suggest topics for additional future
research.

A preliminary version of a portion of this paper appeared in [Becerra et al. 2014]. The main differences are the
following:

1. We no longer assume that the robot knows the position of the center of the candidate object. Instead, only the direction
of the object center is now needed and it is estimated using the data provided by the range sensor. Moreover, a new
experiment in simulation shows that our system tolerates large errors in the estimated direction.

2. The preliminary version did not include experiments with a real robot. Here, we present and discuss five such exper-
iments. They test in particular the impact of variations in scene illumination and in the number of cells of the space
decomposition.

3. A new experiment in simulation which considers the presence of obstacles around the candidate object. These obstacles
create both motion and visibility constraints.

The main contributions of our work are threefold. (1) To reduce false positives our method mixes localization of the
robot relative to the candidate object C and confirmation that C is the target T . (2) Our experiments show that if an obser-
vation model contains too much uncertainty then planning too far ahead may have a negative effect on the effectiveness
of the confirmation process. (3) Experiments demonstrate that our method handles correctly candidate objects that are
distinct from targets, but similar-looking, and that it tolerates poor illumination conditions, targets with no neat feature
and obstacles that produces both motion and visibility constraints.

Section 2 discusses related work. Section 3 describes the target detector and the observation model of a target. Section 4
formulates the mixed identification/localization process as a POMDP. Section 5 defines the motion commands available
to the robot and the corresponding transition model of the POMDP. Section 6 describes the use of Stochastic Dynamic
Programming to compute motion policies. Section 7 presents and discusses four experiments carried out in simulation.
Section 8 reports on five experiments executed with the real robot. Section 9 concludes the paper and suggests directions
for future research. Appendix A provides details on how transition probabilities of the POMDP are computed. Appendix B
describes the implemented robotic system and the software modules running on it.

2. RELATED WORK

Several variants of search and pursuit-evasion problems have attracted considerable interest in the robotics com-
munity [Chung at al. 2011; Guibas et al. 1999; Isler at al. 2005; Lee et al. 2002; Park et al. 2011; Sarmiento et al. 2003;
Tovar and LaValle 2008]. A particularly interesting one is the problem of finding a target in an environment of given geom-
etry using the fewest number of robot searchers. For instance, in [Guibas et al. 1999] the searchers, which are equipped
with visibility sensors, are required to plan and perform coordinated trajectories that guarantee the eventual visual detection
of a mobile target (also called the evader), even if it tries to escape the searchers. However, a common strong assumption
in this type of work is to represent both the searchers and the target as points and to consider that the target is detected as
soon as the line segment between a searcher and the target intersects no obstacle, i.e, a line of sight exists between them.
As mentioned in the Introduction (Section 1), this kind of work would benefit from using a more realistic target detector.
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The problem of searching static objects in an environment has also been treated as an active vision prob-
lem [Tsotsos and Shubina 2007; Ye and Tsotsos 1999] by selecting several successive viewpoints. In fact, active
vision [Aloimonos et al. 1988; Bajcsy 1988]—the use of motion to acquire pertinent sensing information about
an environment—is a recurrent theme in robotics. It arises in many applications, for instance, in robotic
manipulation [Jang et al. 2008 ; Motai and Kosaka 2008], surveillance [Bakhtari et al. 2009; Schroeter et al. 2009],
tracking [Barreto et el. 2010 ], object modeling [Pito 1999], localization and mapping [Fintrop and Jensfelt 2008;
Kaess and Dellaert 2010; Zingaretti and Frontoni 2006], and object recognition (see below), just to mention some. A rich
survey of active vision methods used in robotic systems is given in [Chen et al. 2011]. The active vision approach that we
propose in this paper mixes localization and identification. Unlike in [Fintrop and Jensfelt 2008; Kaess and Dellaert 2010;
Zingaretti and Frontoni 2006] localization is not the main goal. It is only used as a source of information to better plan the
next viewpoints and in the end confirm the identity of an object with greater reliability.

The goal of object recognition is usually to detect and identify important objects and in some cases to esti-
mate their poses. Some of the earliest works are presented in [Bajcsy 1988; Krotkov and Bajcsy 1993]. This line
of research can be organized according to different criteria, e.g. whether the sensing device is static [Lowe 2004]
or not [Browatzki et al. 2012], whether view planning optimizes only over the next viewpoint [Browatzki et al. 2012;
Eidenberg and Scharinger 2010; Meger et al. 2010] or over a sequence of viewpoints [Atanasov et al. 2014], and which
optimization function is used for view planning. Regarding optimization, a common approach is to use an entropy-related
information gain criterion [Eidenberg and Scharinger 2010; Laporte and Arbel 2006; Meger et al. 2010; Pito 1999]. A
different type of optimization criterion quantifies a tradeoff between the length of the sensor movement, the energy expen-
diture to move the sensor, and the expected cost of an incorrect classification [Atanasov et al. 2014]. Here we propose
yet another type of optimization criterion aimed at guiding the robot toward a position where, with high probability, the
target detector will confirm with high confidence that the candidate object is actually the target. Moreover, unlike some
recognition methods (e.g. [Atanasov et al. 2014]) that require an accurate estimate of the sensor pose to plan the next best
views, our approach models the position of the robot (and its sensors) relative to the candidate object as a probabilistic
distribution over a cell decomposition of the space around the object.

Also relevant to our work, a method for learning viewpoint detection models for object categories is presented
in [Meger et al. 2010]. The generated models are used in a sequential object category recognition task, where the robot
must infer the likelihood that an object has a category label x given N detector’s responses received so far. Each new
viewpoint is chosen to minimize the entropy over the posterior belief of the category labels of the object. Our approach
is also based on the idea that the choice of viewpoints is critical to identify an object. However, our formulation of the
identification problem as a POMDP does not lead to concentrating the peak of a probability distribution over a collection
of object categories on a particular category, as is done in [Eidenberg and Scharinger 2010; Meger et al. 2010]. Instead,
it is focused on one single object, the target, and only considers the model of this object; so, it does not need models for
many objects that are not potential targets.

As we mentioned in the Introduction the problem of sweeping an environment to find a target object has been addressed
in [Espinoza et al. 2011]. The work presented in this paper is complementary to this previous work. We think that, to be
performed quickly, the detection of a target during an environment sweep must only rely of crude, but easy-to-detect
visual clues; hence it cannot be fully reliable. Therefore, once a candidate object has been detected, a different approach
is needed to confirm (or infirm) that this object is actually the target. The rest of this paper presents such an approach.

3. TARGET DETECTOR AND OBSERVATION MODEL

We assume that during the confirmation process the candidate object C is static and not significantly hidden by obstacles,
and that the robot moves on a planar horizontal surface around C. We define the position of the robot to be that of the
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Fig. 1. Cell decomposition of the space around T

camera mounted on it. Either the robot can rotate in place (e.g., a differential-drive robot), or there is a revolute joint
(around a vertical axis) between the robot and the camera, so that pointing the camera toward C does not introduce
additional constraints on the path followed by the robot.

Before the robot can be used to confirm that a candidate object C is a certain target T , it must be equipped with a
vision software module DT , the target detector for T , capable of identifying T with high confidence, at least from some
viewpoints. Given an arbitrary image taken by the robot’s camera, DT returns a confidence score y ∈ {o1,o2, ..,on}, where
o1 < o2 < ... < on, which measures how well a subset of the image matches the appearance of T . The response on indicates
very high confidence, whereas o1 means very poor confidence. We expect that DT can occasionally make false positive
mistakes, for instance because the image shows an object similar to T or because the detector is deceived, e.g., due to poor
illumination and/or a textured background. In all the experiments reported in this paper, we have used detectors that return
6 levels of confidence, i.e., n = 6.

In our implemented system, the detection method used in DT is the deformable part model algorithm proposed
in [Felzenzwalb et al. 2010] (see Section 7.1). Our framework is independent from this specific method; other detec-
tion methods (or combinations of methods) could be used as well. However, the success rate of the overall system, i.e.,
its ability to correctly confirm or infirm the presence of the target, depends on both the framework (along with its inner
parameters) and on the particular method used by the detector DT .

The robot should be equipped with different detectors DTi to identify different targets Ti, i = 1,2, · · ·. These detectors
may all use the same method, each with different data, or different methods. In our current system, we assume that each
target has a single equilibrium pose on a horizontal surface. Although many objects encountered in practice have one
preferred pose, this is a limitation for practical use in the future. For a target with multiple possible poses, a possible
extension of our method would be to train several detectors, one for each possible pose (see Section 9).

The observation model of T is a trained probabilistic model of the response of DT as a function of the position of the
robot relative to T . Since we assume that the target object is over a given two-dimensional plane, to train this model, we
decompose the space around T into non-overlapping cells c1, ...,cm.

Figure 1 shows a particular decomposition made of m = 24 cells created by drawing concentric circles, the center of
which is roughly the center of mass of the projection of T on the horizontal plane, and erecting regularly-spaced radial rays
from this center. The decomposition is bounded by an inner circle slightly larger than the enclosing circle of the horizontal
projection of T and an outer circle several times larger than the inner circle. Although other decompositions are possible,
we will use this decomposition throughout the rest of this paper. This decomposition is well adapted to the identification
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of relatively small objects. For large objects with elongated shapes, another type of decomposition might be preferable.
Nevertheless, the proposed decomposition enjoys some interesting properties described in Appendix A.

Given DT and the decomposition around T , the observation model of T is created in the form of a probability distribu-
tion P(o j|ci), i ∈ {1, ...,m} and j ∈ {1, ...,n}, where P(o j|ci) is the probability that the response of DT is o j given that the
input image was taken from within cell ci. For each cell ci, a set of images of T is taken at random positions of the robot
in ci (with the camera pointing toward T at each position). The normalized frequency of each response o j of DT for all
these images gives P(o j|ci).

4. CONFIRMATION PROCESS AND ROBOT LOCALIZATION

Consider now the situation reached by Step 2 of the scenario presented at the beginning of the Introduction (Section 1):
based on simple visual clues the robot has detected an object C that may be the target T , but it is not sure yet that C is T .
The confirmation process (Step 3 of the scenario) consists of computing and executing a series of motion commands ut at
times t = 0,1,2, ..., until it is confirmed (or infirmed) that C is T .

We assume around C the existence of the same cell decomposition X = {c1, ...,cm} that was used around T to create
the observation model of T (see Section 3). But the robot knows neither the orientation of this decomposition, nor the
location of its center. In fact, if C is not T , any positioning of the cell decomposition would be arbitrary.

At each time t, the robot’s belief about its position relative to the potential target is modeled at the cell resolution of X

by a probability distribution P(xt) over the m cells of X , i.e., xt ranges over {c1, ...,cm}. One way to interpret P(xt) is the
following: the robot hypothesizes that C is the target T and treats P(xt) as the distribution of its possible positions (at the
cell resolution) relative to T . In the case where C is not T , P(xt) is meaningless, but the confirmation process should fail
anyway.

The visual sensors of the robot in our implemented system includes a range sensor (see Section 8.1) that is used at
Step 2 of the scenario to bring the robot within a distance of C that is compatible with the inner and outer radii of the
decomposition, for instance at a distance rougly equal to the outer radius minus the inner one. The robot knows nothing
else about its initial position. So, at time −1 (by convention the time just before running the detector DT for the first time
at time 0), the robot’s belief about its position is uniformly distributed over the m cells, i.e., P(x−1 = ci) = 1/m for all
i = 1, ...,m.

At every time t ≥ 0 during the confirmation process the robot points its camera toward C, takes an image of C, and runs
the detector DT on this image. The new probability distribution of the robot’s position over X , P(xt |It), is then inferred
as follows from the observation model of T and the history It = {yt ,ut−1, It−1} of applied motion commands and scores
returned by the detector DT [LaValle 2006; Thrun et al. 2005]:

P(xt |It) =
P(yt |xt) ∑

xt−1
P(xt |xt−1,ut−1)P(xt−1|It−1)

∑
xt

P(yt |xt) ∑
xt−1

P(xt |xt−1,ut−1)P(xt−1|It−1)
(1)

where t ≥ 0, xt and xt−1 range over {c1, ...,cm}, and P(x−1|I−1) is the uniform distribution over the cells of X . The set
of motion commands that the robot may perform at each step and the probability distribution P(xt |xt−1,ut−1), called the
transition model, will be presented in the next section (Section 5). Equation (1) combines two distinct steps: a prediction
step that corresponds to applying the transition model P(xt |xt−1,ut−1) to the last robot’s position belief P(xt−1|It−1), and
an update step that corresponds to applying the observation model P(yt |xt) after the prediction step.

To confirm that C is the target T the robot must reach a position at some time t + 1 where the detector DT returns a
high confidence score yt+1 ≥ ô, where ô is a given threshold (in most of our experiments we set ô to the highest score on,
i.e., o6). But this condition is not sufficient, because it could be achieved by chance (false positive), especially if C is not T

but resembles T under some viewpoints. So, we impose another condition: at time t the robot must also expect with high
probability that the detector DT will return a high score at time t + 1. This second condition can be written formally as
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follows:
P(yt+1 ≥ ô|It ,ut)> λ

where P(yt+1 ≥ ô|It ,ut) is computed from the observation and transition models (see Section 6) and λ is a given threshold
defining the term “high probability”. The achievement of this twofold condition results in an intricate mix of robot local-
ization and target identification. When C is not T , the robot will estimate incorrectly its position relative to the candidate
target. So, the mass of the probability distribution of the robot’s position derived from the sequence of images up to time
t will be unlikely to lie in cells where DT is expected to return a high confidence score. In this way, the twofold termi-
nation condition drastically reduces the risk of a false positive, as will be empirically demonstrated by Experiment #2 in
Section 7.3.

As formulated above, target confirmation is a Partially-Observable Markov Decision
Process (POMDP) [Candido and Hutchinson 2011],[Kaelbling et al. 1998], where X is the set of states, P(o j|ci) the obser-
vation model, and P(xt |xt−1,ut−1) the transition model. This formulation differs from entropy minimization formulations
used for related problems. Unlike in some object recognition systems, we do not try to concentrate the probability mass on
a particular object (here, the target T ) in a given collection of objects, as has been proposed in [Meger et al. 2010]. Instead,
we focus on the sole appearance of the target and we avoid the need to generate observation models for many objects that
are not potential targets. Entropy minimization is also commonly used in pure localization problems [Thrun et al. 2005].
Here, it would lead the robot to concentrate the mass of the probability distribution P(ci), i = 1, ...,m in as few cells of X

as possible, where the detector might not be guaranteed to return high confidence scores. Our formulation is more closely
related to the POMDP formulation of object recognition presented in [Eidenberg and Scharinger 2010], but is nevertheless
quite different. In the tradition of active perception, the work in [Eidenberg and Scharinger 2010] aims at recognizing all
objects in a multi-object given scene, along with their respective 6D poses, by moving a visual sensor around the scene
and taking successive images. The proposed method represents the collection of objects in the scene with probabilistic
object hypotheses that are updated after each new sensing operation. Planning is used to refine probabilistic hypotheses
more quickly, while dealing with occlusions. Unlike in our approach, there is no notion of target object and the sensor is
not localized relative to any object to improve the reliability of its identification.

5. MOTION COMMANDS AND TRANSITION MODEL

To complete the formulation of the POMDP introduced above, we now present the state transition model, that is, the set
of motion commands that the robot can perform and the probability distribution P(xt |xt−1,ut−1) for each one of these
commands.

At each step t of the confirmation process, we allow the robot to choose among 4 motion commands:

U = { f orward, backward, le f t, right}

defined as follows and illustrated in Figure 2:
- The command forward makes the robot move in the direction of the estimated center of C in the image taken at t.

The command backward makes the robot move in the opposite direction.
- The commands left and right make the robot move perpendicularly to the estimated direction of the center of C at

time t, respectively in the clockwise and counter-clockwise directions.
In our implemented system the length of each motion is set to be slightly greater than the distance between two

consecutive circles of the decomposition. This choice ensures that the robot crosses cell boundaries often and thus gets a
variety of viewpoints over a few moves. However, for the commands forward and backward the robot uses its range sensor
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to remain within a distance of C compatible with the inner and outer radii of the decomposition X : if it gets too close to C

or too far from it, then the length of the motion is reduced.
Recall from Section 4 that the robot estimates its position at the cell resolution in X . This means that when the robot

believes that its position is within a cell ci, it can be anywhere in ci with a uniform distribution. The transition probability
P(xt = c j|xt−1 = ci,ut−1) used in Equation (1) estimates the position of the robot after executing the command ut−1 (one
of the 4 commands introduced above) from within cell xt−1 = ci. To compute P(xt = c j|xt−1 = ci,ut−1) let us first define
the transform of a cell c ∈ X by a motion command u ∈ { f orward, backward, le f t, right}. This transform is a region
denoted by Tr(c,u).

Consider an arbitrary point p in c ∈ X . We define the transform Tr(p,u) of p by u as follows:
- If u = f orward (resp. backward), then Tr(p,u) is the point obtained by translating p along a radial line of X toward

(resp. away from) the center of X by the length of the motion. See Figure 3a.
- If u = le f t (resp. right), then Tr(p,u) is the point obtained by translating p perpendicularly to the direction of the

center of C, respectively in the clockwise and counter-clockwise directions, by the length of the motion. See Figure 3b.

...

...

p

Tr(p,u)

(a) u = f orward

...

...

p

Tr(p,u)

(b) u = le f t

Fig. 3. Transform Tr(p,u) of p by u

We define Tr(c,u) to be the set formed by the transforms of all the points p in c by u, hence: Tr(c,u) = {Tr(p,u) | p ∈
c}.

The probability P(xt = c j|xt−1 = ci,ut−1) is calculated as the ratio of the area of the region Tr(xt−1 = ci,ut−1) that is
contained in cell xt = c j. To illustrate, Figure 4 shows the transform of c9 by command right. This transform is the region
c′9 = Tr(c9,ut−1 = right). The region c′9 is a region that overlaps several cells.
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This calculation makes the implicit assumption that the robot moves are “ideally” performed toward and away from the
center of X (for forward and backward) and around this center (for left and right). However, the robot never tries to localize
the decomposition X relative to C, as it does not even know whether the object C is actually the target T . Nevertheless,
we believe that, when C is T , the moves performed by the robot are close to these ideal moves. The experiments with a
real robot (Section 8) validate this claim. Moreover, the Experiment #4 in simulation (Section 7.5), which analyzes the
impact of increasing errors in the estimate of the direction of the center of X , demonstrates that our method tolerates
large errors quite well, as long as the candidate object remains within the field of view of the camera. In the future, if
needed, the uncertainty in the direction of the center of X could be taken into account in the computation of the probability
P(xt = c j|xt−1 = ci,ut−1) by enlarging the region Tr(xt−1 = ci,ut−1) defined above.

The transition probabilities P(xt = c j|xt−1 = ci,ut−1) can be calculated analytically for each one of the four
commands, as shown in Appendix A.

6. COMPUTATION OF A MOTION STRATEGY

In Section 4 we have formulated the process of confirming the identity of C as a POMDP in which the states are the
cells of X . Here, we compute a motion strategy by using Stochastic Dynamic Programming (SDP) with imperfect state
information as proposed in [Bertsekas 2000].

We specify two horizons: a planning horizon N and an execution horizon Ne = Np ×N. The SDP-based planner
computes a motion strategy up to horizon N. It is invoked up to Np times and each generated plan is immediately executed.
The process stops when the twofold confirmation condition presented in Section 4 is achieved—then the identity of C as
T is confirmed—or when Np plans have been executed without success—then C is considered to be an object other than
T .

The SDP-based planner computes a motion strategy in the form of a policy π(t, It) that gives the motion command
to be applied at every time t = 0,1,2, ...,N− 1 for every possible history It . For this computation, SDP is applied with
Equations (2), (3), (4), (5), and (6), where g̃(It ,ut) and gF(xN) are gain functions [Bertsekas 2000]:

JN−1(IN−1) = max
uN−1∈UN−1

[
g̃(IN−1,uN−1)+ E

xN−1

{
E
xN
{gF (xN)|xN−1,uN−1}|IN−1,uN−1

}]
, (2)

π(N−1, IN−1) = arg max
uN−1∈UN−1

[
g̃(IN−1,uN−1)+ E

xN−1

{
E
xN
{gF (xN)|xN−1,uN−1}|IN−1,uN−1

}]
, (3)

and for t < N−1
Jt(It) = max

ut∈Ut

[
g̃(It ,ut)+ E

yt+1
{Jt+1(It ,yt+1,ut)|It ,ut}

]
, (4)

π(t, It) = arg max
ut∈Ut

[
g̃(It ,ut)+ E

yt+1
{Jt+1(It ,yt+1,ut)|It ,ut}

]
. (5)
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Since we want the robot to reach a position where the condition P(yt+1 ≥ ô|It ,ut) > λ is satisfied, we set the gain
function g̃(It ,ut) to P(yt+1 ≥ ô|It ,ut) as given by Equation (6) below. This equation makes use of the observation model,
the transition model, and the current robot’s belief about its position:

P(yt+1 ≥ ô|It ,ut) = ∑
xt+1

P(yt+1 ≥ ô|xt+1)∑
xt

P(xt+1|xt ,ut)P(xt |It). (6)

In Experiments #1 and #2 reported later in this paper, the other gain function gF(xN) used in Equations (2) and (3) will
be set to the identically null function. In Section 7.4 (Experiment #3), we will introduce a non-zero function gF(xN) used
in all other experiments that reduces the risk of local maxima in the function Jt .

Every plan generated by the SDP-based planner is immediately executed. If the confirmation condition is achieved—
i.e., if the robot reaches at time t a position where the condition P(yt+1 ≥ ô|It ,ut) > λ is satisfied and if the detector
actually returns a confidence score greater than ô on the image taken at time t + 1—then the confirmation process ends
with success. Otherwise, a new plan is computed with the current robot’s belief about its position, again with horizon N. As
indicated above, this iterative process ends with failure if Np plans have been executed without achieving the confirmation
condition. Then the robot returns that C is not the target.

There are clearly tradeoffs in setting the values of N and Ne = Np×N. If N is too small, the successive plans may
be too short-sighted and the computation may get trapped into a local maximum1 in the function Jt . We will specifically
discuss this issue in Section 7.4. Ideally, N should be set large enough so that the planner’s computation reaches states
where large confidence scores are likely to happen. But planning time increases quickly with N. Moreover, if uncertainty
is too large (e.g., if the the quality of the observation model is poor), then the computed plans may not be better (as will
be discussed in Section 8.3). On the other hand, if the ratio Np = Ne/N is too small then the robot may incorrectly fail
to confirm that C is the target T , whereas if this ratio is too large and C is not T , the robot may waste too much time
before returning that C is not T . One goal of our experiments will be to investigate these tradeoffs (see Section 7.3).
To summarize, our experiments show that low-resolution cell decompositions, hence with relatively few cells, work best.
Such decompositions combined with the gain function gF do not require large planning horizons. Most of the best results
are obtained with N = 3.

7. EXPERIMENTS WITH SIMULATION ROBOT

7.1. General setting

We created the textured virtual environment shown in Figure 5 in order to perform basic tests of our approach under well-
controlled conditions. The object to be identified is placed at the center of the circular table in the middle of the room.
The simulated robot can move around this table. Synthetic images from the viewpoint of a virtual camera mounted on the
robot are generated at successive positions of the robot, and the detector DT is fed with those images.

For each target T , the detector DT uses the deformable part model algorithm presented in [Felzenzwalb et al. 2010].
This same algorithm will also be used in the experiments carried with a real robot (Section 8). Our choice was motivated
by the fact that this algorithm has been tested on large databases of images taken under very diverse conditions, e.g.,
of scale and illumination. However, our framework does not rely on this particular algorithm; it could use other object
recognition algorithms or combinations of algorithms.

In all the experiments reported in this section the planner uses the 24-cell decomposition shown in Figure 1. (We will
vary the number of cells in Section 8.5.) For each target T , the detector DT is trained on a set of images taken from a single
cell cg of the decomposition. This cell is selected so that distinctive features of the target are visible from it. Therefore,
for each target, the detector returns high confidence scores when the robot is in cg. The scores tend to decrease when the
robot moves away from cg, except when the target has a similar appearance under other viewpoints. The scores range over

1 SDP delivers the global maximum for a given planning horizon, but such maximum might correspond to a local maximum for a larger planning horizon.
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Fig. 5. Virtual environment.

6 values, i.e., n = 6. We also simulate a range sensor that prevents the robot from going too close or too far away from the
candidate object C.

In all experiments the center of the cell decomposition X is the center of the circular table. In Experiments #1, #2,
and #3, the robot knows exactly the position of the table’s center and therefore performs the four motion commands
with accurate knowledge of the direction of this center. In Experiment #4, we will consider the case where this knowl-
edge is imperfect and we will analyze the impact of increasing errors in the estimate of the direction of the center. In
Experiments #1 and #2 the gain function gF used in Equations (2) and (3) is set to the identically null function.

In all the statistics tables shown below, the average numbers of sensing locations, path lengths and planning times are
computed only over the runs that achieve confirmation.

7.2. Experiment #1: Plastic Cat

o1 o2 o3 o4 o5 o6
c1 0.236 0.324 0.220 0.140 0.068 0.012
c2 0.000 0.000 0.000 0.132 0.644 0.224
c3 0.196 0.376 0.224 0.160 0.044 0.000
c4 0.916 0.084 0.000 0.000 0.000 0.000
c5 0.312 0.560 0.128 0.000 0.000 0.000
c6 0.000 0.876 0.124 0.000 0.000 0.000
c7 0.144 0.688 0.168 0.000 0.000 0.000
c8 1.000 0.000 0.000 0.000 0.000 0.000
c9 0.152 0.412 0.156 0.180 0.092 0.008
c10 0.000 0.000 0.000 0.000 0.428 0.572
c11 0.112 0.360 0.268 0.096 0.144 0.020
c12 0.896 0.104 0.000 0.000 0.000 0.000
c13 0.276 0.616 0.108 0.000 0.000 0.000
c14 0.000 0.420 0.580 0.000 0.000 0.000
c15 0.200 0.540 0.260 0.000 0.000 0.000
c16 1.000 0.000 0.000 0.000 0.000 0.000
c17 0.596 0.204 0.124 0.068 0.008 0.000
c18 0.000 0.040 0.320 0.372 0.260 0.008
c19 0.440 0.244 0.232 0.064 0.020 0.000
c20 1.000 0.010 0.290 0.390 0.290 0.010
c21 0.804 0.196 0.000 0.000 0.000 0.000
c22 0.068 0.880 0.052 0.000 0.000 0.000
c23 0.740 0.260 0.000 0.000 0.000 0.000
c24 1.000 0.000 0.000 0.000 0.000 0.000

Table 1: Observation model P(y = o j|x = ci) of the plastic cat in Experiment #1
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(a) Plastic cat as target
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(b) Path generated with N = 3 and λ =
0.55

(c) Initial view of candidate object C (d) View of object C when it is con-
firmed to be the target

Fig. 6. Illustrations for Experiment #1

The purpose of this experiment is to verify the ability of our method to reliably identify an object and to compare its
performance with other motion strategies. The target is the plastic cat shown in Figure 6a. The placement of the cat on
the table and the cell decomposition used for training the detector are shown in Figure 6b. We chose cell c10 as cg and
we trained the detector on 100 images obtained from viewpoints randomly picked in c10. After training the detector, we
sampled 200 images over each of the 24 cells to obtain the detector’s observation model shown in Table 1. As expected,
with high probability, the detector returns high scores, i.e. o5 or o6, in c10. Conversely, the probability that the detector
returns the lowest scores o1 and o2 is greater in cells distant from c10.

To test our method, we placed the robot in cell c14, which is located far away from c10. Using the SDP-based planner
of Section 6, we generated motion strategies with 4 planning horizons N = 1,2,3 and 4. The execution horizon was set to
Ne = 100 and the threshold ô to o6 (the highest confidence score of the detector). Runs were performed with 3 values of
the probability threshold λ : 0.45, 0.50, and 0.55.

Note that the combination of Equation (6) and the observation model of Table 1 determines the upper-bound
maxci [P(y ≥ ô|ci)] for λ , beyond which it is impossible to confirm that the candidate object X is the target T . So, the
value selected for λ should be less than this upper-bound. Here the bound is 0.572. It depends on the shape and resolution
of the decomposition, as well as on the method used by the detector. Methods that yield higher bounds are preferable.

The path followed by the robot in a run with N = 3 and λ = 0.55 is plotted in Figure 6b. The initial position of the
robot is shown with a black circle, its final configuration as a red (gray) circle, and the intermediate sensing locations as
small squares. Figure 7 shows the probability distribution P(xt |It) at the beginning (a), one fourth (b), midway (c), three
fourths (d), and end (e) of the confirmation process. In Figure 7a the distribution is uniform over the 24 cells. The initial
appearance of the cat (then the candidate object C) is shown in Figure 6c. The detector returns a low score, so that the
robot needs to move to better viewpoints. Figure 6d shows C’s final appearance when the robot confirms that C is the cat.
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(a) P(xt |It) at the beginning of the confirma-
tion process

(b) P(xt |It) at one fourth of the confirmation
process

(c) P(xt |It) at the middle of the confirmation
process

(d) P(xt |It) at three fourths of the confirmation
process

(e) P(xt |It) at the confirmation moment

Fig. 7. Evolution of probability distribution P(xt |It) during a trial with the plastic cat as target (N = 3)

In this run, the confirmation process required 15 moves (some sensing locations at the end of the path are repeated as the
robot moves back and forth to refine its localization and eventually confirm the object’s identity).
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(a) Fixed strategy path
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(b) Random strategy path

Fig. 8. Two sample paths using fixed and random strategies with λ = 0.55

For comparison, we also ran separately two different motion strategies. One is a “fixed strategy” that consists for the
robot to move around the candidate object in clockwise direction. The other is a “random strategy” in which the robot
performs one of the 4 motion commands picked uniformly at random at each step. For both strategies, the maximum
number of steps was set to Ne = 100. Figures 8a and 8b plots the paths of the robot in a run of the fixed strategy and a run
of the random strategy, respectively. In each of these two runs the robot was unable to confirm the identity of the object
(using the same confirmation test as described in Section 6).

Table 2 shows some statistics (average number of sensing locations, average path length, and average total planning
time) for Experiment #1, as well as the percentage of successful confirmation. Each line of the table was obtained over 200
runs with different initial positions of the robot within cell c14 (more runs did not produce significantly different results).
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Planning λ # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
0.45 33.698 32.580 9.854 93

1 0.50 42.994 41.837 12.693 88
0.55 42.493 41.385 12.513 88
0.45 12.915 11.816 37.428 100

2 0.50 13.150 12.068 38.004 100
0.55 14.385 13.305 42.443 100
0.45 12.837 11.471 405.655 100

3 0.50 13.120 11.715 415.278 100
0.55 13.875 12.385 440.959 100
0.45 12.230 11.028 35485.734 100

4 0.50 12.587 11.402 37040.285 100
0.55 13.655 12.431 40236.170 100
0.45 55.750 43.344 - 22

Random 0.50 62.962 46.266 - 26.5
0.55 61.354 47.201 - 15.5

Table 2: Statistics for Experiment #1 (cat)

c9
c17c2c3

c12
c20

c21
c13

c5

c4

c6 c7

c8

c1

c16
c24

c15
c23c22

c14

c11 10

c18c19

c

Fig. 9. Path generated with N = 1 and λ = 0.55

Statistics for the fixed strategy are not included in the table because all 200 runs failed to confirm the target’s presence.
With planning horizons N set to 2, 3, and 4, the presence of the target is confirmed by our method in all runs for all values
of λ . When N is set to 1, the confirmation rate drops to about 90%, but it is still much higher than the rate obtained with the
random strategy, which is less than 30%. However, the average number of sensing locations is much larger than for N = 2,
3, or 4. In fact, when N = 1, it is harder for the robot to localize itself with a precision sufficient to achieve the condition
P(yt+1 ≥ ô|It ,ut)> λ . This leads the robot to perform a long series of moves around cell cg, during which it progressively
refines its localization. Figure 9 shows an example of such a path. For all values of λ , the smallest number of sensing
locations and the shortest path lengths are obtained with our method with N = 4. The number of sensing locations and
the path lengths are the largest for the random strategy. Note that neither our method, nor the random and fixed strategies
know in advance the locations of the viewpoints from which the detector returns a high score. In fact, the random and
fixed strategies reach such viewpoints, but they fail to achieve the twofold confirmation condition designed to avoid false
positives.

In this experiment our method produces smaller numbers of sensing locations and shorter path lengths when the
planning horizon N increases. However, planning time also increases quickly with N (and also with λ ). Here, planning
takes approximately 90 times longer when N = 4 than when N = 3, for approximately the same average numbers of sensing
locations and lengths of paths. In general, a greater value of N will be required to provide the planner with the same look-
ahead when the resolution of the decomposition X increases. So, the best tradeoff value of N will also increase with the
resolution of the decomposition X . This experiment suggests that for relatively small objects our 24-cell decomposition
and N = 3 offer a good tradeoff in terms of planning time, confirmation rate, numbers of sensing locations, and path
lengths.
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7.3. Experiment #2: Two similar bottles

(a) True bottle (tar-
get)

(b) False bottle (not
the target)
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(c) Path generated with N = 3 and
λ = 0.8 in the presence of the true
bottle

c9
c17c2c3

c12
c20

c21
c13

c5

c4

c6 c7

c8

c1

c16
c24

c15
c23c22

c14

c11 c10

c18c19

(d) Path generated with N = 3 and
λ = 0.8 in the presence of the false
bottle

(e) Final view for the true bottle (f) Final view for the false bottle

Fig. 10. Illustrations for Experiment #2

The purpose of this experiment is to verify that our robot is able to discriminate between similar objects. We have two
bottles, the “true” bottle shown in Figure 10a and the “false” bottle shown in Figure 10b. The true bottle has a circular
label that the false bottle does not have. Apart from this label, the two bottles are identical. The target is the true bottle.

Like in Experiment #1, cell c10 was selected as cg. We placed the true bottle at the center of the table so that its two
labels are visible from c10. We trained the detector on 100 images obtained from viewpoints randomly picked in c10. We
then constructed the observation model in the same way as in Experiment #1. The result is shown in Table 3. Here the
probability of getting the highest score o6 is greater in cell c2 than in cell c10. This is not very surprising since c2 offers
the same set of viewpoints over the bottle as c10, but at a closer distance.
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o1 o2 o3 o4 o5 o6
c1 0.000 0.000 0.010 0.477 0.427 0.086
c2 0.000 0.000 0.000 0.000 0.095 0.905
c3 0.000 0.000 0.010 0.558 0.392 0.040
c4 0.000 0.000 0.839 0.161 0.000 0.000
c5 0.000 0.000 1.000 0.000 0.000 0.000
c6 0.000 0.000 1.000 0.000 0.000 0.000
c7 0.000 0.000 0.995 0.005 0.000 0.000
c8 0.000 0.000 0.834 0.166 0.000 0.000
c9 0.000 0.000 0.036 0.472 0.437 0.055
c10 0.000 0.000 0.000 0.000 0.317 0.683
c11 0.000 0.000 0.065 0.518 0.392 0.025
c12 0.000 0.010 0.900 0.090 0.000 0.000
c13 0.000 0.000 1.000 0.000 0.000 0.000
c14 0.000 0.055 0.945 0.000 0.000 0.000
c15 0.000 0.000 1.000 0.000 0.000 0.000
c16 0.000 0.126 0.819 0.055 0.000 0.000
c17 0.000 0.276 0.422 0.251 0.051 0.000
c18 0.000 0.000 0.186 0.523 0.291 0.000
c19 0.015 0.171 0.477 0.292 0.045 0.000
c20 0.070 0.598 0.332 0.000 0.000 0.000
c21 0.216 0.533 0.251 0.000 0.000 0.000
c22 0.256 0.693 0.051 0.000 0.000 0.000
c23 0.241 0.573 0.186 0.000 0.000 0.000
c24 0.312 0.523 0.165 0.000 0.000 0.000

Table 3: Bottle observation model P(y = o j|x = ci)

Scene λ # of Path Planning % of
object sensing length time (ms) confirmation

locations
0.80 10.820 9.346 367.723 100

True Bottle 0.85 10.825 9.122 361.993 100
0.90 12.030 9.244 415.965 99.5
0.80 21.333 18.002 721.861 1.5

False Bottle 0.85 17 14.561 621.074 0.5
0.90 - - - 0

Table 4: Statistics for Experiment #2 (similar bottles)

We tested the ability of our method to confirm (or infirm) the identity of each of the two bottles by placing them at the
center of the table with their labels oriented as during the training of the detector. For each bottle we performed runs with
planning horizon N set to 3 and execution horizon Ne set to 30. We set the probability threshold λ to 0.80, 0.85, and 0.90.
(Note that here the observation model allows us to select greater values of λ than in Experiment #1 with the plastic cat.)
In each case, we collected data over 200 runs. Table 4 shows the results. The robot was able to differentiate quite well
between the two bottles. When the true bottle (i.e., the target) was present, it confirmed its identity in 100% of the runs
when λ was set to 0.80 and 0.85, and in 99.5% of the runs (199 runs out of 200) when λ was set to 0.90 (a threshold very
close to the upper limit, 0.905, beyond which confirmation would be impossible). On the other hand, when the false bottle
was present, the robot incorrectly confirmed the presence of the true bottle in 1.5% of the runs (3 runs out of 200) when
λ = 0.80, 0.5% of the runs (1 out 200) when λ = 0.85, and 0% of the runs when λ = 0.90. Figures 10c and 10d show two
paths generated with λ = 0.80, respectively with the true bottle and with the false bottle. In Figure 10c the confirmation
process ends in cell c2. In Figure 10d the planner also guided the robot toward cell c2, but the detector failed to return high
enough scores and the confirmation process ended with no confirmation after 30 steps.

7.4. Experiment #3: A bottle with two similar faces

Here our goal was to observe the behavior of our method when the target has similar appearances from two different
viewpoints. The target is a bottle that looks as in Figure 10a on one side and as in Figure 10b on the opposite side. The
detector is trained in cell c10 after placing the bottle so that the face with the circular label is visible. The observation
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model is shown in Table 5. Like in Experiment #2, the highest probabilities of score o6 are in cells c2 and c10. But now, as
expected, high scores (mainly o5) are also likely in cells c6 and c14, which are opposite to c2 and c10. Figure 11 plots the
probability of getting score o6 in each of the cells of the decomposition; note the local maximum at cell c6.

o1 o2 o3 o4 o5 o6
c1 0.000 0.000 0.021 0.437 0.472 0.070
c2 0.000 0.000 0.000 0.000 0.105 0.895
c3 0.000 0.000 0.015 0.533 0.397 0.055
c4 0.000 0.000 0.568 0.432 0.000 0.000
c5 0.000 0.000 0.000 0.377 0.623 0.000
c6 0.000 0.000 0.000 0.000 0.980 0.020
c7 0.000 0.000 0.000 0.417 0.583 0.000
c8 0.000 0.000 0.608 0.392 0.000 0.000
c9 0.000 0.000 0.080 0.503 0.367 0.050
c10 0.000 0.000 0.000 0.000 0.362 0.638
c11 0.000 0.000 0.050 0.548 0.362 0.040
c12 0.000 0.000 0.829 0.171 0.000 0.000
c13 0.000 0.000 0.050 0.467 0.483 0.000
c14 0.000 0.000 0.000 0.025 0.975 0.000
c15 0.000 0.000 0.005 0.543 0.452 0.000
c16 0.000 0.100 0.779 0.121 0.000 0.000
c17 0.005 0.271 0.513 0.166 0.045 0.000
c18 0.000 0.000 0.196 0.437 0.367 0.000
c19 0.020 0.191 0.447 0.292 0.050 0.000
c20 0.055 0.558 0.387 0.000 0.000 0.000
c21 0.000 0.201 0.523 0.276 0.000 0.000
c22 0.000 0.025 0.447 0.473 0.055 0.000
c23 0.000 0.136 0.548 0.306 0.010 0.000
c24 0.146 0.573 0.281 0.000 0.000 0.000

Table 5: Observation model P(y = o j|x = ci) of the bottle with two similar faces (Experiment #3)

c6

c2

Fig. 11. P(y = o6|x = ci)

For both N = 2 and N = 3 we performed 200 runs with the execution horizon Ne set to 30 and λ set to 0.85. With
N = 3 the presence of the bottle was confirmed in all 200 runs. Figure 12a shows a path followed by the robot in one of
these runs. In contrast, when N = 2 the planner confirmed the presence of the bottle in only 1% of the runs. In the other
runs it got trapped into a local maximum of the function Jt defined in Equations (2) and (4). This maximum is located in
cell c6, which is also a local maximum for score o6. Figure 12b shows a path of the robot in one of the unsuccessful runs.

When N = 2 the computation performed by the planner is too short-sighted to consider cell c2 where the detector
returns score o6 with probability greater than 0.85. So, instead, it is lured toward cell c6, which is closer to the starting
cell c14 and where score o6 has a local maximum. In the path of Figure 12b the robot first moves from c14 to c6 and then
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(a) Path generated with N = 3
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(b) Path generated with N = 2

Fig. 12. Sample paths for bottle with similar appearances from different viewpoints

performs moves between c6 and c7 until the execution horizon Ne is attained. Greater planning horizons (here, N = 3) are
less prone to get trapped into spurious local maxima of Jt .

cg

Fig. 13. Function gF defined with a maximum in cell cg

To address this local-maxima issue when small planning horizons are used, we added another gain function gF (in
addition to g̃) in Equations (2) and (3). We define gF as a piecewise constant function (see Figure 13), with constant value
over each cell, largest value in cell cg (here, c10), and decreasing values as we move away from cg. Hence, gF gives an
incentive for the robot to get closer to cg. With the addition of gF , all 200 runs with N = 2, as well as all those with N = 3,
confirmed the presence of the bottle. Figure 14 shows one robot path with N = 2.

In all the experiments reported in the rest of this paper (both in simulation and with a real robot) Equations (2) and (3)
include the additional gain function cg defined above.

7.5. Experiment #4: Imperfect knowledge of the table’s center

To perform the four motion commands, the robot must estimate the direction of the center of the cell decomposition X .
In our setup, this center coincides with the center of the circular table. In Experiments #1, #2, and #3, the robot knew
exactly the position of the table’s center and therefore performed the four motion commands with accurate knowledge of
the direction of X’s center. We now consider the case where this knowledge is imperfect and we analyze the impact of
increasing errors in the estimate of the center’s direction (from now on referred to as orientation errors).
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Fig. 14. Robot path with N = 2 after introducing function gF

(a) Cat as target (b) Bottle as target

Fig. 15. Robot views of the cat and bottle with orientation errors

We perform runs with two successive targets: first the cat of Experiment #1, next the true bottle of Experiment #2. We
test the impact of orientation errors with different planning horizons by setting N to 2 when the cat is the target and to 3
when the bottle is the target. To create an orientation error we shift the actual direction of the table’s center by an angle
picked according to a mean-zero normal distribution truncated between −0.5 and +0.5 radians. The maximal error of 0.5
radians corresponds to a very bad estimate of the center’s direction, but still insures that the candidate object C remains in
the camera’s field of view. Figure 15 shows two images from the robot’s viewpoint with large orientation errors; note the
table’s center no longer lies on the vertical centerlines of the images. We performed series of runs with standard deviation
σ successively set to 0, 0.25, and 0.5.

Scene σ # of Path Planning % of
object sensing length time (ms) confirmation

locations
0.00 14.385 13.305 42.443 100

Cat 0.25 14.550 13.441 46.178 100
0.50 14.320 13.201 45.284 100
0.00 10.825 9.122 361.993 100

Bottle 0.25 11.470 9.418 394.074 100
0.50 11.335 9.442 389.589 100

Table 6: Statistics for Experiment #4 (error in robot alignment towards C)

The quantitative results are summarized in Table 6. The most important result is that the two targets were confirmed
in all runs for every value of σ . The other statistics in each row of the table are averages over the 200 runs. For both
targets the small differences in the average numbers of steps and path lengths are not significant, which we confirmed by
performing additional runs (not reported here). However, the average planning times tend to increase slightly when σ 6= 0.
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This is likely due to the fact that the robot moves then diverge more from the ideal ones. Overall these results demonstrate
that our approach tolerates large orientation errors quite well, as long as the candidate object remains within the field of
view of the camera.

7.6. Dealing with Obstacles Generating Motion and Visibility Constraints

In this subsection we present an extension of our method to deal with obstacles that create both motion constraints and
visibility occlusions. Since a crude visual method has detected the candidate object, this object is visible at the beginning
of the confirmation process.

We use the range sensor to detect obstacles and measure their position relative to the robot. The position of the robot
relative to C is still estimated probabilistically as before. When control commands are being planned, it is possible to
predict if the robot will collide with obstacles (see Figure 16a), independently of its position relative to C. The branches
of the search tree that cause collision are pruned (Figure 16b). Note that collision prediction can be done at the precision
level provided by the range sensor, so that commands may allow the robot to traverse cells that are partially occupied by
obstacles.
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(b) SDP Tree is pruned based on collision checking

Fig. 16. Integrating collision checking into the confirmation process

A policy generated with Stochastic Dynamic Programming (SDP) with Imperfect State Information might be described
as a tree that relates state beliefs, controls and observations. Our main idea to deal with motion constrains is to prune
branches of this tree corresponding to controls yielding to a collision (see Figure 16b). In the planning and execution
stages the robot just takes into account collision-free controls, therefore, this allow us to still use the transition model
that we have been using so far without the necessity to recompute it integrating the obstacles; indeed, the location of the
obstacles in the cellular decomposition with respect to the target, in both the planning and execution stages, is unknown.

During the execution of a sequence of commands we can predict if obstacles occlude C by combining the knowledge
of the position of the robot relative to the obstacles with the estimated direction of C. In the absence of obstacles, our
method uses a Bayes filter to update the probabilistic model of the position of the robot integrating controls in a prediction
step and observations in an update step. Now, if C is occluded by obstacles, only the prediction step is used to compute
the probabilistic model. If the robot reaches a position where C is occluded, a new plan is generated from the probabilistic
model computed with the prediction step only, temporarily ignoring the observations when updating the position distribu-
tion, just applying the transition model until C is no longer occluded. It is important that the planner may send the robot
to positions where the target is not visible. Otherwise, the range of valid paths could decrease too much, even to the point
where the workspace is disconnected (see Figure 17).
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Fig. 17. If we do not allow the robot to reach regions R1 nor R2 (where the view of C is obstructed) the workspace would be disconnected

Fig. 18. Motion obstacles around the target (plastic cat) in the virtual environment

In a first set of runs we tested our method with obstacles that only produce motion constraints, pruning branches of
the search tree yielding to collision. The target is the plastic cat of Experiment #1, with three obstacles placed around it
as shown in Figure 18. Table 7 gives the average measurements over 100 runs with planning horizon N = 3 and execution
horizon Ne = 100. Comparing these results to those in Table 2, we notice a significant increase in the average number of
sensing locations, path length, and planning time. Such an increase was expected, as the set of feasible paths that the robot
can now choose from has now decreased. Paths that led the robot to maximize its expected gain in the absence of obstacles
are now no longer feasible. Nonetheless a 99% confirmation rate is still achieved.

In our second set of runs the robot is given the task to confirm the presence of the true bottle of Experiment #2.
In that experiment (without obstacles) the robot had a tendency to move around the bottle clock-wisely as shown in
Figure 10c. Now three obstacles (shown in pink) that produce motion obstructions are included with one of them blocking
the clockwise path of the robot. A sample path followed by the robot in the presence of these three obstacles is shown in
Figure 19a (the yellow disc is the final position of the robot). Figure 19b shows another path, where the robot starts moving
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Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
3 22.24 20.84 840.13 99

Table 7: Statistics from 100 runs with motion obstacles and the plastic cat as target

to the right, then it moves forward (into a cell that is partially occupied by an obstacle), but it then moves backwards in
order to avoid collision and keeps moving around the bottle until detection is achieved. Table 8 gives average measurements
over 100 runs. Again, as expected, there is a neat increase in the number of sensing locations, path length, and planning
time, relative to the results shown in Table 4 of Experiment #3. But the confirmation rate is still very good.
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c9
c17c3

c12
c20

c5

c4

c6
c8

c1

c16
c24

c15
c23c22

c14

c11 c10

c1819

(b) Detection in 12 steps

Fig. 19. Sample paths for the true bottle while avoiding motion obstacles

Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
3 23.72 20.80 999.45 99

Table 8: Statistics from 100 runs with motion obstacles and the true bottle as target

In our third set of runs we repeated the bottle set experiment, but now one of the three obstacles (the one in the inner
ring of the cell decomposition) also produces visibility constraints (see Figure 20a and Figure 20b). In this case, whenever
it is detected that C is occluded, only the prediction step is used to update the probabilistic model of the robot position
relative to C. A sample path is shown in Figure 21, with robot positions where occlusion occurs marked by black ”x”.
The size of the occluding obstacle relative to the length of a motion step allows the robot to escape from the zone where
occlusion takes place in two steps. Table 9 shows statistics over 100 trials. The results are quite similar to those obtained
when only motion obstacles were present. However, the confirmation rate is marginally smaller.

8. EXPERIMENTS WITH REAL ROBOT

8.1. General setting

In this section we present five experiments carried out with a real robot. The goal of these experiments is to further assess
our approach. All our experiments took place in the Robotics Laboratory at CIMAT. Figure 22 shows the scene of the
experiments.

Our robot is a Pioneer P3-DX (a differential-drive robot) equipped with an USB camera as our visual sensor and a
Sick-LMS200 range sensor. The robotic system and its software architecture are presented in more detail in Appendix B.
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(a) Environment with an obstacle that produces both a
motion obstruction and a visibility occlusion

(b) Visibility occlusion from the robot’s perspective

Fig. 20. Experiment with both motion obstructions and visibility occlusions

Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
3 23.70 20.77 918.72 97

Table 9: Statistics over 100 runs, with both motion and visibility constraints and the true bottle as target
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Fig. 21. Sample path in the presence of an obstacle creating occlusion constraints

The object to be identified is placed at the center of a rectangular support table (see center of Figure 22). The camera is
used to take images that are fed into the target detector. The range sensor is used to keep the robot at an adequate distance
from the support table to avoid collision with it and to maintain the candidate object within the field of view of the camera.
The range sensor is also used to estimate the direction of the object C.

In the presented experiments we will vary two sets of parameters. Parameters in one set are related to the planner:
planning horizon N and number of cells in the decomposition. Parameters in the other set are related to the environment
and/or the target detector: illumination, scene background, textures, sizes, and colors of the targets, size of the sets of
images used to train the detector and generate the observation models, number of cells used to train the detector.

In Experiments #5, #6 and #7, the planner uses the 24-cell decomposition shown in Figure 1. In Experiments #8 and #9
it uses a reduced version of this decomposition with only 16 cells, obtained by removing the outer ring of cells. For each
target T , the detector DT uses the same deformable part model algorithm as in Section 7. In Experiments #5 through #8
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Fig. 22. Laboratory environment for Experiments #5 through #9

the detector is trained on a set of images taken from a single cell cg of the decomposition. In Experiment #9 it is trained
on a set of images taken from two adjacent cells cg1 and cg2. In all cases, the confidence scores range over 6 values, i.e.,
n = 6 and the threshold ô was set to o6. The parameter λ was set to 0.5. The robot was initially located in cell c14 or c15,
and cg, cg1 and cg2 were chosen far away from these cells. The execution horizon was set to Ne = 40.

In all experiments, the estimated direction of the center of the candidate object C is computed as follows. The laser
scan of the range sensor intercepts the support of C. The two depth discontinuities corresponding to the two sides of this
support are detected and the middle direction between them is the estimated direction.

As with the experiments in simulation, in all the statistics tables shown below, the average numbers of sensing
locations, path lengths and planning times are computed only over the runs that achieve confirmation.

8.2. Experiment #5: A dark dog plush

(a) Dog target
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(b) Path generated with N = 4

(c) Initial view (d) View on detection

Fig. 23. Illustrations for Experiment #5

The main purpose of this experiment is to test the ability of our system to confirm the presence of a target in a real-
world scene. The target is the dog plush shown in Figure 23a. It has uniform texture and dark color. Only 40 images were
used to train DT (instead of 200 in Experiments #1 through #4). We also took 40 images from each of the 24 cells of the
decomposition to obtain DT ’s observation model (instead of 200 in the previous experiments).
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Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
4 21.0 8.677 214092.8 80

Table 10: Statistics for Experiment #5 (dog)

We experimented with planning horizons N = 2,3, and 4. The best results were obtained with N = 4. Statistics with
this horizon collected over 10 runs with random initial positions of the robot in cell c15 are shown in Table 10: average
number of sensing locations, average path length, average total planning time and confirmation rate in %. Despite the fact
that this target has few distinctive features and that the experiment was conducted under relatively poor illumination, the
system managed to do so in 80% of the runs. Figure 23b plots the path followed by the robot in one of the runs. The initial
position of the robot is shown with a black circle, its final position as a red (gray) circle, and the intermediate sensing
locations as small squares. Figures 23c and 6d show, respectively, the initial image of the dog (then the candidate object)
and its last image when it is conformed to be the target. In Extension 1 of this paper, a run of this experiment is shown at
2x speed.

The imperfect results obtained in this experiment led us to perform experiments with larger training sets of images and
under diverse illumination conditions, as reported below.

8.3. Experiment #6: A multicolor elf plush

(a) Elf toy as target
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(b) Path generated with N = 2

(c) Initial view of candidate
object C

(d) View of object C when it is
confirmed to be the target

Fig. 24. Illustrations for Experiment #6

This two main purposes of this experiment are to better analyze the impacts of the choice of the planning horizon N

and of the number of images used to train DT .
The target T is the multi-color elf plush shown in Figure 24a. Initially the detector was trained (like in Experiment #5)

on 40 images taken from within cell cg = c10 and the observation model was built using 40 images from each of the
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24 cells of the decomposition X . Using the SDP-based planner of Section 6, we generated motion strategies with three
planning horizons N = 2,3 and 4.

Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
2 14.00 6.685 78.52 100
3 15.00 6.713 1641.39 100
4 14.50 6.851 154880.6 80

Table 11: Statistics for Experiment #6 (elf plush)

Figure 24b plots the path followed by the robot in a run with N = 2. Figures 24c and 24d show, respectively, the initial
image of the elf and its last image when it is confirmed to be the target.

Table 11 shows statistics collected for each value of N. Each line of the table was obtained over 10 runs with different
initial positions of the robot within cell c14. The numbers of sensing locations and the path lengths are approximately
the same for all three values of N over the runs confirming the presence of the target. However, the main surprise comes
from the fact that runs with N = 4 had a confirmation rate of only 80%, while the runs with N = 2 and N = 3 achieved
a 100% rate. Although statistics over 10 runs may not be fully reliable, this result is counter-intuitive, as a planner with
greater look-ahead computes policies taking more possible future states and observations into account. However, if models
contains too much uncertainty, considering motion/sensing steps too far in the future may reduce information relevance
and lead to poor decisions. Here, the detector DT trained over only 40 images may result in a non-informative observation.

Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
4 12.00 5.732 119232.2 100

Table 12: Statistics for Experiment #6 (elf plush) with enhanced training of the detector

To test this hypothesis, we re-trained the detector DT on a larger set of 75 images from cell c10. Table 12 shows the
new statistics for N = 4. The confirmation rate not only reaches 100%, but the average number of sensing locations and
the average path length are also better.

The number of steps before confirmation is roughly the same as those reported above for Experiments #1, #2, and #4
and observed for other experiments. In Experiment #5 a slightly larger number of steps were needed to confirm the target,
despite the combination of lack of distinctive features of the dog plush, poor illumination of the scene, and small size of
the training set of images. This suggests that the resolution of the cell decomposition and the step size, which have been
the same for these experiments, are key determinants of the number of steps. Hence, it may be possible to set a much
smaller limit than the current one on the total number of steps before the planner decides that a candidate object C is not
the target. This would avoid wasting too much time when the candidate object C is not the target, without impacting the
reliability of the confirmation process.

8.4. Experiment #7: Changes in illumination

This experiment has been directly inspired by Experiment #5, which was carried out with reduced illumination. Its purpose
is to analyze the impact of variations in illumination conditions between the training and the execution phases.

The target is again the elf plush used in Experiment #6 and shown in Figure 24a. We used the same trained detector
and observation model as in Experiment #6. They were both obtained with the illumination conditions of Figure 25a (1650
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(a) 1650 lux (b) 495 lux (c) 16 lux

Fig. 25. The same scene and target (elf plush) with three different illuminations (Experiment #7)

lux)2. Here, we perform two sets of additional runs with the reduced illumination conditions shown in Figure 25b (495
lux) and Figure 25c (16 lux).

Illumination # of Path Planning % of
conditions sensing length time (ms) confirmation

locations
1650 lux 15.00 6.713 1641.39 100
495 lux 18.44 8.125 2024.31 90
16 lux 14.33 7.029 1626.59 30

Table 13: Statistics for Experiment #7 (variations in illumination)

Table 13 shows the obtained statistics collected for each illumination over 10 runs with random initial positions of
the robot in cell c14, with planning horizon N = 3. The first row, which corresponds to runs performed with the same
illumination as in the training phase, is the same as in Table 11. When illumination was reduced to 495 lux, the robot was
still able to confirm the presence of the target in 9 runs out of 10. As expected, when illumination is reduced further the
confirmation rate drops substantially. Nevertheless, with an illumination of only 16 lux the system achieves confirmation
in 3 runs out of 10.

It is interesting to remark that when confirmation is achieved with 16-lux illumination, the average number of sensing
locations and path length are similar in magnitude to those obtained in the 1650-lux and 495-lux scenarios. This suggests
that with 16-lux illumination the subset of cg = c10 where the confidence score o6 is obtainable is greatly reduced and may
require finer motion steps of the robot to reach it. This hypothesis is confirmed in Figure 26. There, we show 40 robot
positions sampled uniformly within cell c10, and we attach two numbers to each position: the left number is the detection
score oi under 1650-lux and the right number is the score under 16-lux. Under 16-lux, the confidence score o6 is obtainable
only in a small small subset of c10. With the current step size, if the robot does not reach this subset soon, it keeps moving
back and forth around cell c10 without ever stopping into it.

Detection methods may exist that are more robust to variations in illumination conditions than the deformable part
model algorithm used in our detector, or better suited in poorly illuminated scenes. If it is known in advance that the
illumination conditions during execution runs are likely to be poor or can differ widely from those during training, such a
method should then be used in our system.

8.5. Experiment #8: Woodcraft of a jaguar head

The main goal of this experiment is to test the performance of the system with fewer cells in the decomposition X when
the target is smaller in size.

2 The lux is a unit of luminous flux per unit area. In photometry, it measures the intensity of light that hits a surface.
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Fig. 26. At each position the left number is the score oi under 1650-lux and the right number the score under 16-lux

o1 o2 o3 o4 o5 o6
c1 0.000 0.000 0.275 0.225 0.400 0.100
c2 0.000 0.000 0.000 0.000 0.000 1.000
c3 0.000 0.000 0.200 0.275 0.400 0.125
c4 0.300 0.675 0.025 0.000 0.000 0.000
c5 0.000 0.450 0.550 0.000 0.000 0.000
c6 0.275 0.675 0.050 0.000 0.000 0.000
c7 0.025 0.275 0.025 0.000 0.000 0.000
c8 0.575 0.400 0.025 0.000 0.000 0.000
c9 0.100 0.150 0.275 0.300 0.175 0.000
c10 0.000 0.000 0.000 0.250 0.550 0.200
c11 0.100 0.175 0.200 0.325 0.200 0.000
c12 0.850 0.150 0.000 0.000 0.000 0.000
c13 0.600 0.375 0.025 0.000 0.000 0.000
c14 0.900 0.100 0.000 0.000 0.000 0.000
c15 0.675 0.250 0.075 0.000 0.000 0.000
c16 0.825 0.175 0.000 0.000 0.000 0.000

Table 14: Observation model P(y = o j|x = ci) in Experiment #8 (jaguar’s head)

The target is the colorful woodcraft of a jaguar head shown in Figure 27a. It is smaller in overall size than the dog and
elf used in previous experiments. For this reason we reduced the number of cells in the decomposition to 16 by removing
the outer ring (8 cells) from the 24-cell decomposition shown in Figure 1.

The detector was trained on 40 sample images using c2 (rather than c10) as cg. The observation model was generated
using 40 images from each of the 16 cells. The result is shown in Table 14.

Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
2 9.00 4.311 26.585 100

Table 15: Statistics for Experiment #8 (jaguar)

The smaller number of cells allows for a smaller planning horizon N, which we set to 2. Table 15 presents statistics
collected over 10 runs with different initial positions of the robot within cell c14. The confirmation rate is 100%. The
average number of steps and path length are slightly lower than in previous experiments. This is likely due to the smaller
number of cells in the decomposition and the choice of c2 as cg. Such choices were induced by the target’s smaller size.
Figure 27b plots the path followed by the robot in one of the runs. Figures 27c and 27d show, respectively, the initial image
of the jaguar’s head and its final image taken when it is confirmed to be the target.
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(a) Woodcraft of a jaguar head
as the target
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(b) Path generated with N = 2

(c) Initial view of the jaguar (d) View of the jaguar when it
is confirmed to be the target

Fig. 27. Illustrations for Experiment #8

This result led us to perform the same experiment with the larger elf plush used in Experiment #6, i.e., with the same
16-cell decomposition as above and c2 as cg. Table 16 gives the statistics collected over 10 runs with N = 3. Comparison
with the second row of Table 11 indicate a slightly lower confirmation rate (90% instead of 100%) and 20% smaller
number of steps and path length. In the run that did not end up in target confirmation, the robot reached c2 but kept moving
towards the elf plush to positions where the top part of the target was out of camera field of view. At those positions the
confidence scores returned by the detector were no greater than o5. Because of its smaller size, this never happened with
the jaguar head.

This comparison indicates that the size of the decomposition should be adapted to the size of the target. With targets
larger than those used our experiments, one might have to use decompositions with 2 or 3 rings with larger inner and outer
circles. In some cases, e.g., large elongated objects, non-circular decompositions may be more suitable. In Extension 2 of
this paper, a run of this experiment is shown at 1x speed.

Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
3 11.55 5.423 699.26 90

Table 16: Statistics for Experiment #8 (elf plush with 2-ring 16-cell decomposition)

8.6. Experiment #9: Detector trained over two adjacent cells

The purpose of this experiment is to test our system when the detector DT is trained over the union of two adjacent cells
cg1 and cg2, instead of a single cell. Training the detector over multiple cells can provide the robot with a broader range of
viewpoints from which it can confirm the presence of the target.
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o1 o2 o3 o4 o5 o6
c1 0.000 0.000 0.000 0.000 0.625 0.375
c2 0.000 0.000 0.000 0.000 0.000 1.000
c3 0.000 0.000 0.000 0.000 0.000 1.000
c4 0.000 0.000 0.025 0.040 0.500 0.075
c5 0.025 0.550 0.400 0.025 0.000 0.000
c6 0.575 0.375 0.050 0.000 0.000 0.000
c7 0.000 0.075 0.750 0.175 0.000 0.000
c8 0.000 0.000 0.000 0.550 0.450 0.000
c9 0.000 0.000 0.050 0.200 0.750 0.000
c10 0.000 0.000 0.025 0.250 0.550 0.175
c11 0.000 0.000 0.000 0.075 0.400 0.525
c12 0.025 0.025 0.175 0.375 0.400 0.000
c13 0.725 0.175 0.100 0.000 0.000 0.000
c14 0.950 0.050 0.000 0.000 0.000 0.000
c15 0.525 0.300 0.175 0.000 0.000 0.000
c16 0.050 0.100 0.150 0.500 0.200 0.000

Table 17: Observation model P(y = o j|x = ci) in Experiment #9 (jaguar’s head)

The target is again the jaguar’s head shown in Figure 27a, with the same 16-cell decomposition as in Experiment #8.
The detector DT was trained on 80 images, 40 from within cg1 = c2 and 40 from within cg2 = c3. The observation model
shown in Table 17 was built using 40 images from each of the 16 cells. The detector has probability 1 to return the maximal
score o6 in both cells c2 and c3. It also has probability 0.525 to return score o6 in cell c11. Therefore, since λ is set to 0.5
(see Section 8.1) the region where the robot may achieve confirmation is more than twice larger than in Experiment #8.

Planning # of Path Planning % of
horizon sensing length time (ms) confirmation

locations
2 7.5 3.335 14.92 100

Table 18: Statistics for Experiment #9 (jaguar multiple cells training)

Table 18 shows statistics collected over 10 runs with different initial positions of the robot within cell c14 and planning
horizon N = 2. The confirmation rate is 100%. Since the robot can confirm the presence of the target from a much larger
endgame region and part of this region is closer to cell c14 than cell c2, it moves less than in Experiment #8. Comparison
of Tables 15 and 18 indicates that the average number of sensing locations decreased by 16% whereas the average path
length decreased by 22%.
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Fig. 28. Path generated with N = 2 with DT trained in cg1 = c2 and cg2 = c3

Training the detector over a larger number of cells may speed up confirmation in some cases, but may not always
be suitable. If the diversity of viewpoints increases, the detector may require more images from each cell to be able to
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return high scores from each one. Moreover, if several objects have the same appearance from some viewpoints (as in
Experiment #2 with two similar bottles), then incorrect confirmation of the target’s presence will become more likely. Our
ability to train the detector in cells where distinctive features of the target are visible would be reduced or even lost.

The pertinence of using a static detector trained from multiple viewpoints or a mobile robot using multiple detectors,
or a mobile robot using a single detector depends on the appearance of the target. If the target has only one small feature
that differentiate it from similar objects, then a single detector works well and the mobility of the sensor is essential. If the
target has several distinctive features visible from across several viewpoints, then multiple detectors may be preferable.
In addition, if at least one distinctive feature is visible from any viewpoint (a rare case in practice), then a static detector
would work. In general, the mobility of the sensor makes it possible to reduce the number of viewpoints to train the
detector.

Remark: As a final note regarding all the experiments selecting the ideal value of the threshold λ for a given target
is not trivial as it might vary significantly depending on the target searched. The observation model of the target gives an
upper bound on the probability of getting a given detection score greater than or equal to ô, for any selected value of ô,
hence an upper-bound on the value of λ . In all our experiments we set ô to the highest possible score of the target detector,
but this might not always be the best choice, especially if the highest score is rarely achieved.

9. CONCLUSION AND FUTURE WORK

We have presented and tested a new approach allowing a mobile robot equipped with visual sensors to confirm that a
candidate object C is a given target T using an imperfect target detector. Our main contribution is a POMDP formulation
of the problem that mixes localization of the robot relative to C and confirmation that C is the target T . To confirm the
target’s presence while avoiding false positives, the robot must achieve a twofold condition: (1) it must reach a position
where the target detector has high probability to return a high confidence score and (2) the detector must actually return a
high confidence score on the image taken at this position.

Motion strategies are computed as policies with given horizons using Stochastic Dynamic Programming (SDP) with
Imperfect State Information. Computing exact solutions in SDP with Imperfect State Information does not scale well
with the planning horizon but our experiments show that space decompositions with relatively few cells suffice. Such
decompositions do not require very long horizons. Moreover, we have introduced a gain function gF that prevents the
planner from being trapped into local maxima when planning horizons are set too short. Our method is a target confirmation
method, not a general-purpose object recognition method. Hence, unlike most object recognition systems, it only takes the
observation model of the target as input.

We have implemented our method and tested it both in simulation and with a real robot. In this paper, we have presented
results obtained in nine different experiments (four in simulation and five with a real robot). Some of these experiments
include several significant variants aimed at further understanding some results or validating certain hypotheses. Overall,
these experiments demonstrate that our system is efficient and reliable under a broad range of situations. In particular, they
show that it tolerates well similar-looking targets and candidate objects, variations in scene illumination, non-uniform
scene backgrounds, targets with various colors, shapes, and textures, relatively small training sets of images, and large
errors in the estimated direction of the candidate object’s center. They also indicate that the sizes (24 and 16 cells) of our
cell decompositions are appropriate for the small targets we have considered, that planning horizons 2 and 3 work well
with these decompositions and the additional gain function gF , and that the size of the decomposition and the length of
a motion step are key determinants of the number of moves needed to achieve confirmation. A larger planning horizon
(N = 4) significantly increases planning times, without affecting much the numbers of steps and the success rates (when
the additional gain function gF is used). Moreover, there is evidence that an increase of the planning horizon may require
larger training sets of images.
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Our goals for future research include the following:

• Multiple detectors: Training one detector over k cells, as we did in Experiment #9 (for k = 2 adjacent cells), is
different from training k detectors, each over one distinct cell. Using multiple such detectors could have significant
advantages, especially when the target has distinctive features visible from very different viewpoints. Then the pres-
ence of the target could be confirmed from a broader range of robot positions, hence more quickly. Moreover, false
positives would be less likely than with a single detector trained over multiple cells (an issue discussed at the end
of Section 8.6). However, efficiently managing multiple detectors and their responses could raise some non-trivial
issues. The true benefits of using multiple detectors would also have to be demonstrated experimentally.

• Bigger targets: The type of practical application we have in mind for our method is the retrieval and localization of
relatively small objects in typical indoor environments (home or office). So, In all our experiments, the target objects
have been relatively small and, except for the plastic cat, compact. For such targets the experiments show that the
circular 24- and 16-cell decompositions are appropriate. For larger targets, especially elongated and/or irregularly
shaped ones, non-circular decompositions that conform better to the target shapes, e.g., elliptical or rectangular
decompositions, might be preferable. Selecting the size of the cells (hence, their number), as well as appropriate
motion commands and transition models could then be challenging. If cells are too small, long planning horizons
could be needed, but planning times could then be prohibitive; if cells are too large, the observation models might
not be informative enough to reliably determine the target’s presence or absence.

• Targets with arbitrary orientation in 3D space: In our current work we assume that a target has a single pose on a
horizontal surface. In the future, it could be useful to remove this assumption and let the target have any orientation
in 3D space. This would be useful if the target has several equilibrium position on a plane or if it may lie on a
non-flat-non-horizontal surface. One possible approach could be to train several detectors for different orientations
and then to estimate the one that provides the best match with the candidate object.

• Visual occlusions: In Section 7.6 we have described an extension of our system to deal with motion and occluding
obstacles. However, this extension is still preliminary. Another approach (that could be combined with our current
method) would be to train detectors on small subsets of the target containing distinctive features, since such subsets
are less likely to be occluded by obstacles than the entire target.

• Camera with more degrees of freedom: Many targets could be more reliably identified if the camera was moving
in 3D space rather than a horizontal plane. This can be achieved by attaching the camera at the end-effector of
a manipulator arm mounted on the mobile robot. However, as in the item above, this will also require new cell
decompositions, motion commands, and transition models. Problems similar to those mentioned above will need to
be addressed. The robot would also have to decide how to perform some motions, either using the degrees of freedom
of its mobile base, or those of its manipulator arm, or both. Cameras with more degrees of freedom could also help
dealing with targets with arbitrary orientations in 3D space.

In addition to these research goals, we are also interested in a more practical goal: building a robot that can routinely
search for user-specified targets in an indoor environment.
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Appendix A COMPUTATION OF TRANSITION PROBABILITIES
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Fig. 29.

We now present the analytical calculation of the transition probabilities P(xt = c j|xt−1 = ci,ut−1) for the motion
commands forward, backward, left, and right available to our robot. Recall from Section 5 that the length (hereafter
denoted by S) of each motion step is set to a value slightly greater than the distance between two concentric circles of the
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decomposition X . However, the motion step may be truncated by the range sensor if the robot gets too close or too far
away from the candidate object.

Let us start with the case where ut−1 = f orward. Assume that the command forward is applied to cell xt−1 = ci,
where ci lies in the middle or outer layer of the decomposition X (hence, i 6∈ {1, ...,8}). The neighboring cell of ci in the
forward radial direction of the decomposition X is cell ci−8. Based on the definition of the transition probabilities given
in Section 5, we have P(xt = ci−8|xt−1 = ci, f orward) = 1 since the transform Tr(ci, f orward) is fully contained in ci−8.
Of course, we then have P(xt = c j|xt−1 = ci, f orward) = 0, ∀c j 6= ci−8. If the robot is in ci, where i ∈ {1, ...,8}, then the
motion command forward will leave the robot in the same cell ci thanks to the range sensor that prevents the robot from
getting too close to the candidate object; so, in that case, P(xt = ci|xt−1 = ci, f orward) = 1.

The command ut−1 = backward can be treated in a similar way. If i 6∈ {17, ...,24} then the neighboring cell of ci in the
backward radial direction of the decomposition X is ci+8. We have P(xt = ci+8|xt−1 = ci,backward) = 1. If i∈ {17, ...,24}
then P(xt = ci|xt−1 = ci,backward) = 1.
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Fig. 30. Notations for calculating P(xt = c j |xt−1 = ci,ut−1 = right) for any cell ci in the inner or middle layer of the decomposition
X

The cases where ut−1 = right and le f t are more complicated. Let us consider the case where ut−1 = right. (The case
where ut−1 = le f t can be treated in a similar way.) Consider the most general case where cell ci lies in the inner or middle
layer of the decomposition X , i.e., i ∈ {1, ...,16}. Then the transform Tr(xt−1 = ci,ut−1 = right) of ci by right, shown in
red in Figure 30a, overlaps four cells denoted ci, uci, rci, and urci. (uc stands for “upper neighboring cell”, rc for “right
neighboring cell”, and urc for “upper right neighboring cell”.) The four overlap regions are designated by A1, A2, A3, and
A4. We further decompose A1 and A2 into simpler regions A(1)

1 , A(2)
1 , A(1)

2 , and A(2)
2 , as shown in Figure 30b. Finally, let:

- rn−1 and rn denote the radii of the inner and outer boundaries of ci,
- rl and ru denote the radii of the inner and outer boundary of Tr(xt−1 = ci,ut−1 = right).
The four non-zero transition probabilities can now be expressed as follows as ratios of region areas:

P(xt = ci |xt−1 = ci,ut−1 = right) =
A1

A1 +A2 +A3 +A4
, (7)

P(xt = uci |xt−1 = ci,ut−1 = right) =
A2

A1 +A2 +A3 +A4
, (8)

P(xt = rci |xt−1 = ci,ut−1 = right) =
A3

A1 +A2 +A3 +A4
, (9)

P(xt = urci |xt−1 = ci,ut−1 = right) =
A4

A1 +A2 +A3 +A4
, (10)

where the region areas are derived using trigonometric arguments:
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Fig. 31. Notations for calculating P(xt = c j |xt−1 = ci,ut−1 = right) for any cell ci in the outer layer of the decomposition X

If cell ci lies in the outer layer of the decomposition, i.e., if i ∈ {17, ...,24}, then the range sensor prevents the robot
from getting too far away from the candidate object by truncating some motion steps. In that case, there are no upper cells
uci and urci (see Figure 31a). So, the transform Tr(xt−1 = ci,ut−1 = right) is now completely contained in ci and rci. The
two overlap regions are denoted by eA12 and eA34. In Figure 31b) we introduce the radius rd , which decomposes ci into
two subsets s1(ci) and s2(ci): in s1(ci) motion steps of full length S can be applied, whereas in s2(ci) motion steps are
truncated by the range sensor. We compute the transition probabilities for s1(ci) in the same way as for a full cell contained
in the inner or middle layer of the decomposition, just taking into account that here the transform Tr(s1(ci),right) consists
of only two regions, eA12 and eA34, instead of four. To compute the transition probabilities for s2(ci), we decompose this
region further into two subsets: eAc, which contains all the points that stay in ci, and eAlc, which contains all the points
that moves to rci. Finally, the two non-zero transition probabilities for the entire cell ci are calculated as weighted sums of
the fractions of s1(ci) and s2(ci) that stay in ci or move to rci. We get:

P(xt = ci |xt−1 = ci,ut−1 = right) =[
eA12

eA12 + eA34
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where the region areas are computed as follows:
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The transition probabilities P(xt = c j |xt−1 = ci,ut−1 = right) can be obtained in a similar way.

Appendix B HARDWARE AND SOFTWARE SETUP

In this appendix we briefly present the hardware components and the software architecture of the robotic system that we
have implemented to perform the experiments described in Section 8.

The mobile robot is a Pioneer P3-DX with differential-drive wheels. It is equipped with an on-board 400 MHz com-
puter. A usb webcam and a laser range sensor are mounted on the robot as depicted in Figure 32a. The webcam has a
resolution of 640x480 pixels; it is used to feed the detector DT with pictures of the candidate object C. The range sensor
is a Sick-LMS200 with 10m range, 180dg scanning angle, and 1dg angular resolution; it is used to estimate the direction
of the center of the candidate object C and to prevent the robot from going too close or too far away from C.

(a) Hardware (b) Software architecture

Fig. 32. Complete robotic system

Most of the system software is implemented using the ROS framework and programmed in C++. Due to the restricted
computing power available on the Pioneer P3-DX, only some modules run on it. The other modules run on a laptop with
an Intel Core-i7 2.20 GHz processor and 16 GB of RAM. The ROS framework is used to implement the communication
protocols between the P3-DX and the laptop.
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The main software modules running on the P3-DX are the motion controller, the webcam driver, and the range-sensor
driver. The main modules running on the laptop are the motion planner, the target detector DT , and the user interface (UI).
The UI provides diverse information to the user, in particular the successive pictures taken by the webcam, the range-
sensor measurements, and estimates of the current robot’s position in the decomposition X . The motion planner applies
the detector DT to the images sent from the robot, computes motion policies using SDP, and sends motion commands back
to the robot. Figure 32b summarizes this software architecture.

Appendix C Index to Multimedia Extensions

The multimedia extensions to this article are at:
http://www.ijrr.org.

Extension Type Description
1 Video A run of the Experiment #5 at 2x speed
2 Video A run of the Experiment #8 at 1x speed

Table 19: Table of Multimedia Extensions

http://www.ijrr.org
http://www.ijrr.org
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