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Abstract— This work presents the minimal length paths, for
a robot that maintains visibility of a landmark. The robot is a
differential drive system and has limited sensing capabities
(range and angle of view). The optimal paths are composed of
straight lines and curves that saturate the camera pan angle

I. INTRODUCTION

In this paper, we study the interaction of the nonholo-
nomic and visibility constraints for a robot that maintains
visibility of a stationary landmark. The robot is a differ-
ential drive system and has limited perception (range and
angle of view). We first demonstrate controllability of therig. 1. coordinate frame assignments for a differentiaredrobot with
resulting system, and then describe optimal paths for theamera.
system.

The study of optimal paths for nonholonomic systems . o
has been addressed by numerous researchers (a njgat¢ € [¢1,¢2]. The camera will have finite rangg.ax,
overview is given in [3]). Dubins [2] determined the bey_ond_ which it c_:annot detect the landmark. Thus, while
shortest paths for a car-like robot than can only go forward'@vigating, the distance from the robot to the landmark
Reeds and Shepp extended this work and established /St P& no greater tham,... We also assume that the
shortest length paths for a car-like robot that can movEPPOt must maintain some minimum distancg;, from
forward and backward [4]. Balkcom and Mason determined1€ landmark (e.g., to avoid collision or to respect depth
the time-optimal trajectories for a differential drive mb ©f field constraints). Without loss of generality, we place
[1]. All of these results assume that the nonholonomic robdh€ (Static) landmark at the origin of the world coordinate
moves in the free space (without obstacles). These previog¥Stem- These conventions are illustrated in Figure 1.1Give
results do not address the case with sensing constrairifys formulation, the problem that we consider is that of
on the robot. In this paper we address the combination ¢i"ding minimal length paths from initial to goal position
nonholonomic constraints and constraints imposed by tH¥/ithout regard to the robot orientation) such that the
sensor. The latter essentially define a forbidden region ifP!lowing conditions are satisfied:
the configuration space of the system. We demonstrate thatl) The camera is always pointing toward the landmark,
optimal paths for such a system consist of segments that  i.€. .
are either straight lines in the plane or curves that saturat Y+ ¢=m+tan"? Y. (1)
the sensor viewing angle. v

2) The robot does not violate the constraints imposed

A. Problem definition by rmin @ndry.x, i-€., the robot does not leave the
We make the usual assignment of body-attached frame ~ annulus
he r with origin he mi in ween th
to the robot, with origin at the midpoint between the Q={(z,y) |2 <@ +y2) <2 ). (@2

two wheels,y-axis parallel to the axle, and the axis

pointing forward, parallel to the heading of the robot. The 3) The constraints on camera motion are not violated,
configuration of the robot can be represented-yy, /)7, ie.,

in which ¢ is the angle from the world-axis to the robot’s ¢ € b1, Pa)- 3)
x-axis.

The camera is positioned so that the optical center lies
directly above the origin of the robot’s local coordinate In this section we give a constructive proof that the
frame, and we denote the camera pan anglepbyWVe differential drive robot system is controllable under the
assume that the range of camera rotation is limited, suackisibility constraints described above. The proof proseed

II. T CURVES AND CONTROLLABILITY
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by constructing piecewise smooth paths consisting of path. Hence ther curves not only divide the plane around P
segments during which the camera pan angle is saturatado four disjoint regions, they also divide the space of all
either at its minimum or maximum value. We refer to apossible velocities of the robot into two mutually exclesiv
path segment with the pan angle saturated as a T curuggimes.
and we refer to a sequence of alternating T curves (i.e.,

the segments are saturated alternately at the minimum and
maximum values for pan angle) as an S curve.

A. T curves

In the development that follows, it is convenient to
express the robot configuration s 6, )7 in which r, 6
are the polar coordinates

Hztan_lg, r =22+ y2.

Consider a curve in the robot's workspace passing through
the point (r,,6,), such that corresponding robot path
satisfies (1) for at all points. Since the robo#'saxis is
tangent to the path, the constraint (1) effectively elindisa _ .
one degree of freedom of motion, leading to the followin F'ge' [%E 2 T1 and T2 curve passing through, §) = (1.5, %) for
proposition, which is stated here without proof due to space = ° °"

limitations.

Proposition 1: For a fixed value of¢, any robot path ¥y
passing through the poifit,, 6,) and satisfying (1) is given %

i TTOGXP{M}- (4)
tan ¢

If we evaluate (4) forp = ¢; and for¢ = ¢, we obtain
the two “extremal” feasible paths through the pdint, 6,).

The space between these two curves represents the set of Fig. 3. State space division around P by T curves
possible directions of heading for the robot from a given
point in the plane. Such a pair of curves can be constructed
at each point in the plane and the robot can move along
each such curve while respecting the camera constraints (1)
and (3). Hence the curves can be thought of as latitudes
and longitudes.

The paths that we describe below are constructed from
curves that satisfy (4) evaluatedd@it or ¢, leading to the
following two definitions, which are illustrated in Figure
2. A curve that satisfies (4) with = ¢, will be referred to
as aT1l curve. Such a curve maintains a constant angle of
¢1 between the optical axis of the camera and the heading
of the robot. A curve that satisfies (4) with = ¢ will
be referred to as &2 curve. Such a curve maintains a
constant angle o, between the optical axis of the camera
and the heading of the robot. WhenTacurve passes Fig. 4. An'S curve forp € [T, ).
through a point then we add the label of the point as a
subscript to the curve to denote that the curve is passin
through the point. For exampl&1p refers to aTl curve - S Curves
passing through point P. It is possible to concatenate a sequence of T-curves that

Refer to figure 3. We can see thBl p and72p divide remain inside the annulus given by (2) to create what we
the plane around P into four disjoint regions. We haveefer to as an S curve. The procedure for doing so is
followed a nomenclature of naming those regions as showiterative, and thei’” segment in the S curve consists of
in figure 3. If the camera is allowed to rotate in a closeda T1 segment followed by a T2 segment. There are four
interval[¢1, ¢2], the possible heading of the robot can onlypossible strategies, corresponding to whether we increase
be in the region A or B. If the camera is only allowed toor decrease as we build the S curve, and to whether
rotate in the closed intervad,, ¢1 + 7], then the possible we begin with a T1 or T2 curve. Of these four strategies,
heading of the robot from P can only be in the region C opbnly two generate unique S curves (the other two strategies
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merely traverse the curves in the opposite sense). Thus, for

anyq = (r,0,v)T, there exist exactly two unique S curves.  Range Circles
If we begin with a T2 curve and use increasing values of /
0, the procedure begins by tracing the T2 curve through

qo, until » = r.. From this point, trace a T1 curve until
r = rmin. From this point, trace a T2 curve until= ry .y, Tcurves
etc. Such an S curve is shown in Figure 4, with= —7 /6 | ‘ ~
and ¢y = 7/6. { “ ‘ ) ¥

Fig. 6. S-set

Type B: A nondifferentiable pointP, on the optimal
path is said to be of Type B if it represents a transition
from a T2 curve to a T1 curve. This is illustrated in figure
Fig. 5. A possible path frong; to ¢ for the differential drive robot. 7.

Proposition 2: For two feasible configurationg; andgy, TYPE B TYPEA
there exists a path fromy andg; satisfying the visibility 2 PC ®
constraint (1) and respecting the constraint on camera B A

motion (3). Hence the system is controllable.

The proof is constructive and not difficult. One essen-
tially builds a path by following an appropriate set of
S curves. As a consequence of this proposition, the the
differential drive robot and camera system is controllable
and thus there exists a path between any two poinfg.in
Hence there exists a path that has minimum length (since Fig. 7. Type of nondifferentiable points on the path
Q is closed). With the above tools in hand we move on to

derive paths, optimal in sense of length between any two The optimal paths satisfy certain properties due to the
points in €. kinematic constraints on the DDR. We present some propo-

sitions that will be useful in deriving the optimal paths.
Ill. PROPERTIES OFOPTIMAL PATHS Again, due to space limitations the proofs are omitted.

In the following, we derive minimal length paths be- Proposition 4: If P and Q are two points lying on the
tween two points in the plane for the the DDR. These pathsame T curve, the only smooth path possible from P to Q,
are not necessarily minimal with respect to distance in theespecting the camera constraints, is the direct path from
configuration space; rather, they are paths whose projecti® to Q lying on the T-curve.
onto the plane are minimal. We denote continuous patHgroposition 5: If Q lies in region C or D, then n@"* path
as C° paths and continuously differentiable paths@s exists between P and Q.

paths. Proposition 6: If optimal path is smooth in the neighbour-
hood of a pointP, then P must lie on a straight line or a
A. S-set T-curve.

The S-set of a point P, located §i, is the set of points Proposition 7: For C° paths to be optimal the nondiffer-
which can be reached on a straight line path from P. Thentiable points on the path can only be of Type A or Type
derivation of the S-set for a point P is given in the appendixB.

The S-set for P is illustrated in figure 6.
IV. THE LANGUAGE OF OPTIMAL PATHS
B. Type A and Type B points From the above propositions, we conclude the optimal
Type A: A nondifferentiable pointP, on the optimal paths include only segments that are T-curves and straight
path is said to be of Type A if it represents a transitiorlines (denoted respectively by T1, T2 and SL). In the
from a T1 curve to a T2 curve. This is illustrated in figurecase of a nonsmooth continuous path, the nondifferentiable
7. points can be only of Type A or Type B. We represent
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a path by a string (or avord) of the form X; — X, «  E. T2-SL region(Region IlI)
X3--- X, where eachX; is one of T1, T2 or S, and
where the symbol - denotes a smooth transition betwee[H
segments and the symbol * denotes a nonsmooth transitioa
For exampleSL —T'1 implies that SL is tangent to T1 at
the point of contact, wherea$L =« T'1 denotes that SL is
not tangent to T1 at the point of contact.

Due to the kinematic constraints of the DDR and the , , ,
properties of optimal paths, only a subset of possiblg' T1-SL region(Region III)
words are included in the language of optimal paths. The Region III' is obtained in manner similar to that used to
following proposition makes this set explicit. derive Region IIl. Region III" is bounded b1 p, arc PP”
Proposition 8: If a straight line is present in the optimal andT1p.
path then the only words possible are SL-T1, T1-SL, SL-
T2, T2-SL, T1-SL-T2 and T2-SL-T1. G. T2-SL-T1 region(Region 1V)

From the above proposition we can conclude that the ) ) ) ) )
set of acceptible words are SL, T1, T2, SL-T1, T1-SL, Consider a point G in Region IV. T_he optimal path from
SL-T2, T2-S, T1-SL-T2, T2-SL-T1, T1*T2*T1*T2- - and P to G consists of 2p, T'1¢ and a bitangent to both the
T2*T1*T2*T1 -- .. The last two words can consist of any CUrves. Region IV is bounded b1, and 72’
number of repetitions as long as the transition from one T
curve to another T curve occurs through a Type A or Typél. T1-SL-T2 region(Region V')
B point.

If the optimal path from P to G is of the forfi2 — SL,

en P lies in Region II' with respect to G. Hence the
egion Ill of P consists of all those points G for which
P belongs to Region II' of G. The region is bounded by
T2p/, T2p and the chord PP'.

The optimal path from P to a point G lying in Region
IV’ consists of T'1p, T2 and a bitangent to both curves.
V. CONSTRUCTINGOPTIMAL PATHS Region 1V’ is bounded byr'1’, and 72%.

For a starting pointP in the plane, the words in the ) . i
language of optimal paths induce a partition of the plank T1*T2*T1... region(Region V and Region VI)
into regions such that a specific word corresponds to the The points reachable by using the wdfd + 72 * T'1 *
optimal path to any goal poiré in a region. This partition 72 lie in Region V and Region VI. This is due to the
is illustrated in figure 8, in which the regions are givenynderlying fact that the point on the optimal path at which

labels that are used in the discussion below. We nowhe transitionZ'1 = 7'2 or T'2 = T'1 takes place must be of
enumerate the possible words and identify the regions imype A or Type B.

which each applies.

J. T2*T1*T2... region(Region V and Region VI)

A. SL region(Regions | and I
gion(Reg ) The analysis fofl'1 « T2« T'1... also holds true for this

The S-set of the point P gives the region consisting ofegion and hence the reachable set of points from P remains
points that are reachable by SL. The S-set of P consist @fie same.

sector of the circles. The above analysis provides an exhaustive enumeration
of the possible cases. The only regions for which more than
B. T region(T1,T2 curves) one word is possible are Region V and Region VI. Further

analysis about Region V and VI, details of which are not

provided here, demonstrate that the words of the optimal

paths in Regions V and VI depend on the numerical values

i i of ¢1 and¢,. The results are tabulated in I. The analysis

C. SL-T1 region(Region 1) for the optimal paths required to move from an initial point
Consider a straight line from P to a point Q that liesP t0 a final point G in the workspace is given in figure 8

at the boundary of the S-set. It can be shown that thand table II.

segment PQ is tangential #01. All points lying onT'1q

are reachable by the word SL-T1. The loci of points on

T'1¢ obtained by moving Q over the boundary of the S-set

T1p and T2p are the curves that are obtained by
following the words T1 and T2 from P.

TABLE |
WORDS FORREGIONSV AND VI

of P forms Region II. Region Il is enclosed by the curves Cases Region V Region VI
T1p, arc PP’ andl'1 p. $1,¢2 €10, 7) T2p —Tlg | Tlp —T2¢g
¢16[0=§)7¢26(%77r)
1+ g2 <7 T2p —Tlg | Tlp — T2¢
D. SL-T2 region(Region II") $1€0,2),62 € (5,7
. . . . L. P14+ P2 > Tlp —T2¢ | T2p — Tlg
Region II' is obtained in manner similar to that used to $1, 02 € (5, m) Tip —12¢ | 12p —T1g
derive Region Il. Region II' is bounded b¥2p, arc PP”
andT2p.
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Fig. 9. Complementary case

Fig. 8. Optimal paths for the case in which velocity vectanf P are
allowed in regions A and B but forbidden in regions C and D

TABLE Il
TYPES OF OPTIMAL PATHS ACCORDING TO REGIONSREGIONSA AND
B ALLOWED, ¢2 > ¢1

Region | Subregion Type of paths
A | SL
B I’ SL
A 1l T2p — SL
B I Tlp — SL
A 1l SL—Tlg
B " SL —T2¢g
A v T2p — SL—T1¢g
B v’ Tlp — SL —T2¢
C,D VI Refer Table 1
arget

Fig. 10. Optimal paths for the case in which velocity vectirsn P
are allowed in regions C and D but forbidden in regions A and B
VI. COMPLEMENTARY CASE

. ) . . VII. CONCLUSION AND FUTURE WORK
Next we consider the case in which the DDR is allowed

to move in regions C and D, and forbidden to move in In this paper we have described minimal length paths
A and B. To analyze this case let us refer to figure gfor a differential drive robot that maintains visibility of
We denote the allowed interval of camera movement a& landmark while moving between any two locations. We
(é1n, don) Wheredn — é1 andesy > é1y. The regions have shown that the optimal paths are composed of straight
of allowed movement of the DDR are A and B (C and plines and curves]'l and72. The analysis we have given

are forbidden). Now let is increasgy. This results in provides optimal paths for an infinite range sensor, i.e., we

a rotation of theT,p curve around P. Consider the casedid not take range constraints as given in (2) into accout.

whengsy = 7. The S-set is a sector of a circle tangent tg-uture research will focus in finding the optimal paths for

Typ (which is a radial line) and passing through the origin.ﬁ”ite sensor range. Another direction of future research

Hence the S-set becomes a sector of a circle of rastius incorporates the above results to define the necessary and
which is a region bounded by the rays PL and PM. Hencaufficient conditions to.guarantee fthe existenge qf a free
the region IV and Il vanish. Now consider the regionPath for @ polygonal differential drive robot with limited
B(figure 9(b)) as we increase .y to . It looks as in figure perception to maintain visibility of a landmark throughout
9(c), since regions Il and IV vanish. The case considered i€ Whole path.
this section can be analyzed as shown in figure 9 leading to

figure 9(d), which shows the final structure of the regions.

The optimal paths in regions A and B are also shown ifft] D. J. Balkcom and M. T. Mason. Time optimal trajectories fif-

. . ferential drive vehicleslnternational Journal of Robotics Reseaych
figure 9(d) by the dashed lines. 21(3):199-217, March 2002.

The analysis for the optimal paths required to move fron?] L.E. Dubins.  On curves of minimal length with a consttain
n initial point P t final point G in the work is given average curvature and with prescribed initial and termpuagition
a alpo 0 afinal po € workspace Is give and tangentsAmerican J.of Mathematic§9:497-516, 1957.

in figure 10 and table III. [3] J.-P. Laumond.Robot motion planning and controBpringer, 1998.
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Region | Subregion| Type of paths
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[} 1nr T2p — SL
C M Tip — SL
D I’ SL
D 1N SL —Tlg
D 1l SL—T2¢
A unique T2p —Tlg
B unique Tlp —T2¢
Y Tl
\ C
B P A
. Q
@ T
D
ﬂ—(p2
T,
P X
[¢ R

Fig. 11. Construction of S-set

[4] J. A. Reeds and L. A. Shepp. Optimal paths for a car thatsgoe
both forwards and backwards.Pacific Journal of Mathemati¢cs
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APPENDIX
DERIVATION OF S-SET

Refer to figure 11. Consider the line PT in region A such
that ZOPQ = «. If the end point Q on PT satisfies the
constraint,, OQP = ¢;, the robot can move on a straight
line path from P to anywhere in between P and Q, on the
line PT, without violating the camera constraints. Since
chord of a circle subtends same angle on any point on the
arc, the loci of point Q is a circle circumscribinyPQO.

Due to the camera constraints, the heading direction of the
robot from P is limited by the line PR, satisfying) PR =

T — ¢o. The S-set in region | is given by the area enclosed
by the arc PMR. Another region of the same kind will exist
in region B.

2798



	Previous Document
	Print
	Search this CD-ROM
	-----------------------------------

	TL1: 
	0: 
	13578770731690465: Proceedings of 2004 IEEE/RSJ International Conference on


	TL2: 
	0: 
	16080107229417834: Intelligent Robots and Systems


	TL3: 
	0: 
	18815779471198657: September 28 - October 2, 2004, Sendai, Japan


	FileNameBL: 
	0: 
	8926004132439784: 


	IROS04PageNumber: 
	0: 
	5018717903961496: 2793
	46831473349995695: 2794
	46015313356022847: 2795
	7685543757315998: 2796
	33819773235032197: 2797
	07313087518515288: 2798




