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Abstract— This work presents the minimal length paths, for
a robot that maintains visibility of a landmark. The robot is a
differential drive system and has limited sensing capabilities
(range and angle of view). The optimal paths are composed of
straight lines and curves that saturate the camera pan angle.

I. I NTRODUCTION

In this paper, we study the interaction of the nonholo-
nomic and visibility constraints for a robot that maintains
visibility of a stationary landmark. The robot is a differ-
ential drive system and has limited perception (range and
angle of view). We first demonstrate controllability of the
resulting system, and then describe optimal paths for the
system.

The study of optimal paths for nonholonomic systems
has been addressed by numerous researchers (a nice
overview is given in [3]). Dubins [2] determined the
shortest paths for a car-like robot than can only go forward.
Reeds and Shepp extended this work and established the
shortest length paths for a car-like robot that can move
forward and backward [4]. Balkcom and Mason determined
the time-optimal trajectories for a differential drive robot
[1]. All of these results assume that the nonholonomic robot
moves in the free space (without obstacles). These previous
results do not address the case with sensing constraints
on the robot. In this paper we address the combination of
nonholonomic constraints and constraints imposed by the
sensor. The latter essentially define a forbidden region in
the configuration space of the system. We demonstrate that
optimal paths for such a system consist of segments that
are either straight lines in the plane or curves that saturate
the sensor viewing angle.

A. Problem definition

We make the usual assignment of body-attached frame
to the robot, with origin at the midpoint between the
two wheels,y-axis parallel to the axle, and thex axis
pointing forward, parallel to the heading of the robot. The
configuration of the robot can be represented by(x, y, ψ)T ,
in whichψ is the angle from the worldx-axis to the robot’s
x-axis.

The camera is positioned so that the optical center lies
directly above the origin of the robot’s local coordinate
frame, and we denote the camera pan angle byφ. We
assume that the range of camera rotation is limited, such
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Fig. 1. Coordinate frame assignments for a differential drive robot with
camera.

that φ ∈ [φ1, φ2]. The camera will have finite rangermax,
beyond which it cannot detect the landmark. Thus, while
navigating, the distance from the robot to the landmark
must be no greater thanrmax. We also assume that the
robot must maintain some minimum distancermin from
the landmark (e.g., to avoid collision or to respect depth
of field constraints). Without loss of generality, we place
the (static) landmark at the origin of the world coordinate
system. These conventions are illustrated in Figure 1. Given
this formulation, the problem that we consider is that of
finding minimal length paths from initial to goal position
(without regard to the robot orientation) such that the
following conditions are satisfied:

1) The camera is always pointing toward the landmark,
i.e.

ψ + φ = π + tan−1
y

x
. (1)

2) The robot does not violate the constraints imposed
by rmin andrmax, i.e., the robot does not leave the
annulus

Ω = {(x, y) | r2
min

≤ (x2 + y2) ≤ r2
max

}. (2)

3) The constraints on camera motion are not violated,
i.e.,

φ ∈ [φ1, φ2]. (3)

II. T CURVES AND CONTROLLABILITY

In this section we give a constructive proof that the
differential drive robot system is controllable under the
visibility constraints described above. The proof proceeds
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by constructing piecewise smooth paths consisting of path
segments during which the camera pan angle is saturated
either at its minimum or maximum value. We refer to a
path segment with the pan angle saturated as a T curve,
and we refer to a sequence of alternating T curves (i.e.,
the segments are saturated alternately at the minimum and
maximum values for pan angle) as an S curve.

A. T curves

In the development that follows, it is convenient to
express the robot configuration as(r, θ, ψ)T in which r, θ
are the polar coordinates

θ = tan−1
y

x
, r =

√

x2 + y2.

Consider a curve in the robot’s workspace passing through
the point (r0, θ0), such that corresponding robot path
satisfies (1) for at all points. Since the robot’sx-axis is
tangent to the path, the constraint (1) effectively eliminates
one degree of freedom of motion, leading to the following
proposition, which is stated here without proof due to space
limitations.
Proposition 1: For a fixed value ofφ, any robot path
passing through the point(r0, θ0) and satisfying (1) is given
by

r = r0 exp

{

(θ0 − θ)

tanφ

}

. (4)

If we evaluate (4) forφ = φ1 and forφ = φ2, we obtain
the two “extremal” feasible paths through the point(r0, θ0).
The space between these two curves represents the set of
possible directions of heading for the robot from a given
point in the plane. Such a pair of curves can be constructed
at each point in the plane and the robot can move along
each such curve while respecting the camera constraints (1)
and (3). Hence the curves can be thought of as latitudes
and longitudes.

The paths that we describe below are constructed from
curves that satisfy (4) evaluated atφ1 or φ2, leading to the
following two definitions, which are illustrated in Figure
2. A curve that satisfies (4) withφ = φ1 will be referred to
as aT1 curve. Such a curve maintains a constant angle of
φ1 between the optical axis of the camera and the heading
of the robot. A curve that satisfies (4) withφ = φ2 will
be referred to as aT2 curve. Such a curve maintains a
constant angle ofφ2 between the optical axis of the camera
and the heading of the robot. When aT curve passes
through a point then we add the label of the point as a
subscript to the curve to denote that the curve is passing
through the point. For example,T1P refers to aT1 curve
passing through point P.

Refer to figure 3. We can see thatT 1P andT 2P divide
the plane around P into four disjoint regions. We have
followed a nomenclature of naming those regions as shown
in figure 3. If the camera is allowed to rotate in a closed
interval[φ1, φ2], the possible heading of the robot can only
be in the region A or B. If the camera is only allowed to
rotate in the closed interval[φ2, φ1 + π], then the possible
heading of the robot from P can only be in the region C or

D. Hence theT curves not only divide the plane around P
into four disjoint regions, they also divide the space of all
possible velocities of the robot into two mutually exclusive
regimes.
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Fig. 2. A T1 and T2 curve passing through(r, θ) = (1.5, π
6
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Fig. 3. State space division around P by T curves
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B. S Curves

It is possible to concatenate a sequence of T-curves that
remain inside the annulus given by (2) to create what we
refer to as an S curve. The procedure for doing so is
iterative, and theith segment in the S curve consists of
a T1 segment followed by a T2 segment. There are four
possible strategies, corresponding to whether we increase
or decreaseθ as we build the S curve, and to whether
we begin with a T1 or T2 curve. Of these four strategies,
only two generate unique S curves (the other two strategies



merely traverse the curves in the opposite sense). Thus, for
anyq = (r, θ, ψ)T , there exist exactly two unique S curves.
If we begin with a T2 curve and use increasing values of
θ, the procedure begins by tracing the T2 curve through
q0, until r = rmax. From this point, trace a T1 curve until
r = rmin. From this point, trace a T2 curve untilr = rmax,
etc. Such an S curve is shown in Figure 4, withφ1 = −π/6
andφ2 = π/6.
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Fig. 5. A possible path fromqi to qf for the differential drive robot.

Proposition 2: For two feasible configurations,qi andqf ,
there exists a path fromqi andqf satisfying the visibility
constraint (1) and respecting the constraint on camera
motion (3). Hence the system is controllable.

The proof is constructive and not difficult. One essen-
tially builds a path by following an appropriate set of
S curves. As a consequence of this proposition, the the
differential drive robot and camera system is controllable,
and thus there exists a path between any two points inΩ.
Hence there exists a path that has minimum length (since
Ω is closed). With the above tools in hand we move on to
derive paths, optimal in sense of length between any two
points inΩ.

III. PROPERTIES OFOPTIMAL PATHS

In the following, we derive minimal length paths be-
tween two points in the plane for the the DDR. These paths
are not necessarily minimal with respect to distance in the
configuration space; rather, they are paths whose projection
onto the plane are minimal. We denote continuous paths
asC0 paths and continuously differentiable paths asC1

paths.

A. S-set

The S-set of a point P, located inΩ, is the set of points
which can be reached on a straight line path from P. The
derivation of the S-set for a point P is given in the appendix.
The S-set for P is illustrated in figure 6.

B. Type A and Type B points

Type A: A nondifferentiable point,P , on the optimal
path is said to be of Type A if it represents a transition
from a T1 curve to a T2 curve. This is illustrated in figure
7.
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Fig. 6. S-set

Type B: A nondifferentiable point,P , on the optimal
path is said to be of Type B if it represents a transition
from a T2 curve to a T1 curve. This is illustrated in figure
7.
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Fig. 7. Type of nondifferentiable points on the path

The optimal paths satisfy certain properties due to the
kinematic constraints on the DDR. We present some propo-
sitions that will be useful in deriving the optimal paths.
Again, due to space limitations the proofs are omitted.
Proposition 4: If P and Q are two points lying on the
same T curve, the only smooth path possible from P to Q,
respecting the camera constraints, is the direct path from
P to Q lying on the T-curve.
Proposition 5: If Q lies in region C or D, then noC1 path
exists between P and Q.
Proposition 6: If optimal path is smooth in the neighbour-
hood of a pointP , thenP must lie on a straight line or a
T-curve.
Proposition 7: For C0 paths to be optimal the nondiffer-
entiable points on the path can only be of Type A or Type
B.

IV. T HE LANGUAGE OF OPTIMAL PATHS

From the above propositions, we conclude the optimal
paths include only segments that are T-curves and straight
lines (denoted respectively by T1, T2 and SL). In the
case of a nonsmooth continuous path, the nondifferentiable
points can be only of Type A or Type B. We represent



a path by a string (or aword) of the formX1 − X2 ∗
X3 · · ·Xn, where eachXi is one of T1, T2 or S, and
where the symbol - denotes a smooth transition between
segments and the symbol * denotes a nonsmooth transition.
For example,SL−T 1 implies that SL is tangent to T1 at
the point of contact, whereasSL ∗ T 1 denotes that SL is
not tangent to T1 at the point of contact.

Due to the kinematic constraints of the DDR and the
properties of optimal paths, only a subset of possible
words are included in the language of optimal paths. The
following proposition makes this set explicit.
Proposition 8: If a straight line is present in the optimal
path then the only words possible are SL-T1, T1-SL, SL-
T2, T2-SL, T1-SL-T2 and T2-SL-T1.

From the above proposition we can conclude that the
set of acceptible words are SL, T1, T2, SL-T1, T1-SL,
SL-T2, T2-S, T1-SL-T2, T2-SL-T1, T1*T2*T1*T2· · · and
T2*T1*T2*T1 · · ·. The last two words can consist of any
number of repetitions as long as the transition from one T
curve to another T curve occurs through a Type A or Type
B point.

V. CONSTRUCTINGOPTIMAL PATHS

For a starting pointP in the plane, the words in the
language of optimal paths induce a partition of the plane
into regions such that a specific word corresponds to the
optimal path to any goal pointG in a region. This partition
is illustrated in figure 8, in which the regions are given
labels that are used in the discussion below. We now
enumerate the possible words and identify the regions in
which each applies.

A. SL region(Regions I and I’)

The S-set of the point P gives the region consisting of
points that are reachable by SL. The S-set of P consist of
sector of the circles.

B. T region(T1,T2 curves)

T 1P and T 2P are the curves that are obtained by
following the words T1 and T2 from P.

C. SL-T1 region(Region II)

Consider a straight line from P to a point Q that lies
at the boundary of the S-set. It can be shown that the
segment PQ is tangential toT 1Q. All points lying onT 1Q

are reachable by the word SL-T1. The loci of points on
T 1Q obtained by moving Q over the boundary of the S-set
of P forms Region II. Region II is enclosed by the curves
T 1P , arc PP’ andT 1P ′.

D. SL-T2 region(Region II’)

Region II’ is obtained in manner similar to that used to
derive Region II. Region II’ is bounded byT 2P , arc PP”
andT 2P ′′ .

E. T2-SL region(Region III)

If the optimal path from P to G is of the formT 2−SL,
then P lies in Region II’ with respect to G. Hence the
Region III of P consists of all those points G for which
P belongs to Region II’ of G. The region is bounded by
T 2P ′, T 2P and the chord PP’.

F. T1-SL region(Region III’)

Region III’ is obtained in manner similar to that used to
derive Region III. Region III’ is bounded byT 1P , arc PP”
andT 1P ′′ .

G. T2-SL-T1 region(Region IV)

Consider a point G in Region IV. The optimal path from
P to G consists ofT 2P , T 1G and a bitangent to both the
curves. Region IV is bounded byT 1′P andT 2′P .

H. T1-SL-T2 region(Region IV’)

The optimal path from P to a point G lying in Region
IV’ consists ofT 1P , T 2G and a bitangent to both curves.
Region IV’ is bounded byT 1′′P andT 2′′P .

I. T1*T2*T1... region(Region V and Region VI)

The points reachable by using the wordT 1 ∗ T 2 ∗ T 1 ∗
T 2... lie in Region V and Region VI. This is due to the
underlying fact that the point on the optimal path at which
the transitionT 1 ∗ T 2 or T 2 ∗ T 1 takes place must be of
Type A or Type B.

J. T2*T1*T2... region(Region V and Region VI)

The analysis forT 1 ∗ T 2 ∗ T 1... also holds true for this
region and hence the reachable set of points from P remains
the same.

The above analysis provides an exhaustive enumeration
of the possible cases. The only regions for which more than
one word is possible are Region V and Region VI. Further
analysis about Region V and VI, details of which are not
provided here, demonstrate that the words of the optimal
paths in Regions V and VI depend on the numerical values
of φ1 andφ2. The results are tabulated in I. The analysis
for the optimal paths required to move from an initial point
P to a final point G in the workspace is given in figure 8
and table II.

TABLE I

WORDS FORREGIONSV AND VI

Cases Region V Region VI
φ1, φ2 ∈ [0, π

2
) T2P − T1G T1P − T2G

φ1 ∈ [0, π
2
), φ2 ∈ (π

2
, π)

φ1 + φ2 ≤ π T2P − T1G T1P − T2G

φ1 ∈ [0, π
2
), φ2 ∈ (π

2
, π)

φ1 + φ2 > π T1P − T2G T2P − T1G

φ1, φ2 ∈ (π
2
, π) T1P − T2G T2P − T1G
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Fig. 8. Optimal paths for the case in which velocity vectors from P are
allowed in regions A and B but forbidden in regions C and D

TABLE II

TYPES OF OPTIMAL PATHS ACCORDING TO REGIONS: REGIONSA AND

B ALLOWED , φ2 > φ1

Region Subregion Type of paths
A I SL
B I’ SL
A II T2P − SL

B II’ T1P − SL

A III SL − T1G

B III’ SL − T2G

A IV T2P − SL − T1G

B IV’ T1P − SL − T2G

C, D V,VI Refer Table 1

VI. COMPLEMENTARY CASE

Next we consider the case in which the DDR is allowed
to move in regions C and D, and forbidden to move in
A and B. To analyze this case let us refer to figure 9.
We denote the allowed interval of camera movement as
(φ1N , φ2N ) whereφ1N = φ1 andφ2N > φ1N . The regions
of allowed movement of the DDR are A and B (C and D
are forbidden). Now let is increaseφ2N . This results in
a rotation of theT2P curve around P. Consider the case
whenφ2N = π. The S-set is a sector of a circle tangent to
T2P (which is a radial line) and passing through the origin.
Hence the S-set becomes a sector of a circle of radius∞,
which is a region bounded by the rays PL and PM. Hence
the region IV and III vanish. Now consider the region
B(figure 9(b)) as we increaseφ2N to π. It looks as in figure
9(c), since regions II and IV vanish. The case considered in
this section can be analyzed as shown in figure 9 leading to
figure 9(d), which shows the final structure of the regions.
The optimal paths in regions A and B are also shown in
figure 9(d) by the dashed lines.

The analysis for the optimal paths required to move from
an initial point P to a final point G in the workspace is given
in figure 10 and table III.
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Fig. 10. Optimal paths for the case in which velocity vectorsfrom P
are allowed in regions C and D but forbidden in regions A and B

VII. C ONCLUSION AND FUTURE WORK

In this paper we have described minimal length paths
for a differential drive robot that maintains visibility of
a landmark while moving between any two locations. We
have shown that the optimal paths are composed of straight
lines and curves,T 1 andT 2. The analysis we have given
provides optimal paths for an infinite range sensor, i.e., we
did not take range constraints as given in (2) into accout.
Future research will focus in finding the optimal paths for
finite sensor range. Another direction of future research
incorporates the above results to define the necessary and
sufficient conditions to guarantee the existence of a free
path for a polygonal differential drive robot with limited
perception to maintain visibility of a landmark throughout
the whole path.
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TABLE III

TYPES OF OPTIMAL PATHS ACCORDING TO REGIONS: REGIONSC AND

D ALLOWED (COMPLEMENTARY CASE), φ2 > φ1

Region Subregion Type of paths
C I SL
C III’ T2P − SL

C III T1P − SL

D I’ SL
D II’ SL − T1G

D II SL − T2G

A unique T2P − T1G

B unique T1P − T2G
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145(2):367–393, 1990.

APPENDIX

DERIVATION OF S-SET

Refer to figure 11. Consider the line PT in region A such
that 6 OPQ = α. If the end point Q on PT satisfies the
constraint,6 OQP = φ1, the robot can move on a straight
line path from P to anywhere in between P and Q, on the
line PT, without violating the camera constraints. Since
chord of a circle subtends same angle on any point on the
arc, the loci of point Q is a circle circumscribing△PQO.
Due to the camera constraints, the heading direction of the
robot from P is limited by the line PR, satisfying6 OPR =
π−φ2. The S-set in region I is given by the area enclosed
by the arc PMR. Another region of the same kind will exist
in region B.
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