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Abstract 

This paper addresses a pursuit-evasion problem between two identical Differential Drive Robots 
(DDRs). The pursuer wants to capture the evader in minimal time, while the evader wants to delay 
capture as much as possible. The game takes place in a Euclidean plane without obstacles. In this work, 
the motion primitives and time-optimal motion strategies for both players are presented. Based on the 
initial positions of the players, it is possible to solve the decision problem of determining the winner of 
the game. Simulations of the pursuit-evasion game showing the time-optimal motion primitives of the 
players are provided for both cases, when the pursuer wins and when the evader escapes. 
© 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

This paper addresses a pursuit–evasion problem between two identical non-holonomic Dif-
erential Drive Robots (DDRs). A DDR has two wheels with independent motors that allow
t to rotate in site. The pursuer wants to capture the evader in minimal time, while the evader
ants to delay capture as much as possible. The game takes place in a Euclidean plane without
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obstacles. In this work, we find the motion primitives and time-optimal motion strategies for
both players in open loop. The conditions defining the winner of the game are also provided.

This work presents a differential game; there are several previous works about differential 
games [1–5] . However, to the best of our knowledge, the previous works most closely related
to the work presented in this paper are the following: [6–9] . In [6] , the authors have addressed
the problem of capturing an omnidirectional agent (OA) using a differential drive robot (DDR)
in an obstacle-free environment. In [6] , the authors have proposed a partition of the playing
space into mutually disjoint regions where time-optimal motion strategies for the players are 
well established. The time-optimal motion strategies obtained in [6] are in Nash equilibrium, 
and the proposed strategies are in open loop. In [7] , the authors presented a state feedback-
based time-optimal motion policy based on the partition proposed in [6] . The state of the
evader relative to the pursuer is estimated based on images using the one-dimensional trifocal
tensor, and it is used to determine the corresponding motion strategy followed by the players.
Later, in [9] , the authors have shown that the location of the evader on the image can be
directly used by the pursuer to define its motion strategy. That is, the pursuer can apply
its motion strategy using the image without explicitly reconstructing the evader’s position. 
From the Nash property, it follows that if the evader deviates from its maximum potential
speed, then the capture time shall not increase for a pursuer that does not deviate from its
Nash equilibrium motion strategy. However, it is not immediately clear how the pursuer could 

exploit that evader’s deviation from its maximum potential speed, which might correspond 

to situations where the evader’s capabilities may degrade with time, for example, battery 

depletion in an autonomous vehicle, or fatigue in an animal evader. This can be considered
as a scenario of an evader in which the set of admissible controls varies with time. In [9] the
authors also considered such a scenario. 

In [8] , the authors addressed the symmetric problem to the one presented in [6] , in which
the agents exchange roles. Thus, the OA is the pursuer and has as objective to capture the
DDR in minimum time, and the DDR is the evader and wants to retard the capture as long
as possible. Combining the results obtained in [8] and the ones in [6] , the authors enable
the agents to change the roles. Namely, the DDR is allowed to play as the pursuer, and the
OA is allowed to play as the evader. This later analysis permits one to establish which is
the winner role for each agent, based only on the initial position of the players and their
maximum speed. 

There are several practical applications of pursuit-evasion problems where the goal is 
capturing an agent in minimum time [1,2,6] . One example is a robotic system that wants to
capture a malicious evader that can damage a human. Another example is a robotic system
that wants to stop as fast as possible a driver that is violating the traffic rules putting in
danger to other drivers. 

For solving the problem addressed in this work, we use a known method in the literature
called “the Isaacs methodology” [1] ; however, there are two main novelties of our paper with
respect to previous works [6–9] . The first difference is that in the game addressed in our
work, both players have non-holonomic constraints while in differential games considering 

non-holonomic constraints like the ones in [6,8] , the pursuer is a non-holonomic player, and
the evader is omnidirectional (holonomic). That fundamental difference between this paper 
and previous works makes our problem harder to solve. Intuitively, a non-holonomic system 

has motion constraints; for instance, it cannot move instantaneously in all directions. More 
formally, the non-holonomic property of a system can be determined using the Frobenius 
Theorem [10] . The second difference is that the state-space has a higher dimension which also
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akes more difficult obtaining and studying the solution. In our work, the state of the system
an be expressed by the position and the orientation of the players as (x p , y p , θp , x e , y e , θe ) ∈
 

4 × S 

2 . To simplify the problem, it can be stated in a reference frame that is fixed to the
ody of the pursuer. Thus, the state of the system can be expressed as x = (x, y, θ ) ∈ R 

2 × S 

1 .
n previous works, as the Homicidal Chauffeur problem [1,2] or the work addressed in [6] ,
he state-space has dimension 5, and it can be reduced to dimension 2 in a reference frame
xed to the pursuer, while in this work, initially the state-space has dimension 6, and it can
e reduced to dimension 3 also defining a local reference frame attached to the pursuer.
 crucial difference with previous classical works is that this increment in the state-space
imension has as a consequence that finding the loci of points called the barrier [1] , defining
he winner of the game, is considerably harder than in previous work [6–9] . In those works,
he barrier was a curve in R 

2 , while in this paper, we found that it is a surface embedded
n R 

2 × S 

1 , see Section 6 . A higher dimension also makes it significantly harder to find the
otion strategies for both players in all the playing space, see Section 7 . 

. Related work and main contribution 

The problem addressed in the paper is a pursuit-evasion game. In the area of control [1–
,5,9,11–13] and robotics [4,6,14–18] there has been a lot of interest in this kind of problems.

There are three main variants of pursuit-evasion games. One variant considers one or more
ursuers that want to find one or more evaders in an environment with obstacles [14,15,17,18] .
 survey of this kind of problem is presented in [19] . 
Other variant consists of maintaining visibility of a moving evader also in an environ-

ent with obstacles [4,16,20–23,25] . Game theory was proposed in [20] as a framework to
ormulate this problem. 

In [4] , the authors addressed the problem of maintaining visibility of the evader as a
ame of degree (i.e., the emphasis was over the optimization of a given criterion and not
ver the problem of deciding which player is the winner). The pursuer and the evader are
mnidirectional (holonomic) systems. In [24] , the problem of maintaining visibility of a mov-
ng omnidirectional evader with an omnidirectional pursuer was addressed as a game of
ind (deciding which player wins). In [26] , the authors addressed the problem of tracking
maintaining surveillance) of an omnidirectional mobile evader at constant distance with a
ifferential Drive Robot in an environment without obstacles. In [23] a robot has to track an
npredictable evader. An objective of O’Kane et al. [23] was to avoid the need for the pursuer
o have detailed information about the evaders movements. A discrete-time fractional-order
liding scheme is proposed by Sun et al. [27] to drive the system. Such method could be
sed to tracking the predefined trajectories of the evader and the pursuer. 

In a third variant of pursuit–evasion problems, the pursuer has as its goal to capture the
vader [1,2,8] , that is, move to a contact configuration, or closer than a given distance. The
ork presented in this paper corresponds to this third variant . A classic example of this kind
f problems is the Homicidal Chauffeur problem [1,2] . In the homicidal chauffeur problem,
 faster pursuer (w.r.t. the evader) has as its goal to get closer than a given constant distance
the capture condition) from a slower but more agile evader. The evader aims to avoid the
apture condition. The pursuer is a nonholonomic system with a minimum turning radius,
hile the evader is an omnidirectional agent. The game takes place in the Euclidean plane
ithout obstacles. Other related problems are the lady in the lake [12] and the lion and

he man [11,28] . In the lady in the lake problem, there is a circular lake where a lady is
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swimming with a maximum speed v l , and there is a man that is in the side of the lake and
runs along the shore with a maximum speed v m 

; the man cannot enter the lake, and the lady
wants to leave the lake. The man runs with a larger speed than the one of the lady in the
lake ( v l < v m 

). The man needs to capture the lady as soon as she reaches the shore since
on land she runs faster than him. In the lion and the man problem, the players move in a
circular arena; both players have the same motion capabilities, the lion wants to capture the
man and the man wants to avoid the capture. In the same vein, in [29] the authors addressed
a pursuit–evasion game in a graph called the cops and robbers game. The cops win the game
if they can move to the robber’s vertex. 

Only few works addressed the problem considering dynamics. In [5] the authors provided 

a dynamic formulation from a bio-inspired perspective. They characterized the dynamic prop- 
erties of the system at two different levels: (1) the maneuvers and non-trivial escape of the
evader and (2) the non-trivial escape zones for different ranges of the system parameters. 

The case of multiple pursuers and evaders in the problem of capturing an evader has also
been studied. The work in [13] addressed a class of multiplayer pursuitevasion games with
one superior evader, who moves faster than the pursuers. The authors studied the conditions 
under which the pursuers can capture the evader. In [30] , the authors proposed a distributed
algorithm for the cooperative pursuit of multiple evaders using multiple pursuers in a bounded, 
convex environment. In [31] , the goal was to enclose and track a moving target by attaining
a desired geometric formation around it. 

There are many related works about pursuit–evasion both in the automatic control and 

robotics communities. However, to the best of our knowledge, the most closely related works
to this paper are the following [6–9] . As it was mentioned above, the main difference of this
work with the previous work in [6–9] is that in this paper both players are DDR, this implies
that the dimension of the state space is larger than in the previous work above. That makes
significantly harder to construct the representation of the barrier and find the motion strategies
for both players in all the playing space. Here below we stress the contributions of this work
that have not been presented before for the problem addressed in this paper. 

• We found closed-form representations of the motion primitives and time-optimal strategies 
for the players. In the realistic space, the motion primitives are straight lines and rotations
in place, see Section 5 . 
• We exhibit the existence of cases where the evader wins (it avoids capture forever) which

indicates that in the game addressed in this paper the barrier is closed, see Section 6 . 
• Based on the initial configuration of the evader we can determine the winner of the game,

see Section 6 . 
• We provide insight about the motion strategies (controls of the players) in the playing 

space based on numerical analysis. In some of them both players merely move following
straight lines but in others, one or the two players start rotating in place, and then they
translate at maximum speed, see Section 7 . 
• We provide simulations of the pursuit-evasion game showing the time-optimal motion 

primitives of the players both in a local reference frame defined with respect to the pursuer
and in a global reference frame for cases in which either the pursuer or the evader wins,
see Section 8 . 
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Fig. 1. (a) Shows a configuration of the players in the realistic space. (b) Shows the corresponding configuration 
using the pursuer’s position and its heading as the reference frame. 
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As quick reference for the remaining sections of the manuscript, we have included an
ppendix with two tables, one with the general notation and other with a list of acronyms
efined in the paper. 

. Problem definition 

Two identical Differential Drive Robots (DDRs) move on a plane without obstacles. One
DR (the pursuer) tries to capture the other DDR (the evader). The game is over when the
istance between both is smaller than a critical value l c . Both players have the same maximum
ounded speed V 

max , and they can only change its motion direction at a rate that is inversely
roportional to its translational speed [32] . This work considers a purely kinematic problem,
nd neglect any effects due to dynamic constraints (e.g., acceleration bounds). The pursuer
ants to minimize the capture time t f while the evader seeks to maximize it. The pursuer
ins the game if it captures the evader in finite time while the evader wins if it can avoid

apture forever. We find the conditions defining the winner of the game and the time-optimal
otion strategies used by both players to achieve their goals. 

. Model 

.1. Realistic space 

In this work, we assume that the two DDRs have the same motion capabilities, and without
oss of generality both are equipped with unitary size wheels. In a global coordinate system
see Fig. 1 (a)), ( x p , y p , θp ) corresponds to the pose of the pursuer and ( x e , y e , θ e ) to the pose
f the evader. That representation is usually known as the realistic space [1] . The state of the
ystem can be expressed as (x p , y p , θp , x e , y e , θe ) ∈ R 

4 × S 

2 . The evolution of the system in
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this coordinate system is described by the following motion equations 

˙ x p = 

(
u 1 + u 2 

2 

)
cos θp , ˙ y p = 

(
u 1 + u 2 

2 

)
sin θp , ˙ θp = 

(
u 2 − u 1 

2b 

)

˙ x e = 

(
v 1 + v 2 

2 

)
cos θe , ˙ y e = 

(
v 1 + v 2 

2 

)
sin θe , ˙ θe = 

(
v 2 − v 1 

2b 

) (1) 

where u 1 , u 2 ∈ [ −V 

max , V 

max ] are the velocities of the left and the right wheel of the pursuer,
respectively. Analogously, v 1 , v 2 ∈ [ −V 

max , V 

max ] are the velocities of the left and the right
wheel of the evader, respectively. b is the distance between the center of the robot and the
wheel location. Note that since the wheels have unitary radius their translational and rotational
speeds are equivalent. The heading angles of the players θp and θ e are measured in counter-
clockwise sense from the x positive axis (see Fig. 1 (a)). 

4.2. Reduced space 

To simplify the analysis of the problem, we consider a space of reduced dimension. The
problem can be stated in a reference frame that is fixed to the body of the pursuer (see
Fig. 1 (b)). The state of the system now can be expressed as x = (x, y, θ ) ∈ R 

2 × S 

1 . All
the orientations in this reference frame are measured with respect to the positive y -axis in
a clockwise sense. The coordinate transformation between the realistic and reduced spaces 
given by 

x = (x e − x p ) sin θp − (y e − y p ) cos θp 

y = (x e − x p ) cos θp + (y e − y p ) sin θp 

θ = θp − θe (2) 

Obtaining the time derivatives of Eq. (2) , we obtain the following model of the kinematics
in the pursuer-fixed reference frame 

˙ x = 

(
u 2 − u 1 

2b 

)
y + 

(
v 1 + v 2 

2 

)
sin θ

˙ y = −
(

u 2 − u 1 

2b 

)
x −

(
u 1 + u 2 

2 

)
+ 

(
v 1 + v 2 

2 

)
cos θ

˙ θ = 

(
u 2 − u 1 

2b 

)
−

(
v 2 − v 1 

2b 

)
(3) 

This set of equations can be expressed in the form ˙ x = f (x, u, v) , where u = (u 1 , u 2 ) ∈
[ −V 

max , V 

max ] × [ −V 

max , V 

max ] , and v = (v 1 , v 2 ) ∈ [ −V 

max , V 

max ] × [ −V 

max , V 

max ] . From
now on, we will consider only the reduced space for this problem. 

4.3. Hamiltonian 

Following the approach in [1] , we construct the Hamiltonian of the system. Recalling that

H (x, λ, u, v) = λT · f (x, u, v) + L (4) 

and also that for problems of minimum time L = 1 , we have 

H = λx 

(
u 2 − u 1 

2b 

)
y + λx 

(
v 1 + v 2 

2 

)
sin θ − λy 

(
u 2 − u 1 

2b 

)
x 
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λ̊  
− λy 

(
u 1 + u 2 

2 

)
+ λy 

(
v 1 + v 2 

2 

)
cos θ + λθ

(
u 2 − u 1 

2b 

)
− λθ

(
v 2 − v 1 

2b 

)
+ 1 (5)

.4. Optimal controls 

From [12] , we know that along the optimal trajectories 

min 

u 
max 

v 
H (x, λ, u, v) = 0 

u 

∗ = arg min 

u 
H (x, λ, u, v) 

v ∗ = arg max v H (x, λ, u, v) 

(6)

here u 

∗ and v ∗ denote the optimal controls for the players. The pursuer’s goal is to minimize
he capture time while the evader’s goal is to maximize it. From Eqs. (5) and (6) we have
hat 

in 

 1 ,u 2 
max 

v 1 ,v 2 
H = min 

u 1 

[
u 1 

(−λx 

2b 

y + 

λy 

2b 

x − λy 

2 

− λθ

2b 

)]
+ min 

u 2 

[
u 2 

(
λx 

2b 

y − λy 

2b 

x − λy 

2 

+ 

λθ

2b 

)]

+ max 

v 1 

[
v 1 

(
λx 

2 

sin θ + 

λy 

2 

cos θ + 

λθ

2b 

)]
+ max 

v 2 

[
v 2 

(
λx 

2 

sin θ + 

λy 

2 

cos θ − λθ

2b 

)]
+ 1 (7)

hus, 

 

∗
1 = −V 

max sgn 

(
−λx 

2b 

y + 

λy 

2b 

x − λy 

2 

− λθ

2b 

)

 

∗
2 = −V 

max sgn 

(
λx 

2b 

y − λy 

2b 

x − λy 

2 

+ 

λθ

2b 

)

v ∗1 = V 

max sgn 

(
λx 

2 

sin θ + 

λy 

2 

cos θ + 

λθ

2b 

)

v ∗2 = V 

max sgn 

(
λx 

2 

sin θ + 

λy 

2 

cos θ − λθ

2b 

)
(8)

.5. Adjoint equation 

The adjoint equation is found by taking the partial derivative of the Hamiltonian with
espect to the state variables. If t f is the time of termination of the game, we define the
etro-time as τ = t f − t . In this work, we denote the retro-time derivative of a variable x as
˚ . The adjoint equation in its retro-time form is 

= 

∂ 

∂ x 

H (x, λ, u 

∗
1 , u 

∗
2 , v 

∗
1 , v 

∗
2 ) (9)

n this problem, we have that 

λ̊x = −
(

u 

∗
2 − u 

∗
1 

2b 

)
λy , ̊λy = 

(
u 

∗
2 − u 

∗
1 

2b 

)
λx 

θ = 

(
v ∗1 + v ∗2 

)
(λx cos θ − λy sin θ ) (10)
2 



5780 L. Bravo, U. Ruiz and R. Murrieta-Cid / Journal of the Franklin Institute 357 (2020) 5773–5808 

 

 

 

 

 

 

 

 

 

 

5. Optimal motion strategies 

In this section, we will obtain the equilibrium strategies for the players. We follow the
methodology presented in [1] . For more details, we refer the reader to [1,12] . 

5.1. Primary solution 

5.1.1. Terminal surface 
As it was described in [6] , we need to compute the set of configurations where the pursuer

guarantees termination (capture) regardless of the choice of controls of the evader. This set
is known as the usable part (UP). For this problem, the pursuer captures the evader when the
distance between both players is smaller than the capture distance l c despite any opposition 

of the evader. In the reduced space, the terminal surface ζ is a cylinder of radius l c centered
at the origin, and height 2 π . We can parametrized ζ by two angles s 1 and s 2 . s 1 is the angle
between the evader’s position and the pursuer’s heading, and s 2 is the angle between the
headings of both players. Let l be the distance between the evader and the pursuer. In the
reduced space, we can ensure capture when l = l c and 

˙ l < 0. The UP of the game is given
by 

x = l c sin s 1 , y = l c cos s 1 , θ = s 2 , l 
2 = x 2 + y 2 , min 

u 1 ,u 2 
max 

v 1 ,v 2 
˙ l < 0 (11)

Obtaining the time derivative for l , we have that: 

l ̇  l = x ̇  x + y ̇  y = x 

((
u 2 − u 1 

2b 

)
y + 

(
v 1 + v 2 

2 

)
sin θ

)

+ y 

(
−

(
u 2 − u 1 

2b 

)
x −

(
u 1 + u 2 

2 

)
+ 

(
v 1 + v 2 

2 

)
cos θ

)
(12) 

In the UP, from Eq. (11) , 

˙ l = ( sin s 1 sin s 2 + cos s 1 cos s 2 ) 

(
v 1 + v 2 

2 

)
− cos s 1 

(
u 1 + u 2 

2 

)

= cos (s 1 − s 2 ) 

(
v 1 + v 2 

2 

)
− cos s 1 

(
u 1 + u 2 

2 

)
(13) 

Applying the optimal controls for both players in the UP, we obtain 

min 

u 1 ,u 2 
max 

v 1 ,v 2 
˙ l = −V 

max | cos s 1 | + V 

max | cos (s 1 − s 2 ) | (14) 

Therefore, since the UP is given by 

min 

u 1 ,u 2 
max 

v 1 ,v 2 
˙ l < 0 

in this problem 

UP = { s 1 , s 2 
∣∣ | cos s 1 | > 

| cos (s 1 − s 2 ) | } (15) 

The boundary of the usable part (BUP) is defined by 

min 

u 1 ,u 2 
max 

v 1 ,v 2 
˙ l = 0 (16) 
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hus in this problem, 

UP = { s 1 , s 2 
∣∣ | cos s 1 | = 

| cos (s 1 − s 2 ) | } (17)

ote that | cos s 1 | = 

| cos (s 1 − s 2 ) | when s 2 = 2s 1 + kπ for all k ∈ Z , or s 1 ∈ R and s 2 = kπ,

 ∈ Z . We will refer to the set of configurations where s 2 = kπ as surfaces of alignment
SoA), more details will be provided in Section 6 . 

.1.2. Terminal conditions 
From the UP, we have the values of x , y and θ at the terminal condition. We also need to

stablish the values of λx , λy and λθ on the UP of ζ . From Eq. (11) , we have that 

∂x 

∂s 1 
= l c cos s 1 , 

∂y 

∂s 1 
= −l c sin s 1 , 

∂θ

∂s 1 
= 0 

∂x 

∂s 2 
= 0, 

∂y 

∂s 2 
= 0, 

∂θ

∂s 2 
= 1 (18)

ince λ( x ) = 0 on the UP, then λs 1 and λs 2 are given by 

s 1 = 

∂λ

∂s 1 
= 

∂λ

∂x 

∂x 

∂s 1 
+ 

∂λ

∂y 

∂y 

∂s 1 
+ 

∂λ

∂θ

∂θ

∂s 1 
= λx cos s 1 − λy sin s 1 = 0 

s 2 = 

∂λ

∂s 2 
= 

∂λ

∂x 

∂x 

∂s 2 
+ 

∂λ

∂y 

∂y 

∂s 2 
+ 

∂λ

∂θ

∂θ

∂s 2 
= λθ = 0 (19)

rom Eq. (19) , we obtain that 

x cos s 1 = λy sin s 1 , λθ = 0 (20)

herefore 

x = sin s 1 , λy = cos s 1 , λθ = 0 (21)

.1.3. Motion strategy at the end of the game 
Substituting Eq. (21) into Eq. (8) , we obtain the following values for the optimal controls

f the pursuer 

 

∗
1 = −V 

max sgn 

(
−λx 

2b 

y + 

λy 

2b 

x − λy 

2 

− λθ

2b 

)
= −V 

max sgn 

(
−cos s 1 

2 

)
(22)

 

∗
2 = −V 

max sgn 

(
λx 

2b 

y − λy 

2b 

x − λy 

2 

+ 

λθ

2b 

)
= −V 

max sgn 

(
−cos s 1 

2 

)
(23)

he values of the optimal controls for the evader are given by 

 

∗
1 = V 

max sgn 

(
λx 

2 

sin θ + 

λy 

2 

cos θ + 

λθ

2b 

)
= V 

max sgn 

(
cos (s 1 − s 2 ) 

2 

)
(24)

 

∗
2 = V 

max sgn 

(
λx 

2 

sin θ + 

λy 

2 

cos θ − λθ

2b 

)
= V 

max sgn 

(
cos (s 1 − s 2 ) 

2 

)
(25)

ote that u 

∗
1 = u 

∗
2 and v ∗1 = v ∗2 , thus both players end the game following a straight line

otion at maximum speed. The motion direction of the players depends on the values of s 1
nd s . 
2 
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Fig. 2. Partition of the UP considering the motion direction of the players at the end of the game. For example, 
PFEB- means that the pursuer goes forward and the evader goes backward with s 2 < 0 when the capture condition 
is reached. 

Fig. 3. (a) Shows a case where capture is achieved with both players moving forward at maximum speed. The 
pursuer is represented by the blue disc and the evader by the red disc. In (b), the pursuer ends the game moving 
backward. Note that in both games, the initial and final positions are the same. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

5.1.4. Partition of the usable part considering the motion direction of the players 
The UP can be parametrized by the angles s 1 , s 2 and the motion direction of the players at

the end of the game. For simplicity, we focus our analysis for (s 1 , s 2 ) ∈ [ −π, π ] × [ −π, π ] .
However, other parametrizations of the angles s 1 , s 2 are possible. We partition the UP into
eight regions, shown in Fig. 2 , labeled as PFEF+, PFEF-, PFEB+, PFEB-, PBEF+, PBEF-,
PBEB+ and PBEB-. PF denotes that the pursuer is moving forward and PB that it is moving
backward. Analogous, EF denotes that the evader is moving forward and EB that it is moving
backward. The plus sign denotes that s 2 > 0, and the minus sign denotes that s 2 < 0. Notice
that using Eqs. (22)–(25) we can tell at the end of the game, whether each player is moving
forward or backward from the values of s and s . 
1 2 
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Table 1 
Retro-time motion equations starting at the UP. 

x̊ ẙ θ̊ UP 

−V max sin θ V max (1 − cos θ ) 0 PFEF ±
V 

max sin θ V max (1 + cos θ ) 0 PFEB ±

 

o  

i  

π  

d  

p  

i  

t

5
 

t

λ̊  

w  

e

λ  

s  

a  

l  

t

5

θ  

S  

e
 

θ  

m  

r

The system exhibits some symmetries for the angles s 1 and s 2 . Fig. 3 shows an example
f these symmetries, we have two games with the same starting position but with different
nitial orientations for the pursuers. Those orientations differ from each other by a value of
. In this case, the controls for the players are only different by the sense of the motion
irection for the pursuers. Note that in both games, the players end the game at the same
osition but with final orientations differing by a value of π . An analysis for the trajectories
n regions PFEF+ and PFEB+ will be provided in this paper. This analysis can be extended
o the remaining regions using analogous reasoning. 

.1.5. Solution of the adjoint equation 

From the previous analysis, we know that at the end of the game the players follow a
ranslation at maximum speed. Therefore Eq. (10) takes the form 

x = 0, ̊λy = 0, ̊λθ = ±V 

max (λx cos θ − λy sin θ ) (26)

here the sign of λ̊θ depends on whether the evader is moving forward or backward at the
nd of the game. One can directly verify that 

x = sin s 1 , λy = cos s 1 , λθ = ±V 

max sin (s 1 − θ ) τ (27)

atisfies Eq. (26) . This solution for the adjoint equation will be valid at the UP and as long
s the players’ controls do not change, which corresponds to both players following a straight
ine in the realistic space. Later, we compute the retro-time instant when the players switch
heir controls. 

.1.6. Retro-time path equations 
From Eq. (3) , the retro-time version of the motion equations in the reduced space are 

x̊ = −
(

u 2 − u 1 

2b 

)
y −

(
v 1 + v 2 

2 

)
sin θ

ẙ = 

(
u 2 − u 1 

2b 

)
x + 

(
u 1 + u 2 

2 

)
−

(
v 1 + v 2 

2 

)
cos θ

˚ = −
(

u 2 − u 1 

2b 

)
+ 

(
v 2 − v 1 

2b 

)
(28)

ubstituting the optimal controls for each subregion of the UP, we obtain the retro-time motion
quations starting at the UP shown in Table 1 . 

Integrating those motion equations with the initial conditions x = l c sin s 1 , y = l c cos s 1 and
= s 2 we obtain the retro-time path equations in Table 2 . Note that those equations give the
otion of the system in the reduced space, in order to find the corresponding motion in the

ealistic space we need to apply the transformation given by Eq. (2) . 
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Table 2 
Retro-time path equations starting at the UP for the subregions in Table 1 . 

x ( τ ) y ( τ ) θ ( τ ) 

−τV max sin s 2 + l c sin s 1 τV max (1 − cos s 2 ) + l c cos s 1 s 2 
τV max sin s 2 + l c sin s 1 τV max (1 + cos s 2 ) + l c cos s 1 s 2 

 

 

 

 

 

 

5.2. Transition surface 

The trajectories computed so far are valid as long as the players do not switch their controls.
The place where a control variable abruptly changes its value is known as a transition surface
(TS). In this subsection, we compute the retro-time instants at which the players switch their
controls. First, we perform the analysis for the evader considering that it translates forward
or backward at the end of the game, and later we extend our results for the pursuer. 

5.2.1. Evader translating forward 

If the evader is moving forward, from Eq. (27) we have that λθ = V 

max sin (s 1 − θ ) τ . We
know the control v 1 is given by 

v ∗1 = V 

max sgn 

(
λx 

2 

sin θ + 

λy 

2 

cos θ + 

λθ

2b 

)
(29) 

and it switches its sign when 

0 = 

λx sin s 2 
2 

+ 

λy cos s 2 
2 

+ 

λθ

2b 

== 

sin s 1 sin s 2 
2 

+ 

cos s 1 cos s 2 
2 

+ 

V 

max sin (s 1 − s 2 ) τ

2b 

(30) 

thus 

τ = 

−b cos (s 1 − s 2 ) 

V 

max sin (s 1 − s 2 ) 
(31) 

The control v 2 is given by 

v ∗2 = V 

max sgn 

(
λx 

2 

sin θ + 

λy 

2 

cos θ − λθ

2b 

)
(32) 

and it switches its sign when 

0 = 

λx sin s 2 
2 

+ 

λy cos s 2 
2 

− λθ

2b 

== 

sin s 1 sin s 2 
2 

+ 

cos s 1 cos s 2 
2 

− V 

max sin (s 1 − s 2 ) τ

2b 

(33) 

thus 

τ = 

b cos (s 1 − s 2 ) 

V 

max sin (s 1 − s 2 ) 
(34) 

5.2.2. Evader translating backwards 
If the evader is moving backwards, we have that λθ = −V 

max sin (s 1 − θ ) τ . In this case,
the control v 1 switches its sign at 

τ = 

b cos (s 1 − s 2 ) 

V 

max sin (s 1 − s 2 ) 
(35) 

The control v 2 switches its sign at 

τ = 

−b cos (s 1 − s 2 ) (36) 

V 

max sin (s 1 − s 2 ) 
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.2.3. Pursuer translating forward and evader translating forward 

From Eq. (27) , we have that λθ changes its sign according to the evader’s motion direction.
n this case, we assume the evader is translating forward at the end of the game. Thus the
ext conditions are satisfied 

x = −τV 

max sin s 2 + l c sin s 1 
y = τV 

max (1 − cos s 2 ) + l c cos s 1 

θ = V 

max sin (s 1 − s 2 ) τ (37)

ote that 

λx − xλy + λθ = (τV 

max (1 − cos s 2 ) + l c cos s 1 ) sin s 1 
− (−τV 

max sin s 2 + l c sin s 1 ) cos s 1 + V 

max sin (s 1 − s 2 ) τ

= τV 

max ( sin s 1 − cos s 2 sin s 1 + sin s 2 cos s 1 + sin (s 1 − s 2 ) ) 

= τV 

max ( sin s 1 − sin (s 1 − s 2 ) + sin (s 1 − s 2 ) ) = τV 

max sin s 1 (38)

he control u 1 is given by 

 

∗
1 = −V 

max sgn 

(
−λx 

2b 

y + 

λy 

2b 

x − λy 

2 

− λθ

2b 

)
(39)

nd it switches its sign when 

 = −yλx + xλy − λθ − bλy = −τV 

max sin s 1 − b cos s 1 (40)

hus 

= 

−b cos s 1 
V 

max sin s 1 
(41)

he control u 2 is given by 

 

∗
2 = −V 

max sgn 

(
λx 

2b 

y − λy 

2b 

x − λy 

2 

+ 

λθ

2b 

)
(42)

nd it switches its sign when 

 = yλx − xλy + λθ − bλy = τV 

max sin s 1 − b cos s 1 (43)

hus 

= 

b cos s 1 
V 

max sin s 1 
(44)

.2.4. Pursuer translating forward and evader translating backward 

In this case, we assume the evader is translating forward at the end of the game. Following
 similar analysis to the one in the previous subsection, we have that the control u 1 switches
ts sign at 

= 

−b cos s 1 
V 

max sin s 1 
(45)

nd the control u 2 switches its sign at 

= 

b cos s 1 
V 

max sin s 1 
(46)
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Table 3 
Switching controls for the evader at the TS depending on the region of the UP where the system begins. 

Control transition at τ s UP Rotation direction 

v 1 : + −→ − PFEF + Clockwise sense 
v 1 : − −→ + PFEB + Counter-clockwise sense 

Table 4 
Transition surface. 

x ( τ s ) y ( τ s ) θ ( τ s ) UP 

b cos (s 1 −s 2 ) 
sin (s 1 −s 2 ) 

sin (s 2 ) − b cos (s 1 −s 2 ) 
sin (s 1 −s 2 ) 

(1 − cos s 2 ) s 2 PFEF + 

+ l c sin s 1 + l c cos s 1 
b cos (s 1 −s 2 ) 
sin (s 1 −s 2 ) 

sin (s 2 ) 
b cos (s 1 −s 2 ) 
sin (s 1 −s 2 ) 

(1 + cos s 2 ) s 2 PFEB + 

+ l c sin s 1 + l c cos s 1 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 5.1. For retro-time trajectories starting at the UP, the evader changes its controls first

than the pursuer at τs = 

∣∣∣ b cos (s 1 −s 2 ) 
V max sin (s 1 −s 2 ) 

∣∣∣ and it starts a rotation in place at maximal rotational

speed in the realistic space. 

Proof. From the previous subsection, we have that the pursuer switches its controls at

τs = 

∣∣∣ b cos s 1 
V max sin s 1 

∣∣∣ and the evader switches its controls at τs = 

∣∣∣ b cos (s 1 −s 2 ) 
V max sin (s 1 −s 2 ) 

∣∣∣. We know that 

if |cos ( a )| < |cos ( b )|, then |sin ( a )| > |sin ( b )|. Since s 1 and s 2 satisfy that | cos (s 1 − s 2 ) | <
| cos (s 1 ) | at the UP (refer to Eq. (15) ), and both players move following a straight line
before one switches its controls, we have that | sin (s 1 − s 2 ) | > | sin (s 1 ) | which implies that

1 
| sin (s 1 −s 2 ) | < 

1 
| sin (s 1 ) | . Multiplying both inequalities | cos (s 1 − s 2 ) | < | cos (s 1 ) | and 

1 
| sin (s 1 −s 2 ) | <

1 
| sin (s 1 ) | , we get that 

∣∣∣ b cos (s 1 −s 2 ) 
V max sin (s 1 −s 2 ) 

∣∣∣ < 

∣∣∣ b cos (s 1 ) 
V max sin (s 1 ) 

∣∣∣. Thus the evader switches its controls first 

than the pursuer. �

Considering the initial configurations in retro-time, we obtain the switching controls for 
the evader at τ s listed in Table 3 . 

From Lemma 5.1 , and the equations in Table 2 , we have that the transition surface is
given by the equations in Table 4 . It corresponds to the points in the reduced space where
the evader switches its controls. 

5.3. Retro-time path equations from the TS 

Once the evader switches its controls and it starts rotating in place, we need to perform
a new integration of the adjoint equation. Recalling that the pursuer continues translating at
maximum speed, from Eq. (10) , we have that 

λ̊x = 0, ̊λy = 0, ̊λθ = 0 (47) 

So, λx , λy , and λθ are constant in retro-time. Taking as initial conditions the values of λx , λy ,
and λθ at τ s , we have that 

λx = sin s 1 , λy = cos s 1 (48) 



L. Bravo, U. Ruiz and R. Murrieta-Cid / Journal of the Franklin Institute 357 (2020) 5773–5808 5787 

A

λ

−
−  

x  

I  

w

x
x
x  

6

 

r  

t  

T  

c  

t  

i

6

 

s

T  

t

P  

m  

t  

c  

a  

t  

h  

g  

d  

r

nd for λθ

θ UP 

b cos (s 1 − s 2 ) PFEF + 

b cos (s 1 − s 2 ) PFEB +

The retro-time motion equations after the evader switches its controls are 

˚ = 0, ẙ = 

(
u 1 + u 2 

2 

)
, θ̊ = 

(
v 2 − v 1 

2b 

)
(49)

ntegrating Eq. (49) taking as initial conditions the values of x ( τ s ), y ( τ s ), and θ ( τ s ) at TS,
e obtain 

 ( τ ) y ( τ ) θ ( τ ) UP 
 ( τ s ) y(τs ) + V max (τ − τs ) s 2 + 

V max 

b (τ − τs ) PFEF + 

 ( τ s ) y(τs ) + V max (τ − τs ) s 2 − V max 

b (τ − τs ) PFEB +

. Game of kind 

From [1] , we have that the barrier separates the set of starting positions in those that
esult in capture and those that result in escape for the players. From starting points on
he barrier, optimal behavior leads to a contact of the terminal surface without crossing it.
he methodology that we have used in the calculation of the optimal strategies and their
orresponding trajectories is also applied in the construction of the barrier. Whether or not
he capture condition is achieved relies on whether or not the barrier divides the playing space
nto two parts. 

.1. The barrier is closed 

In this section, we show that the barrier is closed and it defines two regions in the playing
pace. 

heorem 6.1. The barrier is closed and defines two regions in the playing space: one where
he pursuer captures the evader, and another where the evader avoids capture forever. 

roof. We prove this theorem by contradiction. Suppose the barrier is open, thus from [1] , this
eans that the entire playing space is containing into one region, and the pursuer can capture

he evader from any initial configuration. However, for this game, one can find different
onfigurations where the pursuer is not able to capture the evader. Note that if both players
re aligned, the pursuer can only maintain a constant distance because both players have
he same speed. Also, assume the pursuer is heading directly to the evader, and the evader’s
eader is perpendicular to that orientation if the distance between both players is equal or
reater than 

bπ
2 , then the evader can align its heading and it escapes maintaining a constant

istance. Thus the assumption that the barrier is open and the playing space has only one
egion is false. �
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Fig. 4. The surfaces of alignment (SoA) correspond to those configurations where both players are heading in the 
same or opposite directions. They are represented by the dark gray planes. On those surfaces, the evader can always 
avoid capture regardless of the pursuer’s motion strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2. Construction of the barrier 

From Fig. 2 , and the symmetries of the game, we have that the analysis of the retro-time
trajectories starting at the BUP depends only on 3 different types of configurations. Those 
where s 2 is of the form k π with k ∈ Z ; those where s 2 = 2s 1 and the trajectory starts from
a configuration at the boundary of PFEF+; and those where s 2 = 2s 1 + π and the trajectory
starts at the boundary of PFEB+. 

It is important to note that for configurations starting at s 2 = kπ, the players are heading
in the same or opposite direction, and it is enough for the evader to keep moving following
a straight line away from the pursuer to avoid the capture condition. The best strategy for
the pursuer is to keep the initial distance following a straight line motion too. In this sense,
we can define stationary surfaces containing configurations where the evader can guarantee to 

win regardless of its initial location in the reduced space. We will refer to these surfaces as
surfaces of alignment (SoA) for the rest of the paper (see Fig. 4 ). Notice that those surfaces
prevent trajectories starting from PFEF+, PFEB+, PBEB+, and PBEF+ to intersect trajectories 
from PFEF-, PFEB-, PBEB-, and PBEF-. 

For the other two cases, the barrier is constructed integrating the adjoint equation (10) and
the equations of motions (3) starting at the BUP. Similar to the case of the retro-time trajec-
tories starting at the UP, the retro-time trajectories starting at the BUP correspond to straight
lines where the players translate forward or backwards at maximum speed. Those trajectories 
are valid as long as the players do not switch their controls. 

6.2.1. Switching controls 
Following a similar analysis to the one presented in Section 5.2 , we found the time at

which the players switch their controls. We define τ e 
s as the transition time for the evader

and τ
p 
s transition time for the pursuer. We have that 

τ e 
s = 

∣∣∣∣ b cos (s 1 − s 2 ) 

V 

max sin (s 1 − s 2 ) 

∣∣∣∣ = 

b 

V 

max 
| cot (s 1 − s 2 ) | 

τ p 
s = 

∣∣∣∣ b cos s 1 
V 

max sin s 1 

∣∣∣∣ = 

b 

V 

max 
| cot (s 1 ) | (50) 
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Table 5 
Switching controls for the pursuer at the TS depending on the region of the BUP where the system begins. 

Control transition at τ p 
s UP Rotation direction 

u 2 : + −→ − PFEF + Clockwise sense 
u 1 : + −→ − PFEB + Counter-clockwise sense 

Table 6 
Controls of the players after the TS depending on the region of the BUP where the system begins. 

Control from PFEF + from PFEB + 

u 1 V 

max −V max 

u 2 −V max V 

max 

v 1 −V max V 

max 

v 2 V 

max −V max 

F

τ  

U  

t  

s  

i

6

 

t

x  

W
 

f

x

y

 

T  

d  

h

x

y  
or the case where s 2 = 2s 1 + kπ for k ∈ Z , we have 

e 
s = 

b 

V 

max 
| cot (s 1 − s 2 ) | = 

b 

V 

max 
| cot (s 1 − 2s 1 − kπ) | = 

b 

V 

max 
| cot (−s 1 − kπ) | (51)

sing the symmetry properties and periodicity of the cotangent function, we found that the
imes τ p 

s and τ e 
s are equal, i.e., the players switch their controls at the same time. Both players

tart a rotation in place. The controls for the evader have a similar pattern to the one shown
n Table 3 . Applying a similar reasoning for the pursuer, we obtain the pattern in Table 5 . 

.2.2. Retro-time trajectory of the barrier after TS for s 2 = 2s 1 
The controls of the players after reaching the TS are shown in Table 6 . 
Using the controls defined for the retro-time trajectories starting from PFEF+, we can find

he corresponding retro-time equations for the barrier. 

˚ = 

V 

max 

b 

y, ẙ = 

−V 

max 

b 

x, θ̊ = 

2V 

max 

b 

(52)

e can solve directly for θ using as initial condition θ (τs ) = s 2 . So θ (τ ) = 

2V max 

b (τ − τs ) + s 2
or τ > τ s . For x and y , we have the follow initial conditions 

(τs ) = −
(

b 

V 

max 
cot (s 1 ) 

)
sin (s 2 ) + l c sin s 1 

= −b cot (s 1 ) sin (2s 1 ) + l c sin s 1 = −2b cos 2 s 1 + l c sin s 1 

(τs ) = −
(

b 

V 

max 
cot (s 1 ) 

)
(1 − cos (s 2 )) + l c cos s 1 = 

= b cot (s 1 )(1 − cos (2s 1 )) + l c cos s 1 = 2b cos s 1 sin s 1 + l c cos s 1 (53)

o solve Eq. (52) , we compute its derivate and then we can solve the second order lineal
ifferential equation given by ˚x̊ + 

(
V max 

b 

)2 
x = 0 and initial conditions x ( τ s ) and y ( τ s ). We

ave 

(τ ) = l c sin 

(
s 1 − cot (s 1 ) + 

V 

max 

b 

τ

)
− 2b cos (s 1 ) cos 

(
s 1 − cot (s 1 ) + 

V 

max 

b 

τ

)

(τ ) = l c cos 

(
s 1 − cot (s 1 ) + 

V 

max 

τ

)
+ 2b cos (s 1 ) sin 

(
s 1 − cot (s 1 ) + 

V 

max 

τ

)
(54)
b b 
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6.2.3. Retro-time trajectories from s 2 = 2s 1 + π

Using the controls defined for the retro-time trajectories starting from PFEB+ in Table 6 ,
we can find the corresponding retro-time equations for the barrier. 

x̊ = 

−V 

max 

b 

y, ẙ = 

V 

max 

b 

x, θ̊ = 

−2V 

max 

b 

(55) 

We can solve directly for θ using as initial condition θ (τs ) = s 2 . So θ (τ ) = 

−2V max 

b (τ − τs ) +
s 2 for τ > τ s . For x and y , we have the follow initial conditions 

x(τs ) = 

( −b 

V 

max 
cot (s 1 ) 

)
sin (s 2 ) + l c sin s 1 = 

= −b cot (s 1 ) sin (2s 1 + π) + l c sin s 1 = 2b cos 2 s 1 + l c sin s 1 

y(τs ) = 

( −b 

V 

max 
cot (s 1 ) 

)
(1 + cos (s 2 )) + l c cos s 1 = 

= −b cot (s 1 )(1 + cos (2s 1 + π)) + l c cos s 1 = −2b cos s 1 sin s 1 + l c cos s 1 (56) 

We can solve the second order lineal differential equation given by ◦◦x + 

(
V max 

b 

)2 
x = 0

and initial conditions x ( τ s ) and y ( τ s ). We obtain 

x(τ ) = l c sin 

(
s 1 − cot (s 1 ) − V 

max 

b 

τ

)
+ 2b cos (s 1 ) cos 

(
s 1 − cot (s 1 ) − V 

max 

b 

τ

)

y(τ ) = l c cos 

(
s 1 − cot (s 1 ) − V 

max 

b 

τ

)
− 2b cos (s 1 ) sin 

(
s 1 − cot (s 1 ) − V 

max 

b 

τ

)
(57) 

6.2.4. Non-existence of a second switch of controls in the retro-time trajectories of the 
barrier 

We found that once both players switch their controls and they start rotating in place at
maximum rotational speed, when they follow the retro-time trajectories of the barrier, the two
players continue performing this motion strategy until they arrive to the SoA. To obtain this
result, we perform a numerical analysis of the adjoint equation’s behavior after both players
switch their controls. The optimal controls of the players directly depend on the adjoint
equation. 

Note that when the players are rotating in place at maximum rotational speed, the distance
between them remains constant, and θ increases or decreases if the retro-time trajectory 

started from PFEF+ or PFEB+, respectively. The time required to reach a SoA if both players
continue rotating in place at maximum speed is denoted by τ SoA , and it is given by 

τSoA = arg min 

τ> 0 
{ θ (τ ) = k · π |∀ k ∈ Z } (58) 

We can explicitly find τ SoA for retro-time trajectories starting from the BUP of PFEF+ or
PFEB+. We have that 

• τSoA = 

b 
2V max (π − s 2 ) + τs for s 2 at the BUP in PFEF+ 

• τSoA = 

b 
2V max s 2 + τs for s 2 at the BUP in PFEB+ 

We perform an analysis to detect if there is a change in the players’ controls after τ s , the
time for the first switch of both players, and before τ SoA . 

The next table shows the controls of the players before and after the switch when they
travel the trajectories starting from the BUP 
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PFEF + PFEB + 

u 1 , u 2 u 1 , u 2 

v 1 , v 2 v 1 , v 2 
< τs V max , V max V max , V max 

V max , V max −V max , −V max 

≥ τs V max , −V max −V max , V max 

−V max , V max V max , −V max 

Using the controls in the previous table and Eq. (10) , we can find the expression of the
djoint equation after the first switch for the trajectory starting at the BUP of PFEF+, we
ave that 

x = 

V 

max 

b 

λy , ̊λy = −V 

max 

b 

λx , ̊λθ = 0 (59)

Integrating the previous equations with the values of λx , λy and λθ at t s as initial conditions,
e obtain that for τ ≥ τ s 

λx (τ ) = sin 

(
s 1 + 

V 

max 

b 

(τ − τs ) 

)

λy (τ ) = cos 

(
s 1 + 

V 

max 

b 

(τ − τs ) 

)

θ (τ ) = b cos 
( s 2 

2 

)
(60)

ubstituting the previous equations into the optimal controls defined in Eq. (8) , we have that
ts behavior depends on the sign of the following equations 

f u 1 (τ ) = −λx (τ ) y(τ ) + λy (τ ) x(τ ) − bλy (τ ) − λθ (τ ) 

f u 2 (τ ) = λx (τ ) y(τ ) − λy (τ ) x(τ ) − bλy (τ ) + λθ (τ ) 

f v 1 (τ ) = bλx (τ ) sin ( θ (τ ) ) + bλy (τ ) cos ( θ (τ ) ) + λθ (τ ) 

f v 2 (τ ) = bλx (τ ) sin ( θ (τ ) ) + bλy (τ ) cos ( θ (τ ) ) − λθ (τ ) (61)

e only focus our analysis on the interval τ s ≤ τ ≤ τ SoA , i.e. after the first switch and before
he game reaches the SoA. We define ˜ τ = τ − τs . A plot of the last equations for the intervals
 ≤ ˜ τ ≤ τSoA − τs and s 2 ∈ (0, π ) over the BUP of PFEF+ is shown in Fig. 5 . 

A similar approach may be applied to the BUP of PFEB+. Notice that the functions do
ot cross the zero plane on the plots shown in Fig. 5 for the allowed values of τ = τs + ˜ τ .
hus, we conclude that the trajectories end when they hit a SoA (see Fig. 6 ). 

.3. Characterization of the barrier 

Now that we know how trajectories from the BUP behave, we would like to characterize
he surface that is created by them. This characterization helps us to solve the game of kind,
.e., whether or not the pursuer/evader wins based on the initial configuration of the players.
otice that for a given value of s 2 ∈ (0, π ), we have two different values for s 1 such that ( s 1 ,
 2 ) is at the boundary of PFEF+ and PFEB+ (see Figs. 7 and 8 ). As it is shown in Fig. 7 ,
e denote as ˜ s 1 to the coordinate for s 1 at the BUP that is next to PFEB+, and ˆ s 1 to the

oordinate for s 1 at the BUP that is next to PFEF+. Notice that each value is given by 
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Fig. 5. Behavior of the functions that define the sign of each control after the first switch and before τ SoA . For the 
control u 1 , the function f u 1 (τ ) increases its value but it never reaches zero (it does not change its sign). The same 
happens for v 2 . For the control u 2 , the function f u 2 (τ ) decreases its value but it does not reach zero before τ SoA , 
thus it does not change its sign. The control v 1 shows a similar behavior. The previous results apply for any value 
s 2 ∈ [0, π ], and any ˜ τ ∈ [0, τSoA − τs ] . 

Fig. 6. The behavior of the BUP trajectories. Pink lines represent trajectories starting from the BUP of PFEF+, and 
dark green lines represent trajectories starting from the BUP of PFEB+. Turquoise and yellow planes correspond 
to the surface of alignment at s 2 = 0 and s 2 = π, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Relation between s 2 and its corresponding values for s 1 at the BUP. 

Fig. 8. Cross-section of the terminal surface at s 2 = 1 . The yellow points are the points at the BUP for the PFEF+ 
and PFEB+ regions. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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˜  1 = 

s 2 − π

2 

, ˆ s 1 = 

s 2 
2 

(62)

or a fixed value of s 2 . 

emma 6.2. Let ( s 1 , s 2 ) a point at the BUP(PFEF+), such that defines a trajectory
x(τ ) , y(τ ) , θ (τ ) 

)
: τ ∈ [0, ∞ ) → R 

3 in retro-time using the optimal controls. Then, for a
iven time ˆ τ , we define the next points: 

• A = 

(
x 
( ˆ τ)

, y 
( ˆ τ)

, θ
( ˆ τ))

, the state of the game at retro-time ˆ τ . 

• B = 

(
l c sin 

(
θ( ̂ τ ) 

2 

)
, l c cos 

(
θ( ̂ τ ) 

2 

)
, θ ( ̂  τ ) 

)
, the corresponding point at the BUP(PFEF+), for

a level θ ( ̂  τ ) . 
• O = 

(
0, 0, θ ( ̂  τ ) 

)
, the origin of the game at level θ ( ̂  τ ) . The pursuer’s position in the reduced

space considering the evader’s orientation. 
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Fig. 9. The figure shows a slide of the reduced space at level s 2 = 

π
2 . The dark green line represents the tangent 

line to the terminal surface at the BUP. The green, cyan and orange points are the ones defined by the proposition. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.) 

 

The segments BA and OB are perpendicular. In other words, the trajectories starting from 

the BUP are tangent to the cross-section of the terminal surface at level θ ( ̂  τ ) . 

Proof. We are going to use B as a reference point and check if both segments are perpen-
dicular. We define the next two vectors 

• 
−→ 

A = A − B
• 

−→ 

O = O − B

Suppose ˆ τ < τs , we have that 

x( ̂  τ ) = −ˆ τV 

max sin (s 2 ) + l c sin (s 2 / 2) 

y( ̂  τ ) = ˆ τV 

max (1 − cos (s 2 )) + l c cos (s 2 / 2) 

θ ( ̂  τ ) = s 2 (63) 

Since s 1 = 

s 2 
2 , we obtain that 

−→ 

A = 

(
x( ̂  τ ) − l c sin 

(
θ ( ̂  τ ) 

2 

)
, y( ̂  τ ) − l c cos 

(
θ ( ̂  τ ) 

2 

)
, θ ( ̂  τ ) − θ ( ̂  τ ) 

)

= 

(−ˆ τV 

max sin (s 2 ) , ˆ τV 

max (1 − cos (s 2 )) , 0 

)
−→ 

O = 

(
−l c sin 

(
θ ( ̂  τ ) 

2 

)
, −l c cos 

(
θ ( ̂  τ ) 

2 

)
, θ ( ̂  τ ) − θ ( ̂  τ ) 

)

= 

(
−l c sin 

( s 2 
2 

)
, −l c cos 

( s 2 
2 

)
, 0 

)
(64) 



L. Bravo, U. Ruiz and R. Murrieta-Cid / Journal of the Franklin Institute 357 (2020) 5773–5808 5795 

A

−→

 

T  

f

θ

 

w

−→

 

a

−→
 

T
−→

 

A

 

b  

t
 

i  

s  

a  

b  

a  

s
 

i  

f  

p  

s  

e

nd the dot product is given by 

 

A · −→ 

O = 

(−ˆ τV 

max sin (s 2 ) 
)(−l c sin 

( s 2 
2 

))
+ 

( ˆ τV 

max (1 − cos (s 2 )) 
)(−l c cos 

( s 2 
2 

))
= ˆ τV 

max l c ( − cos (s 2 − s 2 / 2) + cos (s 2 / 2) ) = 0 (65)

hus, can we conclude that BA and OB are perpendicular when ˆ τ ≤ τs . Now, suppose ˆ τ ≥ τs ,

rom Eq. (54) , the state of the game is given by 

x( ̂  τ ) = l c sin � − 2b cos (s 2 / 2) cos �

y( ̂  τ ) = l c cos � + 2b cos (s 2 / 2) sin �

( ̂  τ ) = s 2 + 

2V 

max 

b 

( ˆ τ − τs 
) = s 2 + 

2V 

max 

b 

(
ˆ τ − b 

V 

max 
cot (s 2 / 2) 

)

= s 2 + 

2V 

max 

b 

ˆ τ − 2 cot (s 2 / 2) = s 2 + 

2V 

max 

b 

τ − 2 cot (s 2 / 2) 

= 2 

(
s 2 / 2 − cot (s 2 / 2) + 

V 

max 

b 

ˆ τ
)

= 2� (66)

here � = s 2 / 2 − cot (s 2 / 2) + 

V max 

b ˆ τ . Translating the origin to the intersection of both lines 

 

A = 

(
x( ̂  τ ) − l c sin 

(
θ ( ̂  τ ) 

2 

)
, y( ̂  τ ) − l c cos 

(
θ ( ̂  τ ) 

2 

)
, θ ( ̂  τ ) − θ ( ̂  τ ) 

)

= ( −2b cos (s 2 / 2) cos �, 2b cos (s 2 / 2) sin �, 0 ) (67)

nd 

 

O = 

(
−l c sin 

(
θ ( ̂  τ ) 

2 

)
, −l c cos 

(
θ ( ̂  τ ) 

2 

)
, θ ( ̂  τ ) − θ ( ̂  τ ) 

)
= ( −l c sin �, −l c cos �, 0 ) (68)

he dot product is given by 

 

A · −→ 

O = ( −2b cos (s 2 / 2) cos �) ( −l c sin �) + ( 2b cos (s 2 / 2) sin �) ( −l c cos �) = 0 (69)

nd we have that BA and OB are perpendicular when ˆ τ ≥ τs . �
If we take a cross-section of the playing space in the reduced space, we can see that the

arrier looks like a triangle with tangents to the circle defined by the cross-section over the
erminal surface (see Fig. 10 ). 

Numerically, we have observed that no trajectory from the BUP reaches the point C shown
n Fig. 10 . Hence, we are going to define the controls in those configurations analyzing
ome cases. We ignore the case when the pursuer goes backward since that control gives
n advantage to the evader. In simulations, we found that if the evader moves forwards or
ackward, and the pursuer goes forwards, then the trajectory in the reduced space moves
long the barrier in the same cross-section ( θ does not change when both move following a
traight line). 

Additionally, if the evader rotates, there is a sense of rotation in which the evader’s position
n the reduced space can be detached of the barrier even though the pursuer chooses to move
orward. In this case, the best thing that the pursuer can do is also to perform a rotation in
lace. Those rotations take the game to a configuration where both players are heading in the
ame direction, i.e., a surface of alignment. As we know, these configurations correspond to
scape for the evader. In conclusion, the point C is part of the barrier. 
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Fig. 10. Cross-section at s 2 = 

π
2 , seen from top. In this case, the values for s 1 at the BUP are π /4 and −π/ 4. 

 

 

 

 

 

 

 

 

 

 

Corollary 6.3. Let s 2 ∈ [0, π ] define a cross-section of the playing space over θ in the reduced
space. Define the points B , B 

′ , and C as: 

B = 

(
l c sin 

( s 2 
2 

)
, l c cos 

( s 2 
2 

)
, s 2 

)

B 

′ = 

(
l c sin 

(
s 2 − π

2 

)
, l c cos 

(
s 2 − π

2 

)
, s 2 

)

C = 

(
l c 

(
sin 

( s 2 
2 

)
+ sin 

(
s 2 − π

2 

))
, l c 

(
cos 

( s 2 
2 

)
+ cos 

(
s 2 − π

2 

))
, s 2 

)
(70) 

Then, the barrier, for PFEF+ and PFEB+ is defined by the cross-section of the terminal
surface at s 2 , and the segments BC and B 

′ C (see Fig. 10 ). 

Using the previous results, we can determine if the pursuer or the evader wins the game.
This decision is made based on whether the initial configuration of the players for a given
value of s 2 is inside or outside of the yellow region defined by the barrier shown in Fig. 10 .
This idea is formalized in the following theorem 

Theorem 6.4. Based only on the initial position of the evader in the reduced space it is
possible to determine the winner of the game. 

Proof. By Lemma 6.2 we know that the barrier is characterized by the segments BC and
B 

′ C . By the definition of the barrier [1] , if the evader is inside the region defined by those
segments and the UP, then the pursuer wins. Otherwise, the evader wins. �

7. Partitioning the playing space and analysis of singular surfaces 

In this section, we would like to determine whether or not the controls that the players
must apply are defined for the entire region of the playing space where the pursuer wins. The
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T

Fig. 11. The figure shows a partition of the cross-section at θ = 1 . The magenta line shows a limit that trajectories 
in dark green and pink do not reach using the primary controls, i.e., the players switch their controls before arriving 
at the magenta line. Notice that the magenta line changes for each value of θ . (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

p  

a  

b  

t

7

 

o  

b  

c  

l
 

t  

F  

o
 

t  

(  

s  

o

D

revious problem requires to determine if singular surfaces [1,12] are present or not, such
s transition surfaces, dispersal surfaces, universal surfaces, etc. Unfortunately, we have not
een able to achieve this objective analytically, since it would require to solve trigonometric
ranscendental equations. Instead, we provide a numerical analysis. 

.1. Non-existence of singular surfaces before the first switch of controls 

To determine whether or not singular surfaces exist before the first switch of controls,
ne needs to find a surface where more than one trajectory meet. That is, find intersections
etween other trajectories with the same cost (at the intersection). Since trajectories do not
hange its value of θ using only the primary solution (both players move following a straight
ine), we focus our analysis to a cross-section for a fixed θ . 

The trajectories starting from PFEF+ stay parallel to the closest barrier that a partition of
he UP defines, and a similar behavior occurs for the trajectories starting from PFEB+, see
ig. 11 . Hence, we can conclude that trajectories from PFEF+ can only intersect trajectories
f PFEB+. 

We proceed our analysis drawing the segment (shown in magenta in Fig. 11 ) that joins
he barrier intersection (red point in Fig. 11 ), and the division between PFEF+ and PFEB+
green point in Fig. 11 ). We can conclude that there is no special surface before the first
witch if trajectories from PFEF+ and PFEB+ stay on the same side of the magenta segment
f Fig. 11 . For a given value of θ , these points are defined by 

 = 

(
l c sin 

(
θ − π

2 

)
, l c cos 

(
θ − π

2 

)
, θ

)
= ( −l c cos (θ ) , l c sin (θ ) , θ ) 
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Fig. 12. Orientation analysis of trajectories at the first switch of controls with respect to the magenta segment defined 
in Fig. 11 . 

 

 

 

 

 

 

 

 

 

E = 

(
l c 
(

sin 

(θ

2 

) + sin 

(θ − π

2 

))
, l c 

(
cos 

(θ

2 

) + cos 
(θ − π

2 

))
, θ

)

= 

(
l c 

(
sin 

(
θ

2 

)
− cos 

(
θ

2 

))
, l c 

(
cos 

(
θ

2 

)
+ sin 

(
θ

2 

))
, θ

)

F = ( x(τs ) , y(τs ) , θ ) (71) 

where F is the evader’s position at the switching time τ s . F depends on s 1 and s 2 , the
parameters of the evader’s position when capture is achieved. That is the partition of the UP
where the trajectory is defined. We use the ( x , y )-projection only since the third coordinate
is the same. The function that defines the side where F is located with respect to the DE 

segment (see Fig. 11 ) is given by the sign of 

(E y − D y )(F x − E x ) − (E x − D x )(F y − E y ) ⎧ ⎨ 

⎩ 

> 0 Points are in clockwise sense 
= 0 Points are collinear 
< 0 Points are in counter-clockwise sense 

(72) 

the clock-wise test for three points. 
As it was mentioned, our analysis is numerical. Fig. 12 shows the location of the third

point F with respect to the segment DE projected over the ( x , y )-plane. Eq. (72) maintains its
sign for PFEF+ and PFEB+. That is, trajectories from PFEF+ and PFEB+ do not cross the
magenta line shown in Fig. 11 . Then, we conclude that there is not a singular surface before
the first switch of controls. 

7.2. Singular surfaces after the first switch of controls 

We continue our analysis of the trajectories after the first switch of controls. We want
to find whether there is another transition surface (a second switch of controls), or whether
trajectories intersect with each other (another kind of singular surface). 
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Fig. 13. The transition surfaces from PFEF+ and PFEB+ are shown in magenta and orange, respectively. The 
trajectories starting from PFEF+ (red) go to the magenta surface. Similar behavior occurs for the trajectories starting 
from PFEB+ (green); they go to the blue surface. Notice that both surfaces do not intersect. Besides, these trajectories 
stay inside the barrier before the first switch of controls. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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.2.1. Second switch of controls 
The time-optimal controls of the players correspond to saturated maximum speeds, differing

nly in the sign, which depends on the sign of the following functions 

f u 1 (τ ) = −λx (τ ) y(τ ) + λy (τ ) x(τ ) − bλy (τ ) − λθ (τ ) 

f u 2 (τ ) = λx (τ ) y(τ ) − λy (τ ) x(τ ) − bλy (τ ) + λθ (τ ) 

f v 1 (τ ) = bλx (τ ) sin ( θ (τ ) ) + bλy (τ ) cos ( θ (τ ) ) + λθ (τ ) 

f v 2 (τ ) = bλx (τ ) sin ( θ (τ ) ) + bλy (τ ) cos ( θ (τ ) ) − λθ (τ ) (73)

here 

x = sin s 1 , λy = cos s 1 , λθ = −b cos (s 1 − s 2 ) (74)

nd ( x ( τ ), y ( τ ), θ ( τ )) is the position of the evader as it travels the trajectory after the first
witch of controls. We need to find whether there is a valid time τ where the controls change
heir signs. A valid time is greater than τ s and not larger than the time allowing to cross the
arrier. For the controls u 1 and u 2 , from a trajectory going out from PFEF+, it is possible to
actorize τ , obtaining 

= 

b 

V 

max 
( cot (s 1 ) − cot (s 1 − s 2 ) ) − l c sin (s 1 − s 2 ) 

V 

max sin (s 1 ) 
for u 1 

= 

b 

V 

max 
( cot (s 1 − s 2 ) + cot (s 1 ) ) − l c sin (s 1 − s 2 ) 

V 

max sin s 1 
for u 2 (75)

or controls v 1 and v 2 we can also find a switch time 

= −V 

max 

b 

( πk − π/ 2 ) + τs for v 1 

= −V 

max 

b 

(
s 2 − s 1 + cos −1 (− cos (s 1 − s 2 )) + 2πk 

) + τs for v 2 (76)
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such that k makes the final configuration in retro-time belongs to the region of the playing
space where the pursuer wins. 

The existence of a second switch of controls depends on a valid value for τ . Another
issue to take into account corresponds to determine whether or not an intersection between 

trajectories exists before the second switch of controls. 

7.2.2. Intersection with other trajectories 
One must consider all the possibilities. The cases are the following: 

• Trajectories from PFEF+ after the first switch of controls intersect with trajectories from 

PFEB+ before the first switch of controls. That is, find ˜ τ , ( ̂  s 1 , ˆ s 2 ) ∈ PFEF+, and ( ̃  s 1 , ˜ s 2 ) ∈
PFEB+ that satisfy the following three equations 

b cot ( ̂  s 1 − ˆ s 2 ) sin ( ̂  s 2 ) + l c sin ( ̂  s 1 ) = ˜ τV 

max sin ( ̃  s 2 ) + l c sin ( ̃  s 1 ) (77)

−b cot ( ̂  s 1 − ˆ s 2 ) 
(
1 − cos ( ̂  s 2 ) 

) + l c cos ( ̂  s 1 ) + V 

max ( ̃  τ − τs ) 

= ˜ τV 

max (1 + cos ( ̃  s 2 )) + l c cos ( ̃  s 1 ) (78) 

ˆ s 2 + 

V 

max 

b 

( ̃  τ − τs ) = ˜ s 2 (79) 

• Trajectories from PFEF+ after the first switch of controls intersect with trajectories from 

PFEB+ after the first switch of controls. That is, find ˜ τ , ( ̂  s 1 , ˆ s 2 ) ∈ PFEF+, and ( ̃  s 1 , ˜ s 2 ) ∈
PFEB+ that satisfy the following three equations 

b cot ( ̂  s 1 − ˆ s 2 ) sin ( ̂  s 2 ) + l c sin ( ̂  s 1 ) = b cot ( ̃  s 1 − ˜ s 2 ) sin ( ̃  s 2 ) + l c sin ( ̃  s 1 ) (80)

−b cot ( ̂  s 1 − ˆ s 2 ) 
(
1 − cos ( ̂  s 2 ) 

) + l c cos ( ̂  s 1 ) + V 

max ( ̃  τ − τs ) 

= b cot ( ̃  s 1 − ˜ s 2 ) 
(
1 + cos ( ̃  s 2 ) 

) + l c cos ( ̃  s 1 ) + V 

max ( ̃  τ − τs ) (81) 

ˆ s 2 + 

V 

max 

b 

( ̃  τ − τs ) = ˜ s 2 − V 

max 

b 

( ̃  τ − τs ) (82) 

• Trajectories from PFEF+ before the first switch of controls intersect with trajectories from 

PFEB+ after the first switch of controls. That is, find ˜ τ , ( ̂  s 1 , ˆ s 2 ) ∈ PFEF+, and ( ̃  s 1 , ˜ s 2 ) ∈
PFEB+ that satisfy the following three equations 

−˜ τV 

max sin ( ̂  s 2 ) + l c sin ( ̂  s 1 ) = b cot ( ̃  s 1 − ˜ s 2 ) sin ( ̃  s 2 ) + l c sin ( ̃  s 1 ) (83)

˜ τV 

max 
(
1 − cos ( ̂  s 2 ) 

) + l c cos ( ̂  s 1 ) = b cot ( ̃  s 1 − ˜ s 2 ) 
(
1 + cos ( ̃  s 2 ) 

) + l c cos ( ̃  s 1 ) + V 

max ( ̃  τ − τs ) 

(84) 

ˆ s 2 = ˜ s 2 − V 

max 

( ̃  τ − τs ) (85) 

b 
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.2.3. Intersection with the barrier 
We need to know what event occurs first (retro-time) either a trajectory hits the barrier or

t intersects another trajectory. 
To determine if the events above occur, one needs to solve trigonometric transcendental

quations. For that reason, we were not able to solve it analytically. Instead, we have done a
umerical analysis, where we evaluate the cases over PFEF+ and PFEB+, and the behavior of
he controls of the players for each game are obtained. That analysis is presented just below.

.2.4. Numerical analysis of trajectories after the first switch of controls 
We started our analysis considering the behavior of trajectories and controls after the first

witch. We have included a figure that shows which event happens first. The possible events
e found are: (1) the trajectory hits the barrier, (2) control u 1 changes its sign, (3) control
 2 changes its sign and (4) control v 2 changes its sign, see Fig. 14 . 

A particular event happens near the boundary that PFEF+ and PFEB+ share. As the retro-
ime progress, the controls of the players for configurations in one side of the boundary
ecome the controls of the players for configurations in the other side, and the trajectories
n both sides have a similar cost. This suggests the existence of a dispersal surface near that
oundary. 

In an attempt to characterize a dispersal surface, we have considered reflected configura-
ions over the boundary that divides PFEF+ and PFEB+. Suppose that we have a configuration
 ̂  s 1 , ˆ s 2 ) ∈ PFEF+, we take the configuration ( ̃  s 1 , ˜ s 2 ) ∈ PFEB+ that is the reflection of ( ̂  s 1 , ˆ s 2 )
ver the segment that divides PFEF+ and PFEB+. This reflection is given by ˜ s 1 = ˆ s 2 − π/ 2,

nd ˜ s 2 = ˆ s 1 + π/ 2. Both trajectories are plotted using the same retro-time until they get close
nough (a distance factor equal to 10e − 4). If they get that close then they are marked. These
nd points are shown in Fig. 15 . A comparison between Figs. 14 and 15 show that the blue
oints in Fig. 15 and the yellow point in Fig. 14 are equally located. 

The analysis gives some insight of the trajectories and the controls behavior after the first
witch. 

.3. Summary 

In this work, we have found three different strategies for the players when capture is
chieved. In the first one, the evader starts rotating in place at maximum speed, and after
ome time it switches its controls ending the game translating at maximum speed. In the
econd one, the evader always moves following a straight line at maximum speed. In both
ases, the strategy for the pursuer is translating at maximum speed. In the third case, both
layers start rotating in place at maximum speed. After some time, the pursuer switches its
ontrols and it translates at maximum speed, while the evader continues rotating in place. A
ime later, the evader also switches its controls and it translates at maximum speed, until the
apture is achieved. Our analytical results and some numerical experiments suggest that this
ay be the only strategies for the players in this game. 

. Simulations 

In this section, we present some simulations of the pursuit-evasion game. We use meters
 m ) as units for distance, seconds ( s ) for time, and m / s for velocities. We present three cases.
1) the pursuer wins, and both players translate at maximum speed the whole game. (2)
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Fig. 14. This figure shows the behavior of each configuration. We took random positions at the UP and use the 
time-optimal retro-time controls after the first switch and until a second switch occurs, or the trajectory hits the 
barrier. The bottom figure is a zoom of the bottom part of the top figure. 

 

 

 

 

 

 

 

the pursuer wins moving forward at maximum speed all the time, but the evader performs
an initial rotation in place at maximal rotational speed, and after that, it moves forward at
maximum translational speed. (3) the evader wins, and both players translate at maximum 

speed the whole game. 

8.1. Both players move forward at maximum speed and the pursuer wins 

In this simulation, the pursuer captures the evader while both players apply their time-
optimal controls (they move forwards). The parameters for this simulation were l c = 2,

b = 1 . 0, V 

max = 1 . 0. In the reduced space, the evader is initially located at (x i , y i , θi ) =
(0. 8940, 2. 0897 , −0. 2) , and it is captured at (x f , y f , θ f ) = (0, 2, −0. 2) . Fig. 16 (a) and (c)
shows the initial and final configurations of the game in the reduced space. The correspond-
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Fig. 15. This figure shows random end-configurations (at the UP) that take the trajectory near its reflection across 
the boundary of PFEF+ and PFEB+ using the same retro-time. Both get close enough to consider the existence of 
a dispersal surface. 

Fig. 16. The pursuer wins, and both players translate at maximum speed the whole game. The pursuer is represented 
like a blue disc and the evader like a red disc. The trajectories followed by the players in the realistic space are 
shown in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 17. The pursuer wins moving forward at maximum speed all the time, but the evader performs an initial rotation 
in place at maximal rotational speed, and after that, it moves forward at maximum translational speed. The pursuer 
is represented like a blue disc and the evader like a red disc. The trajectories followed by the players in the realistic 
space are shown in (d). Note that the orientation of the evader at the final configuration is different from the one at 
the initial configuration. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

 

 

 

 

 

 

ing configurations in the realistic space are shown in Fig. 16 (b) and (d), respectively. The
trajectories followed by the players in the realistic space are also shown in Fig. 16 (d). Note
that despite both players have the same speed and move forward, capture is attained. 

8.2. The evader initially performs a rotation in place 

In this simulation, the pursuer again captures the evader, however, the time-optimal motion 

strategy for the evader consist of two motion primitives. First, it rotates in place at maxi-
mum rotational speed and after that, it moves forwards at maximum translational speed. The 
parameters for this simulation were l c = 2, b = 1 . 0, V 

max = 1 . 0. In the reduced space, the
evader is initially located at (x i , y i , θi ) = (0. 7071 , 2. 5929 , −1 . 0854) (see Fig. 17 (a)) and it is
captured at (x f , y f , θ f ) = (0, 2, π/ 4) (see Fig. 17 (b)). The corresponding configurations in
the realistic space are shown in Fig. 17 (b) and (d), respectively. 



L. Bravo, U. Ruiz and R. Murrieta-Cid / Journal of the Franklin Institute 357 (2020) 5773–5808 5805 

Fig. 18. The evader wins, and both players translate at maximum speed the whole game. The pursuer is represented 
like a blue disc and the evader like a red disc. The players can only keep the same distance all the time. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.3. The evader wins the game 

In this simulation, the evader wins, and both players translate forwards at maximum speed
he whole game. The parameters for this simulation were l c = 2. 0, b = 1 . 0, V 

max = 1 . 0. In
he reduced space, the evader is initially located at (x i , y i , θi ) = (0, 2, 0) . The corresponding
onfigurations in the reduced space are shown in Fig. 18 . Since both players move in the
ame direction, they can only keep the same distance all the time. 

In the multimedia material of this paper, we have included a video presenting four experi-
ents. The first experiment corresponds to the first simulation described above in this section.
he second and third experiments compare the time-optimal strategy against a sub-optimal
trategy for the evader yielding a smaller capture time. In the last experiment in the video,
he evader wins performing a cyclic motion sliding over the barrier. 

. Conclusions and future work 

In this work, we have addressed a pursuit–evasion problem between two identical Differ-
ntial Drive Robots. The main results are: 

The existence of cases where the evader wins (it avoids capture forever) is shown, which
ndicates that in the game addressed in this paper the barrier is closed. Furthermore, based
n the initial configuration of the evader one can determine the winner of the game. 

The motion primitives and time-optimal strategies for the players are found. In the realistic
pace, the motion primitives are straight lines and rotations in place. Some insight about the
otion strategies (controls of the players) in all the region of the playing space where the

ursuer wins is provided based on numerical analysis. Some simulations of the pursuit–
vasion game are presented, and they show the time-optimal motion primitives of the players
or cases in which either the pursuer or the evader wins, in both the reduced and the realistic
pace. 

As future work, we want to study the case where the players do not have the same speed
r radius. We are also interested in developing motion strategies where two or more pursuers
ooperate to capture the evader. The motion strategies found in this work may be used as a
tarting point to develop such strategies. 
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We believe that our work can be extended to consider closed-loop policies, which are based
on feedback information, making it robust to perturbations since it will be possible to correct
the robot’s action at each control cycle, as in [9] , we left that extension as future work. 
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Appendix 

In this section, we have included a list of acronyms and the general notation used in the
paper. 
Table 7 
List of acronyms. 

DDR Differential Drive Robot 
OA Omnidirectional Agent 
UP Usable part 
BUP Boundary of the usable part 
SoA Surface of alignment 
PFEF + Pursuer translates forward, Evader translates forward, s 2 > 0 
PFEF- Pursuer translates forward, Evader translates forward, s 2 < 0 
PFEB + Pursuer translates forward, Evader translates backward, s 2 > 0 
PFEB- Pursuer translates forward, Evader translates backward, s 2 < 0 
PBEF + Pursuer translates backward, Evader translates forward, s 2 > 0 
PBEF- Pursuer translates backward, Evader translates forward, s 2 < 0 
PBEB + Pursuer translates backward, Evader translates backward, s 2 > 0 
PBEB- Pursuer translates backward, Evader translates backward, s 2 < 0 
TS Transition surface 

Table 8 
General notation. 

Symbol Definition 

( x p , y p , θp ) Pursuer’s state in the realistic space 
( x p , y p , θp ) Evader’s state in the realistic space 
V 

max Maximum speed 
l c Capture distance 
t f Capture time 
( ̇ x p , ̇  y p , ̇  θp ) Pursuer’s velocities in the realistic space 
( ̇ x e , ̇  y e , ̇  θe ) Evader’s velocities in the realistic space 
u 1 , u 2 Velocities of the left and the right wheel of pursuer 
v 1 , v 2 Velocities of the left and the right wheel of evader 
b Distance between the robot’s center and the wheel location 
x = (x, y, θ ) Evader’s state in the reduced space 
˙ x = f (x, u, v) Evader’s velocity in the reduced space 
u = (u 1 , u 2 ) Pursuer’s controls 
v = (u 1 , u 2 ) Evader’s controls 

( continued on next page ) 
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Table 8 ( continued ) 

Symbol Definition 

H (x, λ, u, v) Hamiltonian of the system 

λ = (λx , λy , λθ ) Costate variables 
u ∗, v ∗ Optimal controls of the players 
sgn() Sign function 
τ Retro-time 
x ( τ ) Retro-time state in the reduced space 
x̊ , ̊λ Retro-time derivative of x and λ
ζ Terminal surface 
s 1 Angle between the evader’s position and the pursuer’s heading 
s 2 Angle between the heading of both players 
τ

p 
s , τ

e 
s Transition time for the pursuer and the evader 

τ SoA Time to surface of alignment 
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