
Regression-based Linear Quadratic Regulator

Hugo Carlos1, Jean-Bernard Hayet1, and Rafael Murrieta-Cid1

Abstract— We present the Regression-based Linear
Quadratic Regulator (R-LQR), a new approach for
determining locally-optimal control feedback policies for
robots with non-linear dynamics and non-quadratic cost
functions. Our proposal uses a free-derivative algorithm based
on local quadratic regressions to obtain the robot motion
policy. In addition, our methodology allows to define a notion
of scale that translates into the definition of neighborhoods
of valid policy and into the exploration of larger areas of the
search space to find the optimal policies. The results show that
our formulation allows to reach policies with lower costs than
existing algorithms and to avoid problems when the behavior
of the cost function makes the optimization difficult.

I. INTRODUCTION

The problem of motion planning in mobile robotics has

been tackled in numerous ways for decades now. In general,

the proposed approaches rely on tools from geometry and

optimal control, and for a long time, they have focused on

providing solutions to essentially deterministic problems.

To handle uncertainties on controls and/or states, the

stochastic optimal control framework is a tool of choice

and has been tackled through a wide range of approaches

in the literature for more than two decades [2]. If theoretical

solutions (referred to as the value iteration algorithm) do

exist, the infinite-dimensional nature of the search space

makes general solutions often intractable. Exact solutions do

exist only in the case of low dimensional or discrete state

and control spaces, and most existing approximate methods

use some form of discretization.

Based on the simplicity and neat derivation of the Linear

Quadratic Regulator (LQR), a whole class of methods for

finite horizon problems extend the LQR approach outside

its normal boundaries (linear systems, quadratic penalizing

functions, deterministic setting. . .) to give locally optimal

solutions to stochastic optimal control problems, based on

local approximations. They allow to work with a continuous

(although of reduced dimension) belief space, and a con-

tinuous control space, and they have the enormous benefit

to give as an output a closed-loop policy, valid in some

neighborhood of the optimal open-loop solution.

This work belongs to the aforementioned category of

approaches, and focuses on improving two drawbacks of

existing algorithms. First, outside of the strict conditions

required by the LQR, numerical approximations are nec-

essary and, in general, the neighborhood on which the

computed policy is valid does not appear explicitly. Because

linearization and quadratization processes induce errors that

1All authors are with the Department of Computer Science, Centro de
Investigación en Matemáticas, S/N, Col. Valenciana CP: 36023 Guanajuato,
Gto, México {hucarlos,jbhayet,murrieta}@cimat.mx

Fig. 1: Our algorithm computes locally-optimal control feed-

back policies for robots with non-linear dynamics and non-

quadratic cost functions, in this case for a differential drive

robot and obstacle repulsion potentials. The blue path is the

output of [11], while our output is in black. The grey ellipses

are trust regions where the computed policies are valid.

accumulate on the horizon window, this notion of validity

domain may play a critical role when executing an optimal

policy. Second, most of the existing methods are by definition

very local and subject to numerical instability. Our work uses

local regressions on the cost-to-go functions with adaptive

neighborhood sizes to overcome partially these problems.

In Section II, we give a brief overview on related works. In

Section III, we recall the basic elements of the extensions of

the LQR to larger classes of problems, and in Section IV, we

present our regression-based variant. Finally, in Section V,

we present quantitative evaluations of our algorithm in dif-

ferent scenarios, with comparisons with existing methods.

II. RELATED WORK

The Linear Quadratic Regulator is a fundamental tool that

has been studied for decades in its finite/infinite horizon

versions, and for discrete-time/continuous-time problems [6].

Its solution applies for a very restricted class of systems

and cost functions but serves as a basis for sub-optimal

algorithms defined on broader classes of problems.

Differential Dynamic Programming (DDP) [4] maintains

a representation of a single trajectory and improves it lo-

cally [13]. DDP is a second-order shooting method with

quadratic convergence for any system with smooth dynam-

ics [12]. Classic DDP requires second-order derivatives of the

dynamics, and, if only the first-order terms are kept, one gets

a Gauss-Newton approximation. In [13], the authors present

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3081-5/18/$31.00 ©2018 IEEE 3001

a method which is closely related to DDP but turns out to

be significantly more efficient on complex control problems.

In [7], Weiwei et al. showed that, for a deterministic non-

linear system, a locally-optimal solution can be derived for

the closed-loop optimal control problem at a finite horizon

and with a quadratic (or quadratizable) cost function of the

state and the controls. The proposed solution, coined iLQR,

can be seen as an extension of the Linear Quadratic Regulator

(LQR). Its idea is to iteratively compute a linearization of

the dynamics of the system around the previously com-

puted open-loop controls and states and to generate the

new optimal controls by backward recursion. This idea is

at the core of many more works, such as [13], which

describes an algorithm named iLQG that handles uncertain

dynamics (Gaussian noise) and constrained controls. More

recently, [11] have focused on improving a critical issue

in these linearization/quadratization-based approaches, by

selecting cleverly the linearization points as the local optima

of the sum of cost-to-go and cost-to-come functions. It

requires a double-pass (backward/forward) mechanism, but

exhibits significantly better results than previous approaches.

III. THE LQR AND ITS EXTENSIONS

For a discrete-time dynamical system with state xt ∈ R
n

and control ut ∈ R
m, at time t, we suppose that the motion

model is additive-Gaussian, given by

xt = g(xt−1,ut) + μt, (1)

where μt ∼ N (0,Mt). We chose a simple noise model for

the clarity of the explanations; as we will see later on, it can

be made much more general. Let ct(x,u) be a cost function

depending on the state and control applied at t. We aim at

minimizing the expected accumulated cost along an N−step

trajectory, starting from a state x0, and with the expectation

taken over the realizations of the motion noise

min
u1,...,uN

Eμ1,...,μN
[

N∑
τ=1

cτ−1(xτ−1,uτ) + c(xN)],

subject to Eq. 1. Let s∗t (xt) be the cost-to-go function, that

gives the optimal cost for partial trajectories starting from t,
then the dynamic programming principle leads to

s∗t (xt) = min
ut+1

ct(xt,ut+1) + Eμt+1 [s
∗
t+1(g(xt,ut+1) + μt+1)],

It is solved easily when s∗t is quadratic for all t, which

occurs when all ct are quadratic in state and control, g is

linear, and μ is additive-Gaussian. In that case, the cost-to-

go function is quadratic and the recursion gives a closed form

feedback policy u∗t+1(xt) [13]. The second term in this sum,

s∗t+1(g(xt,ut+1) + μt+1), takes the following form

s∗t+1(g(xt,u) + μt+1) =
(g(xt,ut+1) + μt+1)

TSt+1(g(xt,ut+1) + μt+1)+
(g(xt,ut+1) + μt+1)

T st+1 + st+1.
(2)

where St+1, st+1, st+1 are the quadratic coefficients of

s∗t+1(xt+1). When the conditions enounced above (quadratic

cost functions and linear motion model) are not satisfied, one

way to solve the problem is to quadratize the optimal cost

functions. In methods such as iLQG [13], the quadratization

is done by linearization of g, which translates Eq. 2 into

s∗t+1(g(xt,u) + μt+1) ≈
(g̃x̂t,ût+1(xt,ut+1) + μt+1)

TSt+1(g̃x̂t,ût+1(xt,ut+1) + μt+1)+
(g̃x̂t,ût+1(xt,ut+1) + μt+1)

T st+1 + st+1.

where g̃x̂t,ût+1
(xt,ut+1) is the linearized version of g

around the linearization point (x̂t, ût+1). One of the major

difficulties is to correctly choose these linearization points.

For instance, the Stochastic Extended LQR (SE-LQR)

formulation [11] alternates forward and backward passes that

refine the linearization points, alternating the optimization of

an approximate cost-to-come function and an approximate

cost-to-go function. The backward passes assume that the

cost-to-come parameters S̄t, s̄t, st are available and they use

an estimate of the optimal inverse control policies from the

previous pass, altogether with an initial quadratization point

x̂N at N . One first quadratizes the final cost at x̂N and starts

the recursions on the coefficients St, st, st of the quadratized

cost-to-go, in function of their counterparts at step t+1, with

St = Dt − CT
t E

−1
t Ct st = dt − CT

t E
−1
t et

where the involved matrices and vectors depend on [11]:

• the linearizations of the motion model g at the lineariza-

tion/quadratization point x̂t, ût, At = ∂g
∂xt

(x̂t, ût+1),

Bt =
∂g

∂ut+1
(x̂t, ût+1), ct = x̂t+1 −Atx̂t −Btût+1,

• the Hessian matrices at x̂t, ût+1, Qt =
∂2ct
∂x2

t
(x̂t, ût+1),

Rt = ∂2ct
∂u2

t+1
(x̂t, ût+1), Pt = ∂2ct

∂xt∂ut+1
(x̂t, ût+1), and

gradients qt, rt,
• the noise covariance Mt (with this model, only in st).

Linearization/quadratization ensures that the resulting ap-

proximating function is convex if St+1 is positive. However,

it also leads to modeling errors. For instance, to get a faithful

second-order approximation of Eμt+1 [s
∗
t+1(g(xt,ut+1) +

μt+1)], second-order terms on g should be included. Also,

these modeling errors are accumulated along the recursion

steps, leading to poor approximations close to x0, when N
is large. Finally, when estimating the derivatives with finite

differences, the linearization process may induce numerical

errors that also accumulate along the recursion steps.

IV. REGRESSION-BASED LQR

The Iterative LQR algorithm and its variants [13], [11]

approximate the objective function as a quadratic determined

by the first and second derivatives of the cost-to-go function,

with the limitations mentioned above. In this paper, rather

than using derivatives, we interpolate the function values as

a quadratic function, at a specified scale. These strategies are

known as “free-derivative” algorithms and have been used to

optimize complex functions with good results [10].

3002

A. Approximating the cost-to-go function by regression

Let us define

st(xt,ut+1) = ct(xt,ut+1) + Eμt+1 [s
∗
t+1(g(xt,ut+1) + μt+1)].

Instead of derivating ct and g at the lineariza-

tion/quadratization point (x̂t, ût+1), consider R representa-

tive points ξ
(i)
t = (x

(i)
t ,u

(i)
t+1) in R

m+n, in the vicinity of

(x̂t, ût+1). For each ξ
(i)
t , we compute the value of st as

φ
(i)
t = ct(x

(i)
t ,u

(i)
t+1) +

J∑
j=1

γjs
∗
t+1(g(x

(i)
t ,u

(i)
t+1) + μ

(j)
t+1),

where μ
(j)
t+1 are realizations of the noise chosen as sigma-

points [5] and γj are their corresponding coefficients.

If g is known and an approximation of s∗t+1 is given,

then φ
(i)
t can be evaluated. From the set of (ξ

(i)
t , φ

(i)
t), one

can solve a regression problem that adjusts a quadratic form

s̃t(xt,ut+1) to st(xt,ut+1) at these points,

s̃t(xt,ut+1) =

(
xt − x̂t

ut+1 − ût+1

)T

Mt

(
xt − x̂t

ut+1 − ût+1

)

+ mT
t

(
xt − x̂t

ut+1 − ût+1

)
+ φ

(i)
t (x̂t, ût+1).

Let us define Δξ
(i)
t � (x

(i)
t −x̂t,u

(i)
t+1−ût+1)

T . We solve

min
Mt,mt

R∑
i=1

‖
(
Δξ

(i)
t

)T
MtΔξ

(i)
t + m

T
t Δξ

(i)
t + φ

(i)
t (x̂t, ût) − φ

(i)
t (xt,ut)‖2.

By stacking all the entries of M,m in a vector v, we

obtain a least squares linear regression problem

min
v

R∑
i=1

‖((l(i))Tv − φ
(i)
t ‖2, (3)

where each vector l(i) holds the terms corresponding to the

sample i. As M is symmetric, v has 1
2 (m+ n)(m+ n+ 1)

entries. Then the optimal solution is given by

v∗ = (

R∑
i=1

l(i)l(i)T)−1(

R∑
i=1

φ
(i)
t l(i)). (4)

Then we deduce Mt, mt and write them as

Mt �
[
Ct ET

t

Et Dt

]
and mt �

[
ct
dt

]
. (5)

We can re-write s̃t(xt,ut+1) as a quadratic in Δut+1

s̃t(xt,ut+1) = 1
2
(Δut+1)

TDtΔut+1 + dT
t Δut+1

+ (Δxt)
TEtΔut+1 +

1
2
ΔxT

t CtΔxt

+ cTxΔxt + φ
(i)
t (x̄t, ūt+1),

and optimize it to get the optimal feedback policy: Δu∗t+1 =
−D−1

t (EtΔxt + dt). It leads to the expected affine form

u∗
t+1 = −D−1

t ET
t xt −

(
D−1

t dt −D−1
t ET

t x̄t − ūt+1

)
, (6)

and the optimal cost-to-go function at t, s∗t (xt) =
s̃t(xt,u

∗
t+1), which is quadratic in xt once the substitution

of u∗t+1 is done. We call its parameters St, st, st,

St = Ct − ET
t D

−1
t Et,

st = ct − ET
t D

−1
t dt.

Note that this strategy is, in essence, similar to [11].

However, the regression on st(xt,ut+1) implicitly includes

the missing second order terms mentioned above and obtains

a better approximation than the linearization/quadratization

scheme. Also, it manages a scale factor (neighbourhood size)

which can be adapted in the overall optimization strategy, as

a trust region-type method, as described in the next section.

B. Trust region-based regression

Our trust region-based algorithm builds a model of the

cost-to-go function around the current state (x̂t, ût+1). To

approximate the cost-to-go function as well as possible, in

a region as large as possible [9], we consider the relative

regression error et of Eq. 3, and a threshold ε that controls

the regression quality. To estimate s̃t, we use samples ξ
(i)
t

in an adaptive neighborhood around (x̂t, ût+1), so that the

regression on that neighborhood satisfies the criterion error.

The neighborhood size is specified by an (n+m)×1 vector

rt defining radii (neighborhood sizes) along each direction

of the state/control vector. All the samples used to estimate

s̃t are contained in the region defined by rt. Using this idea,

Algorithm 1 adapts rt and builds samples {ξ(i)t } around

(x̂t, ût+1), until the regression satisfies et < ε.

Algorithm 1 Trust region-based regression

Require: Cost function st(ξ).
Require: Reference state and control x̂t, ût+1

Require: Max. relative regression error ε, scale reduction λ
Require: Initial neighborhood radii r0

1: function REGRESSION(st,x̂t,ût+1,ε, r0,λ)
2: rt ← r0
3: repeat
4: Sample {ξ(i)t } according to rt (see Section IV-C)
5: Estimate M and m from Eq. 3

6: Calculate the error et =

√∑n
i=1(s̃t(ξit)−st(ξ

i
t))

2

∑n
i=1 st(ξ

i
t)

2 .

7: rt ← λrt
8: until et < ε
9: return M and m

10: end function

The Algorithm 1 requires, in addition to the error threshold

ε, two parameters: r0 and λ. The vector r0 gives the initial

scale. The scalar λ is a scale reduction factor that reduces

the neighborhood size while st can not be approximated

adequately. In the following, we will show how it is possible

to choose λ and r0 from the characteristics of the problem.

Small values of ε lead to small radii, since the regression

gets closer to a second-order Taylor series approximation. On

the other hand, large values of ε may cause the approximation

of st to be very poor, resulting in erroneous motion policies

and slow pace of convergence of the planning algorithm.

3003

Finally, note that, by using adaptive radii for the regression

neighborhoods, we handle explicitly a local scale that is

useful in two ways. First, it allows to search for solutions

on larger ranges, and select better local optima. Second, it

defines a notion of trust region, that translates into validity of

computed policies and could be used in a planning scheme

to decide when to do re-planning (topic not covered here).

C. Sampling ξ
(i)
t according to rt

Given a trust region rt we sample ξit around (x̂t, ût+1),
within a neighborhood of size rt. The minimum number

of samples to solve Eq. 3 is Rmin = (m+n)(m+n+1)
2 , but

to improve the quality of the regression, we need a larger

number of samples. We consider the following ellipsoid:

([
x
u

]
−
[
x̂t

ût

])T

Σ

([
x
u

]
−
[
x̂t

ût

])
= 1,

where Σ = diag(1
(r0t)

2 . . .
1

(rnt)
2). Given Σ, we obtain the

random samples ξ
(i)
t using the method presented in [3].

D. Handling non-convex quadratic regression outputs

The second-order information of st is contained in M .

Because the optimization is done on the controls ut+1, Dt

in Eq. 5 should be positive semi-definite (PSD) for using

Eq. 6. If not, then Mt is not positive definite either. In that

case, we modify Mt into a PSD matrix M ′
t as in [13]:

M ′
t = (Mt + (δ − λmin(Mt))I),

where λmin(Mt) is the minimum eigenvalue of Mt and δ >
0. The matrix M ′

t is used to obtain the optimal control u∗t+1

which converges to a point satisfying second-order necessary

conditions for optimality [9]. Another advantage is that it

is possible to plug it into different optimization strategies,

for example by using the negative curvature information

contained in Mt [8], or by selecting δ optimally [10], etc.

E. Regression-Based LQR algorithms

Given the basic blocks described above, we incorpo-

rate our regression-based approach for the approximation

s̃t(xt,ut+1) into different extensions of the LQR algorithm

for non-linear models, non quadratic costs, where we replace

the linearization/quadratization stages by the quadratic re-

gression. For example, the Iterative LQR (I-LQR) algorithm

presented in [13], is rewritten into Algorithm 2 (RI-LQR).

Similarly, for the Extended LQR (E-LQR) algorithm, in

the backward (resp. forward) pass, we use the regression to

compute an approximation of the cost-to-go (resp. cost-to-

come) function. We have labeled this version of the algorithm

as Regression-Based Extended LQR (RE-LQR).

V. EXPERIMENTAL RESULTS

To evaluate our algorithms and compare them to existing

approaches, we have used two systems: a differential drive

robot and a quadrotor. For presenting fair comparisons, the

cost functions used here are the ones presented in [11]:

Algorithm 2 Regression-Based Iterative LQR (RI-LQR)

Require: Max. relative regression error ε, scale reduction λ
Require: Initial search radii r0
Require: Target configuration x0

1: function COMPUTEPOLICY

2: while convergence not reached do
3: SN = QN , sN = qN , and sN = qN
4: for t = N − 1; t ≥ 0; t = t− 1 do
5: Mt,mt ← REGRESSION(st,x̂t,ût+1,ε, r0,λ)
6: if Mt is not PSD then
7: Mt ← (Mt + (δ − λmin(Mt))I)
8: end if
9: From Mt, mt compute St, st, st, u

∗
t (Section IV-A)

10: end for
11: end while
12: end function

c0(x,u) =
1

2

(
x− x

∗
0

)T
Q0

(
x− x

∗
0

)
+

1

2
(u− u

∗
)
T
Ru

(
u− u

∗)

ct(x,u) =
1

2
(u− u

∗
)
T
Ru

(
u− u

∗)
+ f(x)

cN (x) =
1

2
(x− x

∗
N)

T
QN (x− x

∗
N)

T
(7)

where Q0, QN , and Ru are positive definite, x∗0 is the initial

state, x∗N the goal state, and u∗ the reference control. As

in [11], Q0 and QN have large values to respect the initial

and goal states. For obstacle avoidance, we introduce

f(x) = q
∑
i∈O

exp(−di(x)), (8)

where i indexes the obstacles set O, q ∈ R
+, and di(x) is

the signed distance between the robot x and the obstacle i.
For high-dimensional systems (Case 2, hereafter), the

regressions cost can become prohibitive, so we use numerical

algorithms that solve the regression problem efficiently [1].

Moreover, each input of the matrices and vectors of Eq. 4,

can be obtained independently so we have paralelized them.

A. Case 1: Differential drive robot

We first use a differential drive robot (DDR). Its state xt =
[xt, yt, θt]

T includes its position (xt, yt) (m) and orientation

θ (rad). Its control input ut = [vt, ωt]
T consists of the linear

(m/s) and angular (rad/s) speeds. Its dynamics are non-linear:

ẋt =

⎡
⎣cos θt 0
sin θt 0
0 1

⎤
⎦[

vt
ωt

]
. (9)

We have used the two environments depicted in Fig. 2.

The obstacles have a radius of 0.2m, while the DDR has a

radius of 0.17m. We compare the execution time, number of

iterations needed to converge, and final accumulated costs

of different algorithms as an average over 100 independent

runs. In each run, the initial state x0 is sampled randomly on

the boundaries of the environment, and we set xN = −x0.

We run our approach for various fixed time-steps Δ (rows

of Table I), with a fixed number of steps N = 150. The

algorithms are not seeded with an initial trajectory, and run

3004

(a) Map1 (b) Map 2

Fig. 2: Maps used for the experiments in Case 1 (DDR).

until the relative improvement drop below 10−4 (convergence

criterion in Algorithm 2). The cost function parameters are

Q0 = QN = 50I , Ru = I , q = 1.0 and u∗ = 0. Table I

gives quantitative results. Our methodology (RI-LQR and

RE-LQR) reduces significantly the final cost and the number

of iterations needed to get a solution. The computational

time is higher, because of the quadratic regression parameter

estimation, but in quite moderate proportions, as the total

number of iterations is lower than E-LQR.

Fig. 3: Cost and time distributions for E-LQR and RE-LQR

on Map 2. Ru = 1.0I , Q = 50I , ε = 0.01, N = 150.

For the second set of experiments, we use Map 2, with

a higher density of obstacles. The evaluation of the cost

function has a higher computational cost and the search

for trajectories free of collisions is harder. The cost-to-go

functions are less smooth than for Map 1. E-LQR and RE-

LQR are compared in Fig. 3, with the same parameters as in

the previous experiments and Δ = 0.1. The computational

time of RE-LQR is, in average, even lower than E-LQR

because of the lower number of iterations. Moreover, the

average cost and variability are substantially reduced.

The Fig. 4 shows the algorithm behavior for varying ε.
Note that different ε may lead to different policies. For higher

values of ε, the approximation of the cost-to-go or cost-to-

come functions can be made on a larger spatial extent, and

the algorithm explores more possible solutions. However, too

high values of ε lead to poor regressions and inconsistent

policies. Moreover, regardless of the ε values, the trajectories

obtained by RE-LQR have smaller rotations and smoother

(a) Ru = 20.0I , Q = 500I , ε = 0.01, Δ = 0.1, N = 150.

(b) Ru = 10.0I , Q = 500I , ε = 0.01, Δ = 0.05, N = 200.

Fig. 5: Comparison E-LQR/ER-LQR (quadrotor example).

paths. We explain it by the good approximation to st that

improves the quality of the obtained optimal controls.

B. Case 2: Quadrotor in 3-D Environment

The second experiment considers a simulated quadrotor
helicopter [11]. Its state xt = [pT ,vT , rT ,wT]T is 12-
dimensional, and includes its position p (m), velocity v
(m/s), orientation r (rotation about axis r by angle ||r||
(rad)), and angular velocity w (rad/s). Its control input
ut = [u1, u2, u3, u4]

T (N) consists of the forces exerted by
each of the four rotors. The dynamics are highly non-linear,

ṗ = v

v̇ = −ge3 + ((u1 + u2 + u3 + u4) exp([r])e3 − kvv)/m

ṙ = w +
1

2
[r]w + (1− 1

2
||r||/ tan(1

2
||r||))[r]2w/||r||2

ẇ = J−1(ρ(u2 − u4)e1 + ρ(u3 − u1)e2

+ km(u1 − u2 + u3 − u4)e3 − [w]Jw),

where ei are the standard basis vectors, g = 9.8m/s2 is the

gravity, kv = 0.15 is a constant relating the velocity to an

opposite force, m = 0.5 kg is the mass, J = 0.05I (kg m2)

is the moment of inertia matrix, ρ = 0.17 m is the distance

between the center of mass and the center of the rotors, and

km = 0.025 relates the force of a rotor to its torque.

For these experiments, we use a configuration similar

to [14], with a 6m by 6m by 6m 3-D environment. The

geometry of the quadrotor is approximated by a sphere with

3005

TABLE I: Quantitative comparison of LQR algorithms with DRR for Map 1.

Δ Cost Iterations Time (ms)
E-LQR RI-LQR RE-LQR E-LQR RI-LQR RE-LQR E-LQR RI-LQR RE-LQR

0.2 555.18192 502.7634 424.59696 44.56 49.68 33.66 202.4 388.54 512.02
0.1 1967.9286 1848.9188 1425.566 73.18 35.98 33.82 325.14 308.18 646.1
0.05 9770.28 6760.448 5537.87 79.58 28.62 51.7 351.98 221.24 742.18

(a) x∗
0 = (10,−20, 0.52),

x∗
N = (−25, 27, 0.26)

(b) x∗
0 = (−20,−20, 0.26),

x∗
N = (20, 20, 0.34)

(c) x∗
0 = (7,−20, 0.26),

x∗
N = (16, 23, 0.34)

Fig. 4: Trajectories obtained by E-LQR and RE-LQR for different ε values.

a radius of 0.3m. The cost parameters are Q0 = Ql = 500I ,

and Ru = 20I . The reference control input u∗ is 1
4 mgN

for each rotor, which is the minimum to let the quadrotor

hover. As before, the algorithms were not initialized with a

given trajectory. The initial state x0 is (p, 0, 0, 0), where the

initial position p is randomly sampled from the edges of the

environment, and the target state xN = −x0.

Figure 5a compares E-LQR and RE-LQR, with Δ = 0.1
and N = 150. With RE-LQR, the average cost is signif-

icantly lower than with E-LQR. As expected, the average

processing time is higher but the overcost is not excessive,

and is compensated by a lower total number of iterations.

When the behavior of the cost function causes Dt to

be non-positive or close to it, E-LQR has a very slow

convergence rate and may oscillate or diverge. In addition,

without initial policy, the first policies are often very poor.

One solution is to use Ru as a regularization term, so that Dt

tends to be PSD. Our formulation faces the same problem,

but in general, it deals better with it, even in high dimensions.

This can be seen in Figure 5b, the average cost and time of

ER-LQR are significantly smaller than those of E-LQR.

Overall, our proposal gives a significant reduction in the

final costs. It may require higher processing times in higher

dimensions or longer planning horizons, even if we observed

the same order of magnitude in the systems presented above.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented an LQR extension that

solves planning problems with non-linear dynamics/non-

quadratic costs and obtains locally optimal policies using

free-derivative optimization. It includes a notion of neighbor-

hood in which the policy is valid, which allows to explore

potential solutions at larger scales, and to evaluate poten-

tial re-planning decisions at execution. In spite of higher

computational times for individual iterations, our approach

converges quicker to locally optimal solutions because of the

lower number of iterations required for convergence.

As a future work, we will design a proper strategy to adapt

rt and use them during execution. We also want to explore

new parallelization strategies for high dimensional systems.

REFERENCES

[1] Intel Math Kernel Library. Reference Manual. Intel Corporation, 2009.
Santa Clara, USA. ISBN 630813-054US.

[2] D. P. Bertsekas. Dynamic programming and optimal control. Volume
I. Athena Scientific optimization and computation series. Belmont,
Mass. Athena Scientific, 2005.

[3] J. Dezert and C. Musso. An efficient method for generating points
uniformly distributed in hyperellipsoids. In Proc. of the Workshop on
Estimation, Tracking and Fusion: A Tribute to Y. Bar-Shalom, 2001.

[4] D. Jacobson and D. Mayne. Differential Dynamic Programming.
Elsevier, New York, NY, 1970.

[5] S. J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear
estimation. In Proc. of the IEEE, pages 401–422, 2004.

[6] D. E. Kirk. Optimal control theory : an introduction. Dover
Publications, April 2004.

[7] W. Li and E. Todorov. Iterative linear quadratic regulator design for
nonlinear biological movement systems. In Proc. of ICINCO (1), pages
222–229, 2004.

[8] J. J Moré and D. C Sorensen. On the use of directions of negative
curvature in a modified newton method. Mathematical Programming,
16(1):1–20, 1979.

[9] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New
York, 2nd edition, 2006.

[10] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review
of algorithms and comparison of software implementations. Journal
of Global Optimization, 56(3):1247–1293, Jul 2013.

[11] W. Sun, J. van den Berg, and R. Alterovitz. Stochastic Extended LQR:
Optimization-Based Motion Planning Under Uncertainty, pages 609–
626. Springer International Publishing, 2015.

[12] Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential dy-
namic programming. In IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 1168–1175, May 2014.

[13] E. Todorov and W. Li. A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems.
In Proc. of the Am. Control Conf., pages 300–306 vol. 1, June 2005.

[14] J. van den Berg. Extended LQR: Locally-Optimal Feedback Control for
Systems with Non-Linear Dynamics and Non-Quadratic Cost, pages
39–56. Springer International Publishing, 2016.

3006

		2018-09-08T00:22:15-0400
	Preflight Ticket Signature

