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Abstract Among all the mathematical frameworks used in
the control and robotics communities to handle uncertain-
ties, the stochastic variants of optimal control frameworks
are appealing, in particular because of the existence of effi-
cient tools to solve them computationally, such as dynamic
programming. However, in many cases, because of their
formulation as a classical optimization problem, it may be
difficult to ponder the expected solutions for a given choice
of the objective function to minimize. In this paper, we per-
form an in-depth analysis of the behavior of the policies
obtained from solving Stochastic Linear Quadratic Gaussian
problems, thinking in particular in robot motion planning
applications. To perform this analysis, we assume simplified
linear systems perturbed by Gaussian noise, with state-
dependend and control-dependent components, and objec-
tive functions summing up control-related and state-related
costs. We provide (1) useful bounds for understanding the
effect of the objective function parameters, (2) insights on
what the expected paths of system should be and (3) results
on the optimal choice of the planning horizon.
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1 Introduction

Dealing with uncertainty has always been an important
issue in mobile robotics [2, 5, 7–9, 11, 14]. After the pio-
neering work of [9], where the authors have introduced
a probabilistic framework for formally modeling spatial
uncertainty, many approaches have been proposed to gener-
ate motion strategies for a given robotic task while taking
into account uncertainties. A common and important task in
robotics is navigation, where a robot must reach a given goal
configuration even under uncertainty on states, controls and
observations [5, 8, 14].

One common class of solutions for this kind of problems
is given by optimal control, which has been the focus of
attention in several scientific communities over the years,
from robotics to control. Numerous algorithms and method-
ologies have been developed in fields such as biomechanics,
robotics, economics, etc. based on optimal control to solve
complex problems [4]. The mathematical tools it provides
are well adapted to determining the optimal policies a sys-
tem should follow, even under uncertainties on the effects of
the control and/or on the state estimate.

Stochastic variants of dynamic programming and opti-
mal control [1, 3–5, 8] have been recurrent tools used
to generate motion strategies in the form of policies, that
map states to controls. Previous works in the fields of
robotics, control and artificial intelligence [2, 12, 14] have
adapted the dynamic programming framework to partially
observable Markov decision processes (POMDP) [6, 11], in
order to solve optimal control problems and simultaneously
handle uncertainty on states or controls. These algorithms
have been applied, for example, in [12], where the authors
propose an approach to find the optimal controls for non-
linear systems under the Markov decision process (MDP)
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framework. In particular they apply this algorithm to biome-
chanical models. In robotics for instance, one can find in the
literature different algorithms for complex robotic systems
[13, 14]. In these papers the main idea is to extend the results
of [12] for a partially observable Markov decision process
(POMDP) and apply it to practical robotic problems.

However, the complexity of these algorithms makes it
difficult to assess quantitatively the solution when the inher-
ent system conditions change. Assume for example, that one
can predict the variations in the solutions for differents lev-
els of noise. It would then be possible to make decisions
on other aspects of the system or even of the admissibil-
ity of the solution. Also, because of their formulation as a
classical optimization problem, it may be difficult to pon-
der the expected solutions for a given choice of the objective
function to minimize.

In this work, we present the conditions for the opti-
mal cost-to-go function and optimal control parameters to
converge to finite values when the horizon increases. This
implies that the cost associated to the optimal motion policy
is bounded by a finite value, when considering a bounded
domain for the initial state. Therefore, one knows whether
or not the resulting cost is affordable. We introduce a
quantitative and qualitative analysis of the expected solu-
tions to the Linear Quadratic Gaussian (LQG) problem with
control-dependent noise. In particular, we analyze how the
system trajectory changes when one varies the weights of
the immediate costs, control costs and costs associated to the
final configuration, thus understanding the effect of these
parameters in the objective function.

Finally, it is important to stress that dynamic program-
ming and related methods deliver the global optimum (min-
imum) for a specific horizon. However, such a minimum
might be improved with another planning horizon. In this
work, we determine the optimal planning horizon K for the
overall cost used to assess the motion policy, under control-
dependent uncertainty. The optimal horizon K can be of
finite nature, or be reached asymptotically when K → ∞.
Our analysis allows us to determine from the initial condi-
tions of the system, which of these two scenarios will occur.
In practice, this means that it is feasible to determine, for any
system configuration, whether it is possible to find a finite
horizon with an optimal that guarantees the lowest overall
cost.

2 LQG with State- and Control-Dependent Noise

In this section, we review the general formulation of the
LQG problem (Section 2.1) and the general form of its solu-
tion (Section 2.2) when state- and noise-dependent noise
add up as the result of the application of a control.

2.1 Problem Statement and Notations

Let xk ∈ R
n be the state of a linear stochastic system at time

index k, controlled through a control vector uk ∈ R
m.

In this work, we consider the following LQG problem
associated to this system

min
u0:K−1

Eξu0 ,ξx0 ,...,ξuK−1 ,ξxK−1

(
K−1∑
k=0

lk(xk, uk) + lK(xK)

)

(1)

with:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = Axk + Buk + ξuk
+ ξxk

ξuk
∼ Lu(uk)N(0, I )

ξxk
∼ Lx(xk)N(0, I )

�k(x, u) = 1
2x

T Qx + 1
2u

T Ru for 0 ≤ k < K

�K(x) = 1
2 (x − xf )T Qf (x − xf ).

In these equations, A ∈ R
n×n and B ∈ R

n×m are respec-
tively the dynamics and control matrices that characterize
the linear stochastic system, ξuk

∈ R
n, ξxk

∈ R
n are inde-

pendent Gaussian noises that add up to the state at each
time step k, and Q ∈ R

n×n, R ∈ R
m×m, Qf ∈ R

n×n

are three positive semi-definite matrices describing the cost
function. Finally, N(0, I ) is the normal distribution in R

n

and Lu(uk), Lx(xk) two matrices described below.
This is a simple but very typical LQG system in robotic

problems, encoding the search for an optimal control in the
case of a linear stochastic system described by the first equa-
tion above, and that can be associated to a Markov Decision
Process. Its instantaneous cost function lk(x, u) is described
in the fourth equation above and includes two terms: One
quadratic term in the state x that should favor solutions driv-
ing the system close to the minimal value of the quadratic
function, which is the origin in that case, and one quadratic
term in the control u that favors solutions with controls of
small amplitude. Finally, the term lK(x) corresponds to a
constraint imposed to the last position of the generated path
and is used to drive the system close to some configuration
of interest, xf ∈ R

n, at time K . Note that the goal configu-
ration xf is not reached precisely, since the robot objective
is to minimize the overall cost function, so that in some sit-
uations it may result better in terms of the cost, not to reach
exactly the goal configuration.

Now, one important characteristic that we will assume
is that the uncertainty applying on this system comes from
two separate terms ξuk, ξxk

. The variance of the additive
noise ξuk is a function of the control, and the variance of
ξxk

depends on the state. More specifically, in this analysis,
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we choose the following forms for the scaling matrices
Lu(uk) ∈ R

n×n and Lx(xk) ∈ R
n×n:

Lu(uk)i = Fui
uk (2)

Lx(xk)i = Fxi
xk (3)

where the index i refers to the i-th column and where we
introduce two matrices Fui

∈ R
n×m, Fxi

∈ R
n×n. In other

terms, the noise has two independent Gaussian components
with individual standard deviations linear in the control and
state components, respectively. It is straightforward to verify
that the variance of ξuk

and ξxk
at time k are respectively

given by
∑n

i=1 Fui
ukuT

k F T
ui
and

∑n
i=1 Fxi

xkxT
k F T

xi
.

Our objective is to understand the behavior of the solu-
tions under varying cost functions parameters.

2.2 General Solution of the System

In this sub-section, we describe the general solutions to
problem (1).

First of all, given the nature of this system, one can show
that the optimal cost-to-go function at time k (i.e. the func-
tion giving the value of the minimal possible cost attainable
starting at time k up to time K , by a sequence of optimal
controls) is quadratic in terms of the state [4]. Namely, if we
denote the optimal cost-to-go function starting from time k,
at state xk , as v∗

k (xk), we can write it as

v∗
k (xk) = sk + xT

k sk + 1

2
xT
k Skxk,

with sk a scalar, sk ∈ R
n a vector, and Sk an n × n

matrix. The matrix Sk can be expressed by the principles
of Dynamic Programing (DP) into a stochastic form of the
Riccati equations as follows. The control-dependent cost-to-
go vk(xk, uk) is given by the sum of the control-dependent
instantaneous cost plus the expected value of the optimal
cost-to-go function after this control is done:

vk(xk, uk) = 1

2
xT
k Qxk + 1

2
uT

k Ruk

+ Eξuk
,ξxk

[
v∗
k+1(Axk + Buk + ξuk

+ ξxk
)
]

= 1

2
xT
k Qxk + 1

2
uT

k Ruk

+ 1

2
(Axk + Buk)

T Sk+1(Axk + Buk)

+ (Axk + Buk)
T sk+1 + sk+1

+1

2
Eξxk

[ξT
xk

Sk+1ξxk
] + 1

2
Eξuk

[ξT
uk

Sk+1ξuk
],
(4)

where the expectation is taken over the possible realizations
of ξuk

, ξxk
. Let us analyze the expectation terms. Since for

any pair of matrices X,Q ∈ R
n×n, we have Tr[XT QX] =∑

i XT
i QXi where Xi are the columns of X, then,

Eξuk
[ξT
uk

Sk+1ξuk
] = Tr(Sk+1Lu(uk)Lu(uk)

T )

= uT
k

(∑
i

F T
ui

Sk+1Fui

)
uk.

Similarly for Eξxk
[ξT
xk

Sk+1ξxk
] we have:

Eξxk
[ξT
xk

Sk+1ξxk
] = xT

k

(∑
i

F T
xi

Sk+1Fxi

)
xk.

Replacing the previous two equations into Eq. 4, we have

vk(xk, uk)= 1

2
xT
k

(
Q+AT Sk+1A+

∑
i

F T
xi

Sk+1Fxi

)
xk

+1

2
uT

k

(
R+BT Sk+1B+

∑
i

F T
ui

Sk+1Fui

)
uk

+xT
k

(
AT sk+1

)
+uT

k

(
BT sk+1+BTSk+1Axk

)
+sk+1.

(5)

Differentiating Eq. 5 with respect to uk and equating the
derivative to zero, we get the optimal control u∗

k as an affine
function of the state xk

u∗
k = −H−1

k gk − H−1
k Gkxk, (6)

with

Hk � R + BT Sk+1B +
∑

i

F T
ui

Sk+1Fui
, (7)

Gk � BT Sk+1A, (8)

gk � BT sk+1, (9)

where Hk ∈ R
m×m, Gk ∈ R

m×n, gk ∈ R
m. By replacing

u∗
k into Eq. 5 we get the corresponding Riccati recursive

equations that give the coefficients of the quadratic optimal
cost-to-go function v∗

k (xk),

Sk =Q+AT Sk+1A+
∑

i

F T
xi

Sk+1Fxi
−GT

k H−1
k Gk, (10)

sk =AT sk+1−GT
k H−1

k gk, (11)

sk =sk+1− 1

2
gT
k H−1

k gk. (12)

To solve the recursion, we start at K with

SK = Qf ,

sK = −Qf xf ,

sK = 1

2
xT
f Qf xf (13)

and apply Eqs. 10, 11, and 12. This is the general form of
the solution, as used in several optimal control problems.
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3 Behavior of LQG Solutions on a Simplified
System

To give an insight to the behavior of the general solutions
presented in the previous section, we consider in this section
a simplified version of the described system and analyze
its solutions in terms of the different parameters involved
in the optimal control formulation. The parameters that we
analyse are: λf , a factor weighting the importance of reach-
ing the goal configuration; λ, a factor weighting the cost of
the state; μ, a factor that weights the control cost; σx , the
standard deviation factor of the state-dependent noise; σu,
the standard deviation factor of the control-dependent noise
(the larger these two parameters are, the more imprecise the
robot is). These factors define the costs �k(x, u) and �K(x)
in the simplified system derived from Eq. 1 and we analyze
them hereafter.

3.1 Simplified System

To perform our analysis further, we will suppose in the fol-
lowing sections that the state and control dimensions are the
same, m = n, that A = B = In×n for the dynamic sys-
tem equations, and that Q = λIn×n, Qf = λf In×n, R =
μIm×m for the individual terms of the quadratic cost func-
tion, where as it was mentioned above, λ, λf , μ are scalars
that weight the importance of each of the three components
of the cost function described in the previous section. The
matrix In×n refers to the identity matrix in dimension n.
When clear from the context, we will denote it simply as I .

Moreover, we will assume that the noises ξuk
and ξxk

have their standard deviations given by the matrices of the
following form specifying Eqs. 2 and 3:

Lu(u) = σuD(u), Lx(x) = σxD(x),

where D(a) is the diagonal matrix with its diagonal ele-
ments being the entries of the vector a. Hence, the corre-
sponding covariance matrices are diagonal with diagonal
elements σ 2

a a2i , i.e. the noise vector ξuk
(resp. ξxk

) has inde-
pendent components on each direction of the control (resp.
the state), with the variance being proportional to the square
of the control (resp. state) components. For example:

Eξuk
[ξuk

ξT
uk

] = σ 2
u

⎛
⎜⎜⎝

u21 0 . . . 0
0 u22 . . . 0
. . . . . . . . . . . .

0 0 . . . u2n

⎞
⎟⎟⎠ .

For the particular case of the control, such a form means
that the noise amplitude increases with the absolute value of
the control.

3.2 Optimal cost-to-go Function

Under the assumptions presented above, the terms Sk , sk
and sk that correspond to the coefficients of the cost-to-go
quadratic form can be written as:

Sk = ηkI, (14)

sk = ρk+1(μ + σ 2
uηk+1)sk+1, (15)

sk = sk+1 − 1

2
ρk+1sTk+1sk+1. (16)

where ηk and ρk are scalars such that

ρk � 1

μ + (1 + σ 2
u )ηk

.

Note that under the assumptions of this section, we have
SK = λf I , sK = −λf xf and sK = λf

2 xT
f xf .

To derive the equations 14, 15 and 16, we have used
the simplified forms of A, B, Q, Qf , R explained above,
and have plugged them into Eqs. 10, 11, 12. Using the
aforementioned form of the covariance matrices,∑

i

F T
ui

Sk+1Fui
= σ 2

u diag(Sk+1),

where diag(M) takes a matrix M and outputs a diagonal
matrix with the same entries as M on its diagonal. Then,
since SK is a multiple of the identity, an inductive rea-
soning with Eq. 10 shows that Sk is also a multiple of
the identity for any 0 ≤ k < K , for each one of the
four terms in Eq. 10. i.e. Sk has the form ηkI . We deduce
Hk = (μ + (1 + σ 2

u )ηk+1)I and by plugging the derived
expressions into Eqs. 11 and 12, we deduce Eqs. 15 and 16.

Let us solve the expressions (14)–(16). Observe that by
using the Eq. 9, one can express the scalar ηk recursively
from the following expression

{
ηK = λf

ηk = λ + ηk+1(1 + σ 2
x ) − η2

k+1
μ+ηk+1(1+σ 2

u )
.

Similarly, if we solve the recursion in sk , we get:

sk =
⎛
⎝ K∏

i=k+1

ρi(μ + σ 2
uηi)

⎞
⎠ sK

� −λf φkxf . (17)

The initial value of φk is φK = 1. The scalar sk is
resolved in the same way as:

sk = λf

2
xT
f xf

⎛
⎝1 − λf

⎛
⎝ K∑

i=k+1

ρiφ
2
i

⎞
⎠
⎞
⎠ .
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Finally, the optimal cost-to-go function at state xk is
given by

v∗
k (xk) = λf

2
xT
f xf

⎛
⎝1 − λf

⎛
⎝ K∑

i=k+1

ρiφ
2
i

⎞
⎠
⎞
⎠

− λf φkxT
k xf + ηk

2
xT
k xk. (18)

To understand the behavior of this optimal cost-to-
go function and of the corresponding optimal control,
observe first that if 1 < k � K then we get φk =∏K

i=k+1
μ+σ 2

u ηi

μ+(1+σ 2
u )ηi

≈ 0. This is because we can write φk as

φk =
K∏

i=k+1

1

1 + 1
μ
ηi

+σ 2
u

<

⎛
⎝ 1

1 + 1
μ
λ
+σ 2

u

⎞
⎠

K−k

by using the inequality ηi > λ for i > 0. Note that as K − k

increases the term

(
1

1+ 1
μ
λ

+σ2u

)K−k

is smaller. This means

that when the horizon is large enough, the linear terms
in the beginning of the planning horizon tend to fade off.
This has consequences on the associated optimal control, as
described below.

3.3 Optimal control

Note that from the results presented above, one gets Hk =
ρk+1I and can also write the optimal control as the follow-
ing affine function of the state:

u∗
k = λf ρk+1φk+1xf − ρk+1ηk+1xk, (19)

which can also be written as:

u∗
k = −ρk+1φk+1λf (xk − xf ) − ρk+1(ηk+1 − φk+1λf )xk

� αk+1
[
λf (xk − xf )

] + βk+1 [λxk] . (20)

The above equation represents the system optimal con-
trol, which is written as a positive linear combination of two
gradients: 1) the one of the final cost function λf ‖x − xf‖2
(driving the system close to the final position xf ) and 2) the
one of the instantaneous cost function λ‖x‖2 (driving the
system close to the origin). Note that the contributions of
each term in the optimal control depends on the following
scalar values: λ, λf , μ, σu and σx . Also note that αk and βk

vary with k. There are a few observations that can be done
on these two terms. First, when the control time is far from
the horizon (i.e., during the first executions of the planned
controls 1 < k � K), the first term (depending on φk) gets
smaller, because φk tends to zero while ρk is bounded by
1
μ
. This is consistent with the idea that, far from the final

position, the constraint pulling the robot toward the goal
does not apply. In that case, the second term will be close to

Fig. 1 Paths with optimal
controls for different values of
the planning horizon, with
parameters x0 = (−5, 5),
xf = (8, 5), λf = 10, σx = 0.0,
σu = 0.1, λ = 0.01 and
μ = 1.0. The color map for the
cost:
λxT x + λf (x − xf )T (x − xf )

identifies the states with high
costs
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−ρk+1ηk+1xk . Note that this instantaneous cost-related gain
satisfies:

0 < ρk+1ηk+1 <
1

1 + σ 2
u

.

Hence, when σ 2
u � 1, which means that the control

amplitudes induce large values of noise, a conservative
behavior is being applied, by reducing the gain.

In Fig. 1, one can observe the behavior described previ-
ously for one system, and under several different horizons
K . We have chosen the values of λf , σx , σu, λ, μ in such a
way that each term could have a similar importance in the
total cost. With short horizons, the system is immediately
brought to the desired final configuration, along a straight
line. But as the planning horizon gets longer, the optimal
controls first lead the system near the origin. If the planning
horizon is long enough to achieve the condition φk ≈ 0, the
state will remain at the origin for several consecutive time
steps. This is because the term λf ρk+1φk+1xf ≈ 0 and is
negligible as compared to ρk+1ηk+1xk , which is precisely
the one that guides the system to the origin. Once φk ≈ 0
and xk ≈ 0, it is important to note that the control keeps the
system close to the origin and the cumulative cost tends to
remain constant (see Figs. 2 and 3).

To further analyze Eq. 20, let us define wk = ηk

φkλf
. Then

Eq. 20 can be written

u∗
k = −ρk+1φk+1λf [(xk − xf ) − (wk+1 − 1)xk].

Now let us examine the term wk carefully. We have

wk = ηk

φkλf

=
λ + ηk+1(1 + σ 2

x ) − η2
k+1

μ+(1+σ 2
u )ηk+1

φk+1
μ+σ 2

u ηk+1

μ+(1+σ 2
u )ηk+1

λf

.

This expression can be split in three

wk = λ

φkλf

+ ηk+1σ
2
x

φkλf

+
ηk+1 − η2

k+1
μ+(1+σ 2

u )ηk+1

φk+1
μ+σ 2

u ηk+1

μ+(1+σ 2
u )ηk+1

λf

,

which can be transformed into

wk = λ

φkλf

+ ηk+1σ
2
x

φkλf

+ ηk+1

φk+1λf

= λ

φkλf

+ ηk+1σ
2
x

φkλf

+wk+1.

We deduce:

wk = λ

λf

[
1

φk

+ 1

φk+1
. . . + 1

φK−1

]

+ σ 2
x

λf

[
ηk+1

φk

+ ηk+2

φk+1
. . . + ηK

φK−1

]
+ wK.

Now, as we saw above,⎛
⎝ 1

1 + 1
σ 2

u

⎞
⎠

K−k

< φk <

⎛
⎝ 1

1 + 1
μ
λ
+σ 2

u

⎞
⎠

K−k

. (21)

Fig. 2 System behavior, for K = 200. The parameters have the following values: x0 = (−5, 5), xf = (8, 5), λf = 10, σx = 0.0, σu = 0.1,
λ = 0.01 and μ = 1.0. Left: path and color map for the costs: λxT x + λf (x − xf )T (x − xf ). Right: accumulated cost

J Intell Robot Syst (2018) 92:85–10690



Fig. 3 System behavior, for K = 200. The parameters have the following values: x0 = (−5, 5), xf = (8, 5), λf = 10, σx = 0.0, σu = 0.1,
λ = 0.01 and μ = 1.0. Top: behavior of the optimal controls (in x and y). Bottom: trajectory for x and y

Also, in situations where σx is not too large (as we will
see in the next Section), for all k, ηk is bounded, i.e. there
exists values η−, η+ > 0 such that for all k, η− < ηk < η+.
With these elements in mind, and after some developments,

λ + σ 2
x η−

λf

(μ

λ
+ σ 2

u + 1
)[(

1 + 1
μ
λ

+ σ 2
u

)K−k

− 1

]

< wk − 1 <
λ + σ 2

x η+

λf

(σ 2
u +1)

[(
1+ 1

σ 2
u

)K−k

−1

]
.

This last equation shows that wk grows exponentially
with K − k, and gives a lower and an upper bound by two
exponential functions. This means that, in Eq. 20, the pro-
portion of the goal-driven control (the term in xk − xf ) with
respect to the second term goes shrinking exponentially as

1
wk−1 . In particular, for k = 0,

λ + σ 2
x η−

λf

(μ

λ
+ σ 2

u + 1
)[(

1 + 1
μ
λ

+ σ 2
u

)K

− 1

]

< w0 − 1 <
λ + σ 2

x η+

λf

(σ 2
u + 1)

[(
1 + 1

σ 2
u

)K

− 1

]
.

(22)

3.4 Variations of ηk with k

At this point the reader could note that ηk has a classical
formulation as the iteration of a recursive function ηk+1 =
f (ηk), with

f (η) = λ + η(1 + σ 2
x ) − η2

μ + η(1 + σ 2
u )

. (23)

This equation can also be written as

f (η) = λ + ησ 2
x + η(μ + ησ 2

u )

μ + η(1 + σ 2
u )

. (24)

It should also be noted that its derivative is

f ′(η) = σ 2
x + (μ + ησ 2

u )2 + σ 2
uη2

(μ + η(1 + σ 2
u ))2

,

so f is a strictly increasing function. A natural question to
answer is whether this function admits a fixed point (i.e., a
point of convergence for ηk when considering K → ∞);
this point is examined in the next subsection.

3.5 Convergence Properties and Steady State
Values for ηk

An interesting question to answer is whether a fixed point
η∗ exists for f , which has an important implication on the
cost related to a motion policy. If a fixed point exists then the
cost is bounded by a finite value for states within a bounded
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domain and hence one can evaluate whether or not, we can
afford to pay it.

A sufficient condition for the existence of η∗, is that
f is Lipschitz continuous with a Lipschitz constant infe-
rior to one, i.e. there should exist L such that ∀η ∈ R

+
|f ′(η)| ≤ L < 1, which also means there should exist ε > 0
such that ∀η ∈ R

+ |f ′(η)| ≤ 1 − ε. Note that from the pre-
vious subsection, η > 0 and f ′(η) > 0. With the previous
expression for f ′(η), the sufficient condition translates into

∃ε > 0 ∀η σ 2
x + ε ≤ 1 − (μ + ησ 2

u )2 + σ 2
uη2

(μ + η(1 + σ 2
u ))2

and finally

∃ε > 0 ∀η σ 2
x + ε ≤ η

2μ + (1 + σ 2
u )η

(μ + (1 + σ 2
u )η)2

. (25)

Proposition 1 When σx > 0, a sufficient condition for the
sequence of ηk’s to converge to a finite value when k goes
to infinity is

0 < σ 2
x < λ

2μ + (1 + σ 2
u )λ

(μ + (1 + σ 2
u )λ)2

. (26)

Proof First, note that ηk > 0 for all k ≥ 0. Also, from
Eq. 24, one can show that ηk > λ for all k > 0. Also, the
function on the right term of condition (25) is increasing

on R
+. Since for all k > 0, ηk > λ then the right term is

always superior to its value in λ, λ
2μ+(1+σ 2

u )λ

(μ+(1+σ 2
u )λ)2

. Note that

λ
2μ+(1+σ 2

u )λ

(μ+(1+σ 2
u )λ)2

<
μ2+2μ(1+σ 2

u )λ+(1+σ 2
u )2λ2

(μ+(1+σ 2
u )λ)2

= 1 so that 1 >

λ
2μ+(1+σ 2

u )λ

(μ+(1+σ 2
u )λ)2

> σ 2
x . This implies |f ′(η)| ≤ 1 − ε where

ε = λ
2μ+(1+σ 2

u )λ

(μ+(1+σ 2
u )λ)2

−σ 2
x . The assumption of this proposition

ensures the convergence of the recursion ηk+1 = f (ηk) to a
unique value η∗.

Corollary 1 When σx = 0 (no additive noise depending on
the state), the sequence of ηk’s converges to a finite value
when k goes to infinity.

Proof In that case, we have |f ′(η)| ≤ 1 − ε where ε =
λ

2μ+(1+σ 2
u )λ

(μ+(1+σ 2
u )λ)2

< 1, which ensures convergence of the

iterative procedure.

Note that the sufficient condition of Proposition 1 also
implies:

0 < σ 2
x <

1

(1 + σ 2
u )

. (27)

From now on, we will suppose that the condition
enounced in Proposition 1 is satisfied. If the fixed point of
f exists then it satisfies the second degree equation in η

induced by the recursion, so it has to be η = η∗ with:

η∗ = (λ(1 + σ 2
u ) + σ 2

x μ) + √
(λ(1 + σ 2

u ) + σ 2
x μ)2 + 4λμ(1 − σ 2

x (1 + σ 2
u ))

2(1 − σ 2
x (1 + σ 2

u ))
. (28)

Note that from the comments above, σ 2
x (1 + σ 2

u ) < 1,
hence both the numerator and denominator in the expression
above are positive. Also, we have bounded values for σ 2

x .
Observe that if σ 2

u becomes larger, then the upper bound
value for σ 2

x decreases and may tend to zero.
Figure 4 shows the growing trend of η∗ as σx approaches

its upper limit. This means that, when considering an inifi-
nite horizon, the quadratic coefficient of the cost function is
unbounded while σx is increased.

In addition, because f is increasing, there are only two
cases of evolutions of the sequence ηk , provided that the
previous sufficient condition is satisfied. Recall that the first
value of the sequence is ηK = λf , i.e. the term associ-
ated to the quadratic cost at the final position. Two cases
are possible: (1) for low values of the final quadratic coeffi-
cient λf (λf < η∗), the cost-to-go quadratic coefficient ηk

goes increasing up to convergence; (2) for large values of Fig. 4 Behavior of η∗ for increasing values of σ 2
x with σ 2

u = 0.1
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the final quadratic coefficient λf (λf > η∗), the values of
ηk decrease over time. In each of these cases, the interval of
the possible values of η is bounded according to:⎧⎨
⎩η∈[λf , η∗] if λ>−σ 2

x λf + λ2f

μ+(1+σ 2
u )λf

(case 1),

η∈[η∗, λf ] otherwise (case 2).
(29)

Note that we have here the bounds η−, η+ mentionned
above in Eq. 22. Until now we only provided sufficient con-
ditions for the existence of the fixed point. If the fixed point
exists, then it is also important to estimate its rate of con-
vergence. We want the minimum number of iterations k∗
needed to get:

||ηk∗ − η∗|| ≤ τ,

where τ is a given bound. Using the Contraction Mapping
Theorem, we can write:

||ηk∗ − η∗|| ≤ Lk∗ ||λf − η∗|| ≤ τ.

Applying the logarithm to the left side and defining L as
the upper bound on f ′(η) defined in Proposition 1, one can
estimate a lower bound k∗

k∗ ≥
ln

(
τ

|η∗−λf |
)

ln(L)
. (30)

In Fig. 5, we can observe the two convergence behav-
iors for ηk . Although f (η) is increasing with η, f (ηk) could
be either increasing or decreasing with k. In Fig. 5, left,
ηk decreases with k while in Fig. 5, right, f (ηk) increases
with k.

3.6 Implications of the Convergence

Consider the optimal control (20). As ρk+1ηk+1 =
ηk+1

μ+(1+σ 2
u )ηk+1

, one can deduce, that, when the convergence

conditions described above hold, then if we consider large
enough horizon values, we will have for the first planning
steps

u∗
k ≈ − η∗

μ + (1 + σ 2
u )η∗ xk. (31)

This means that, in the case the convergence sufficient
conditions are met then it is possible to have a good approx-
imation of the function value and of the optimal controls for
large enough horizon values.

Hence, there are two significant advantages in the con-
vergence of the value function coefficients. First, we have
numerically bounded costs when considering a bounded
domain, and, second, we can estimate in advance the behav-
ior of the optimal controls at the convergence horizon. Given
these advantages, one can make decisions on the planning
horizon and for example rule out the horizons K > k∗.
Another natural question is which of these horizons is the
most suitable in terms of the obtained final cost. This will
be the object of Section 4.

3.7 Behavior of the Solutions in Extremal Cases

The system introduced in Section 2 includes different cost
terms: one depending on the state values, one depending on
the control values and one on the final state values. For the

Fig. 5 Convergence cases: (Left) in interval [η∗, λf ], (Right) in interval [λf , η∗]
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complete understanding of the system and of its solutions,
we study here the behavior of the system for extremal values
of its different parameters.

3.7.1 Predominant Instantaneous State Cost

In this section we consider the case where the value of the
costs associated to the system states are high compared to
the other terms. To quantify this notion properly, let us come
back to Eq. 20. According to Section 3.3, when k grows, the
term wk − 1 will be smaller. This means that in the latest
steps of our plan, wk − 1 will have its lowest values. To
ensure that the term associated with the state dominates the
goal-related term throughout all the plan, we should have:

|wK−1 − 1| � 1.

A sufficient condition for this to occur can be derived
from Eq. 22:

λ+σ 2
x η−

λf

(μ

λ
+σ 2

u +1
)[(

1+ 1
μ
λ

+ σ 2
u

)K−(K−1)

−1

]
�1,

which leads to:

λ + σ 2
x η− � λf

(
μ + λ(σ 2

u + 1)

μ + λσ 2
u

)
.

To get this condition verified, we may set for example:

λ�max

(
μ

σ 2
u

, λf

(
1 + 1

σ 2
u

))
, (32)

which intuitively means that λ should be much larger than
both μ and λf . If the above condition is satisfied, then, after
some algebraic manipulations, it is equivalent to:

μ � λσ 2
u < ηkσ

2
u ,

then μ � ηk(1 + σ 2
u ). Note that this condition is inde-

pendent of the selected planning horizon. From Eq. 20, the
control in that case takes the simple form:

u∗
k ≈ − ηk

μ + ηk(1 + σ 2
u )

xk.

As ηk > λ, then μ � ηk(1 + σ 2
u ) and the control can be

approximated by:

u∗
k ≈ − 1

1 + σ 2
u

xk, (33)

which means that the state is driven to the origin, i.e. to
the lowest values of the instantaneous state-dependent cost
function. Note that the corresponding gain is 1

1+σ 2
u
, which

only depends on the control-depending noise level and
which takes lower values with higher noise coefficient, i.e.,
for large σu, smaller motions are preferred so as not to incre-
ment the cost function because of risky controls. Note that

the optimal policy of Eq. 33 is the same as the one resulting
from:

min
u0:K−1

Eξu0 ,ξx0 ,...,ξuK−1 ,ξxK−1

(
K−1∑
k=0

xT
k Qxk

)
.

3.7.2 Predominant Goal Cost

Again, if one refers to Eq. 20 above, one can see that to have
a significant part of the goal cost in the overall cost since the
beginning of the planning horizon, then the proportion of the
optimal control arising from the goal cost should dominate
the state dependent cost term, starting from k = 0. This
implies:

|w0 − 1| � 1.

Because of the exponential nature of wk with respect
to K − k, and by taking into account Eq. 22, we have a
sufficient condition for this to occur, which is:

λ(1 + σ 2
x η+)

λf

(σ 2
u + 1)

[(
1 + 1

σ 2
u

)K

− 1

]
� 1.

This may be satisfied by taking large enough values for
λf :

λf � λ(1 + σ 2
x η+)(σ 2

u + 1)

(
1 + 1

σ 2
u

)K

.

The control under these conditions will be:

u∗
k ≈ −ρk+1φk+1λf (xk−xf ) = −

1
wk

μ
ηk+1

+ 1 + σ 2
u

(xk−xf ).

When we have also λf � μ

σ 2
u
, then one can use Eq. 24 to

show that:

ηk ≈ λf

⎛
⎝ 1

1 + 1
σ 2

u

⎞
⎠

k

,

so that the optimal control expression can be approximated
by

u∗
k ≈ − 1

1 + σ 2
u

(xk − xf ). (34)

Note that the solution for this case corresponds to lead-
ing the system states to the final configuration. Again, the
weight associated with the optimal control depends on the
noise coefficient σ 2

u . If it is null, the computed control leads
the system to the final configuration, which remains there
until the end of the planning horizon. Otherwise, the system
gets closer to the final configuration at slower rates.

These high values of λf correspond to the minimization
of the cost function:

min
u0:K−1

Eξu0 ,ξx0 ,...,ξuK−1 ,ξxK−1
(lK(xK)).
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3.7.3 Predominant Control Penalty Cost,
Without State-Dependent Noise

Again, the optimal control expression of Eq. 20 can be
written as

u∗
k =−ρk+1φk+1λf wk+1

[
1

wk+1
(xk−xf )− wk+1−1

wk+1
xk

]
.

The weights in the sum are between 0 and 1, and the term
ρk+1φk+1λf wk+1 is a global factor over this control. Now
note that when considering σ 2

x = 0 (no state-dependent
noise), we get from Eq. 22:

ρk+1φk+1λf wk+1 <
1

μ
λf

(
1 + λ

λf

(σ 2
u + 1)

×
[(

1 + 1

σ 2
u

)K−k−1

− 1

])
.

Hence, with large enough values of μ:

μ � λf

(
1 + λ

λf

(σ 2
u + 1)

[(
1 + 1

σ 2
u

)K−1

− 1

])
,

the optimal control can be made as small as desired

u∗
k → 0. (35)

This control keeps the system in its initial configuration and
also corresponds to the solution to the problem:

min
u0:K−1

Eξu0 ,ξx0 ,...,ξuK−1 ,ξxK−1

(
K−1∑
k=0

uT
k Ruk

)
.

3.7.4 High Values of Control-Dependent Noise,
Without State-Dependent Noise

As mentioned above, the control-dependent noise does have
an impact on the obtained optimal controls. To follow
this analysis, observe that the optimal controls behavior
when σ 2

u tends to infinity when, again, σ 2
x = 0 (no state-

dependent noise). First, note that from Eq. 21, φk tends to
one; also, since ηk has λ as a lower bound,

lim
σ 2

u →∞

(
1

μ + (1 + σ 2
u )ηk

)
= 0.

Hence,

ρk+1φk+1λf wk+1 <
1

σ 2
uλ

λf

(
1 + λ

λf

(σ 2
u + 1)

×
[(

1 + 1

σ 2
u

)K−k−1

− 1

])
.

Since the second part of this expression can be bounded
when σ 2

u tends to infinity, we obtain the optimal controls at
the limit:

u∗
k → 0.

Interestingly this control is equivalent to the solution
obtained for large values ofμ. This result is intuitive consid-
ering that the expected state resulting from applying a noisy
control may be highly expensive.

The following table summarizes the different cases
described in this section and the optimal controls for each
of them.

Dominant Sufficient condition Optimal control Interpretation
parameter

λ λ�max
(

μ

σ 2
u
, λf

(
1+ 1

σ 2
u

))
, u∗

k ≈− 1
1+σ 2

u
xk The control leads the system to

the origin

μ μ�, λf

(
1+ λ

λf
(σ 2

u +1)

[(
1+ 1

σ 2
u

)K−1−1

])
, u∗

k →0 The control keeps the system at its

initial configuration

λf λf �λ
(
1+σ 2

x η+) (σ 2
u +1)

(
1+ 1

σ 2
u

)K

u∗
k ≈− 1

1+σ 2
u
(xk−xf ) The control leads the system to the

final configuration
σ 2

u σ 2
u →∞, σ 2

x =0 u∗
k →0 The control keeps the system at its

initial configuration

4 Horizon Selection Without State-Depending
Noise

Here, we are interested in describing the behavior of the
total expected cost function v0(x0) with increasing horizon
times K , and with fixed initial and goal configurations x0

and xf . We want to compare the benefits of selecting shorter
or longer horizons for a specific planning problem. First, we
study the behavior of the derivative of v0(x0) with respect to
the horizon K and interpret its variations. We will show that
in absence of state-dependent noise (σx = 0) the behavior
of v0(x0) can be characterized in a geometric way.
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In the next equations, we use a new notation, ηK
0 and

φK
0 , to refer to the already defined quantities ηk and φk ,

evaluated at the time step k = 0 (index) and computed
for horizon K (superscript). The optimal expected cumula-
tive cost varies with the planning horizon, therefore we use
a superscript K to indicate the planning horizon, and the
index k = 0, as a subscript, to specify that we estimate the
total expected cost, starting from the initial configuration.
Besides, we use the notation 
 to indicate the difference
between the expected total cost of two consecutive planning

horizons, i.e. 

[
vK
0 (x0)

] def= vK
0 (x0) − vK−1

0 (x0).
By taking the difference between the total expected cost

function evaluated at consecutive valuesK−1 and K, we get:



[
vK
0 (x0)

]
= 1

2
(ηK

0 −ηK−1
0 )xT

0 x0−(φK
0 −φK−1

0 )λf xT
0 xf

− 1

2
λ2f ρK

0 (φK
0 )2xT

f xf . (36)

By using the recurrence relations seen above in Eqs. 14
and 15, we can write the differences in the previous equation
as functions of ηK

0 as follows:


ηK
0 = ηK

0 − ηK−1
0 = λ − ηK

0
2
ρK
0


φK
0 = φK

0 − φK−1
0 = −ηK

0 ρK
0 φK

0 . (37)

Using the previous two equalities, one can rewrite the
Eq. 36 as:



[
vK
0 (x0)

]
= 1

2
λxT

0 x0−
1

2
ρK
0 ((ηK

0 )2xT
0 x0

− 2φK
0 ηK

0 λf xT
0 xf + λ2f (φK

0 )2xT
f xf ).

The second term in the previous equation can be written
as the matrix product:

[√
ρK
0 ηK

0

√
ρK
0 φK

0

][xT
0 x0 −λf xT

0 xf

−λf xT
0 xf λ2f x

T
f xf

]⎡⎣
√

ρK
0 ηK

0√
ρK
0 φK

0

⎤
⎦,

which allows to write:



[
vK
0 (x0)

]
= 1

2
λxT

0 x0−
1

2

[ √
ρK
0 ηK

0

√
ρK
0 φK

0

]

×
[
xT
0 x0 −λf xT

0 xf

−λf xT
0 xf λ2f x

T
f xf

]⎡⎣
√

ρK
0 ηK

0√
ρK
0 φK

0

⎤
⎦. (38)

Note that the Eq. 38 is quadratic in the variables(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
, and that the other parameters do not

depend on K . In particular, if there are critical points,
they are located on the ellipse defined on the plane(√

ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
by

[ √
ρK
0 ηK

0

√
ρK
0 φK

0

] [ xT
0 x0 −λf xT

0 xf

−λf xT
0 xf λ2f x

T
f xf

]

×
⎡
⎣
√

ρK
0 ηK

0√
ρK
0 φK

0

⎤
⎦ = λxT

0 x0. (39)

From this geometrical object, it is possible to estimate the
sign of 


[
vK
0 (x0)

]
and thus to understand the behavior of

vK
0 (x0). For example, if 


[
vK
0 (x0)

]
< 0 then vK

0 (x0) is
decreasing. All the points that are outside the ellipse sat-
isfy this inequality. Of course, there are two other possible

Fig. 6 Behavior of vK
0 (x0) for

differents horizons (case 1).
Left: parameterization in the

(

√
ρK
0 ηK

0 ,

√
ρK
0 φK

0 ) space with
parameters x0 = (−0.3, 0.8),
xf = (0.3, 0.8), λf = 0.1,
σx = 0.0, σu = 0.1, λ = 0.01
and μ = 1.0. Right: function
value at x0, varying with K
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Fig. 7 Behavior of vK
0 (x0) for

differents horizons (case 2).
Left: parameterization in the

(

√
ρK
0 ηK

0 ,

√
ρK
0 φK

0 ) space with
parameters x0 = (0.20, 0.20),
xf = (0.7, −0.8), λf = 0.1,
σx = 0.0, σu = 0.1, λ = 0.1 and
μ = 1.0. Right: function value
at x0, varying with K

cases. The second case corresponds to 

[
vK
0 (x0)

] = 0 and
as we mentioned before, this case indicates the existence
of a critical point in vK

0 (x0). The last case occurs when



[
vK
0 (x0)

]
> 0. All the points inside the ellipse should

satisfy this inequality. This case indicates that vK
0 (x0) is

increasing for horizon K .
Note that x0 and xf are the initial and the final con-

figuration of the system in the state space. The choice
of the initial and final configuration, together with λ, λf ,

μ and σu, determines the geometry of an ellipse in the

space

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
(as it was mentioned above).

By varying the values of these parameters, we have found
experimentally 4 basic behaviors, which we describe below.

In Fig. 6, we show the behavior of vK
0 (x0) for the first

case, where vK
0 (x0) is a strictly increasing function of K .

This occurs because applying controls with more planning
steps gives higher overall costs. Hence, we go as quickly as

Fig. 8 Behavior of vK
0 (x0) for

differents horizons (case 3).
Left: parameterization in the

(

√
ρK
0 ηK

0 ,

√
ρK
0 φK

0 ) space with
parameters x0 = (1.0, 2.0),
xf = (16.87, −39.0),
λf = 0.03, σx = 0.0, σu = 0.1,
λ = 0.5 and μ = 1.5. Right:
function value at x0, varying
with K

J Intell Robot Syst (2018) 92:85–106 97



possible to the final configuration and short term planning
is more convenient. Each added planning step contributes
through new added control-dependent terms (larger paths,
as in Fig. 1), which explains the increasing trend.

In Fig. 7, in the second case, we have the opposite of case
1. In that case, the more planning steps, the lowest the final
cost, because the increments in the path length (as in Fig. 1)
are compensated by smaller state-dependent costs

∑
xTkxk .

The third case is illustrated in Fig. 8. There is a K ′ such
that, for horizons K < K ′, the system is driven to the final
configuration which makes the corresponding cost decreases,
but the control cost is increasing even more, explaining the
initial global increase. For larger K’s, as in case 2, the state-
dependent cost decrements dominate the control-dependent
cost increments, explaining the global decrease.

In the fourth case, the situation is the opposite. For small
horizons, getting closer to the final configuration initially
makes the corresponding cost decrease faster than the con-
trol cost increments, explaining the initial global decreasing
tendency. For higher values of K , as in case 1, the control-
dependent cost increments dominates the other variations,
explaining the global increasing tendency.

In the following, we give explanations to the observed
behaviors. First, the following lemmas enounce common

characteristics to the

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
curves.

Lemma 1 The sequence of values
√

ρK
0 ηK

0 is monotonic
with increasing K .

Proof By using the intermediate value theorem, we can
write:




[
ρK
0

(
ηK
0

)2]= d

dx

[
x2

μ+x
(
1+σ 2

u

)
]

x=η, η∈
[
ηK−1
0 ,ηK

0

]
ηK
0 .

It can be verified that d
dx

[
(x)2

μ+x(1+σ 2
u )

]
> 0 for any x > 0,

hence the sign of 

[
ρK
0

(
ηK
0

)2]
is the one of 
ηK

0 . As we

have seen in Section 3, ηK
0 is monotonic with increasingKs.

Hence, the sequence of ∂
∂K

ρK
0 (ηK

0 )2’s and subsequently the

sequence of
√

ρK
0 ηK

0 ’s is monotonic (increasing or decreas-

ing). This means that all our

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
curves

either go the left or to the right.

Lemma 2 The sequence of values
√

ρK
0 φK

0 is decreasing
with increasing K .

Proof Consider 
[ρK
0 (φK

0 )2]; we can write:


[ρK
0 (φK

0 )2] = ρK
0 


[
φK
0
2
]
+φK

0 

[
ρK
0

]
−


[
φK
0
2
]


[
ρK
0

]
= ρK

0 

[
φK
0
2
]
+φK−1

0 

[
ρK
0

]
= −ρK

0

(
ρK−1
0 φK−1

0 ηK−1
0

) (
φK
0 + φK−1

0

)
−

(
φK−1
0

)2
ρK
0 ρK−1

0 

[
ηK
0

]

= −ρK
0 ρK−1

0

⎛
⎜⎝(

φK−1
0

)2 ⎛⎜⎝μηK−1
0 + σ 2

u

(
ηK−1
0

)2
μ + (1 + σ 2

u )ηK−1
0

+ λ(1 + σ 2
u )

⎞
⎟⎠ + φK−1

0 φK
0 ηK−1

0

⎞
⎟⎠ (40)

From Eq. 40, 
[ρK
0 (φK

0 )2] is decreasing. Hence,

the term
√

ρK
0 φK

0 is also decreasing. This means that
when the horizon K increases, the trajectory of points(√

ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
is going downwards.

Lemma 3 When K → ∞ the point

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
converges to the intersection of the ellipse of Eq. 39 with
the x axis (y = 0).

Proof Under the convergence conditions, η∞
0 = η∗ and

φ∞
0 = 0. Recall that from Eq. 18, for high values of K , the

value function at x0 tends to:

vK
0 (x0) → η∗xT

0 x0 + λf

2
xT
f xf .

The expression above shows that the total expected cumu-
lative cost function from a given starting point converges
to a finite value, hence the differences 


[
vK
0 (x0)

]
tend to

zero. This means that the point

(√
(η∗)2

1+η∗(1+σ 2
u )

, 0

)
is a point

located on the ellipse. It is the intersection of the ellipse with
the x axis. To see this, we can evaluate the Eq. 39 at this
point and we get:

λ − (ηK
0 )2

μ + ηK
0 + σ 2

uηK
0

= 0. (41)

The value ηK
0 = η∗ precisely satisfies this equation (see

Eq. 28).
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The previous lemmas give us a few insights on the behav-

ior of the curve

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
but it seems from the

experiments described above that there is more: it appears
that the curve does not cross more than once to the ellipse,
i.e., that the value function has at most one critical value as
a function of K . In the following, we provide a hint about
how to show that this property holds.

First, we write the slope mK for pair of points on the

curve

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
:

mK =

√
ρK
0

(
φK
0

)2 −
√

ρK−1
0

(
φK−1
0

)2
√

ρK
0

(
ηK
0

)2 −
√

ρK−1
0

(
ηK−1
0

)2 . (42)

To ensure that the curve

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
crosses the

ellipse at most once, we will show that mK have a mono-
tonic behavior (increasing or decreasing). Showing that mK

has a monotonic behavior using the definition above is

complicated. However, if we assume that 


[√
ρK
0 φK

0

]
and




[√
ρK
0 ηK

0

]
are small enough,

mK ≈

⎛
⎜⎜⎝

d
dK

[√
ρK
0

(
φK
0

)2]
d

dK

[√
ρK
0

(
ηK
0

)2]
⎞
⎟⎟⎠ (in the continuous domain).

(43)

From this approximation we get:

Lemma 4 If 


[√
ρK
0 φK

0

]
and 


[√
ρK
0 ηK

0

]
are small

enough, and provided μ > λ
3 (1+σ 2

u ), then mK has a mono-
tonic behavior (increasing or decreasing) with increas-
ing K .

Proof Under the conditions above and after several alge-
braic developments using the properties of continuous
derivatives in Eq. 43 we get:

∂

∂K
[mK ] ≈ − φK

0
∂
∂
K

[
ηK
0

]
λ

(
μv2K + nσuvKμηK

0 + n2σu

(
ηK
0

)2
cK − λn2σu

c2K

c2Kv2K

)
, (44)

with:

cK � μ + nσuη
K
0

vK � 2μ + nσuη
K
0

nσu �
(
1 + σ 2

u

)
. (45)

On can show that whenever 3μ > λ(1 + σ 2
u ), the numer-

ator in the fraction above is positive, i.e., the slope mK of

the curve

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
is increasing or decreasing

with increasing K . This shows that the concavity of the(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
curve keeps the same sign.

Using these developments and with the conditions
enounced above, one can write:

Theorem 1 If 


[√
ρK
0 φK

0

]
and 


[√
ρK
0 ηK

0

]
are smalll

enough and provided μ > λ
3 (1 + σ 2

u ), then the function of
K 


[
vK
0 (x0)

]
has at most one critical point.

Proof Considering the Lemmas 1, 2, 3 and 4 it is possi-

ble to deduce that the

(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
curve crosses

the ellipse at most once. This means that 

[
vK
0 (x0)

]
has at

most a critical point.

Besides, because we know beforehand what the conver-
gence point is, we have a taxonomy of behaviors of vK

0 (x0),
taking into account the position of the initial point with
respect to the ellipse and the number of critical points.

First let us assume 3μ > λ(1 + σ 2
u ). We define

I �
(√

ρK
K ηK

K,

√
ρK

K φK
K

)

�

⎛
⎜⎝
√√√√ λ2f

μ + λf (1 + σ 2
u )

,

√
1

μ + λf (1 + σ 2
u )

⎞
⎟⎠ ,

i.e., I is the initial configuration of system in the space(√
ρK
0 ηK

0 ,

√
ρK
0 φK

0

)
, meaning the point

(√
ρK

K ηK
K ,√

ρK
K φK

K

)
in that space, that is, the initial point in retro-

time. Finally let us consider, the number of critical points
of the function vK

0 (x0).
Given these definitions and conditions, there are four

possible behaviors of the function vK
0 (x0), which are the

following

1. If I is inside the ellipse and the function vK
0 (x0) does

not have critical points, then v00(x0) (resp. v∞
0 (x0)) is
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the global minimum (resp. maximum) over the possible
K’s and λf (x0 − xf )T (x0 − xf ) is the global maximal
value (see Fig. 6).

2. If I is outside the ellipse and the function vK
0 (x0) does

not have critical points, then v00(x0) (resp. v∞
0 (x0)) is

the global maximum (resp. minimum) over the possible
K’s and λf (x0 − xf )T (x0 − xf ) is the global minimal
value (see Fig. 7).

3. If I is inside the ellipse and the function vK
0 (x0) has

a critical point at K = K ′, then vK ′
0 (x0) is the global

maximum of vK
0 (x0) (see Fig. 8).

4. If I is outside the ellipse and the function vK
0 (x0) has

a critical point at K = K ′ then vK ′
0 (x0) is the global

minimum of vK
0 (x0) (see Fig. 9).

Hence, we can determine, in finite time, the infinite
horizon cumulative cost v∞

0 associated to a set of system
parameters (see Eq. 18). Given a small ε, it is always pos-
sible to determine a horizon K such that the associated
cumulative cost is close enough to the its limit when K

grows to infinity, i.e. such that vK
0 (x0) satisfies |v∞

0 (x0) −
vK
0 (x0)| < ε. By using the properties of the dynamic pro-
gramming, when calculating the accumulated cost for K ,
we estimate the accumulated costs v10, v

2
0, . . . , v

K ′
0 , . . . , vK

0 .
This means that the cumulative cost associated with K ′
has been computed during the estimation of vK

0 . It is
possible, then, to store the accumulated costs for the dif-
ferent values of K and select the one that has the lowest
cost.

5 Simulation Results

The first experiments in this section are simulations related
to Section 3.7, i.e. for extreme values of the different param-
eters involved in the cost function. Later on, we present
simulations concerning the selection of the optimal horizon,
as described in Section 4.

5.1 Description of our Simulated 3D System

We suppose we have a holonomic system that we want to
operate wirelessly. If the distance between the system and
the transmitting device (antenna) increases, the communica-
tion disturbances, i.e. the noise level in the communication,
increases. A similar modelling is used in [10] to perform
robot navigation based on the intensity of a signal transmit-
ted by an antenna. Hence, we are interested in driving the
system from an initial configuration to a final configuration
with a finite number of controls, while minimizing the com-
munication disturbances. These controls are noisy and, as it
happens in real systems, as the control magnitude increases,
so does the noise level in the motion. This problem can be
adequately described by the model presented in Section 2.1.
In this case, we consider the antenna as the origin of our
frame of reference, and we estimate a plan that moves the
robot from the initial configuration to the final configura-
tion with the least possible noise on the transmission and
with the goal of reaching the final configuration, without
spending to much energy on the controls.

Fig. 9 Behavior of vK
0 (x0) for

differents horizons (case 4).
Left: parameterization in the

(

√
ρK
0 ηK

0 ,

√
ρK
0 φK

0 ) space with
parameters x0 = (−0.3, 0.8),
xf = (0.3, 0.8), λf = 0.06,
σx = 0.0, σu = 0.1, λ = 0.001
and μ = 1.0. Right: function
value at x0, varying with K
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Fig. 10 Behavior of 3D system
with parameters (K = 50, λ =
1.0e − 3, μ = 1.0, λf =
1.0, σ 2

u = 0.1, σ 2
x = 0.1). The

color map indicates the cost:
xT Qx + (x − xf )T Qf (x − xf )

In the Fig. 10, we present an illustration for the simulation
of such a three-dimensional system, with a planning horizon
K = 50; we ensured that the differents terms of the cost
function have similar scales (based on the analysis presented

in the previous sections), in such away that all terms of the cost
function are considered. As expected, the initial controls
tend to lead the states of the system close to the origin, while
the latter controls lead the system towards the goal state.

Fig. 11 Behavior of the system for large values of μ. Left: path and color map for the cost: xT Qx + (x − xf )T Qf (x − xf ). Right: computed
controls
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5.2 Behavior of the Solutions in Extremal Cases

In this section, we show simulations for extreme values of
the parameters involved in the cost function. For each exam-
ple, the system performance is evaluated and we show that
the results are consistent with the insights of Section 3.7.

The first example corresponds to μ → ∞. In Fig. 11,
we can see the path and controls obtained for this sim-
ulation. The magnitude of the controls is close to zero,
which causes the starting point x0 and the ending point xK

to be close. Although the initial configuration is relatively
expensive, the applied controls maintain the system in this
configuration due to the high cost of applying a control.

Figure 12 corresponds to λ → ∞. As we mentioned it
above, the controls drive the system to the origin as fast as
possible. However, it is tempered by σ 2

u . Note that the color
scale indicates that states near the origin have lower cost.
Once the system states are near the origin, the control values
remain close to zero.

In Fig. 13, we can observe the behavior of the system
with λf → ∞. The controls lead the system towards the
final configuration. The scale color indicates that states far
away from the target configuration xf are those with a
higher cost.

5.3 Optimal Planning Horizon

Taking as a starting point the results in Section 4, we present
here two types of analysis for the 3D system described
above: a quantitative analysis in terms of cost and a qual-
itative analysis based on the objectives achieved by the
system.

We study the function value at the initial configutation x0,
with different planning horizon; Note that a plan of horizon
K > K ′ might get smaller costs.

We had seen that there are four types of paths: The first
is case is in which the minimal cost is obtained at the short-
est horizon; The second corresponds to the case in which
the best cost is obtained at horizons as largest as possible;
Case 3 is a bit more complex, depending on the parameters
it might be similar to case 1 or case 2. Finally, the case 4
corresponds to an intermediate horizon K ′ giving a globally
minimal path cost.

For our first example, we consider that all the terms in
the cost function have a comparable magnitude and that
the initial and final configurations are near the origin. This
configuration corresponds to the case 4 in Theorem 1. The
simulation for this system configuration can be seen in
Fig. 14. The optimal horizon in terms of cost vK

0 (x0) is

Fig. 12 Behavior of the system for large values of λ. Left: path and color map for the cost: xT Qx. Right: computed controls
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Fig. 13 Behavior of the system for large values of λf . Left: path and color map for the cost: (x − xf )T Qf (x − xf ). Right: computed controls

Fig. 14 Behavior of the system when all the terms in vK
0 (x0) have a similar contribution. Left: vK

0 (x0). Right: path for two differents values of
K . The color map corresponds to vK

0 (x)
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Fig. 15 Behavior of the system when all the terms in vK
0 (x0) have a similar contribution. Right: path for two differents values of K . The color

map corresponds to vK
0 (x)

Fig. 16 Behavior of the system when μ ≥ λ > λf . Right: path for two differents values of K . The color map correspond to vK
0 (x)
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Fig. 17 Zoom over the path for the system shown in Fig. 16 for differents values of K . The color map correspond to vK
0 (x)

K = 10. The resulting policy leads the system near the goal
configuration xf . On the other hand, the horizon K = 50
also leads the system close to xf but v500 (x0) is higher than
v100 (x0), because of the control penalties. The system has a
global minumun at K ′ = 10.

For the system shown in Fig. 15, as the horizon is
increased, the total cost is reduced, because state-dependent
costs are reduced more than what control-dependent costs
are increased. This example corresponds to case 2 in
Theorem 5.

In Fig. 16, we can observe the behavior of a system
corresponding to case 3. In this Figure, the minimal cost
corresponds to shorthest horizons, which is similar to case
1. This system has a global maximum at K ′ = 2. This
is because at K ′, the control-dependent cost is increased
and the state-dependent cost is not reduced significantly.
This can be seen in Fig. 17. In this Figure, shorter horizons
K ≤ K ′ have higher costs on the states far away from the
origin, which explains the increase in costs (i.e. the configu-
ration x0 has a high cost in these horizons). As the K grows

(K > K ′) this cost is reduced, explaining the decreasing
behavior.

Notice that even if the minimal cost is not related to
convergence, when the convergence is reached, the robot
is as close as possible of the goal configuration, paying a
bounded cost. Planning more time steps does not provide
any benefit.

6 Conclusions and Future Work

In this paper, we have studied solutions to the problem of
generating motion policies for a navigation task defined
as a multi-objective optimization problem, where the robot
minimizes a cost function that combines the cost of being
in a state, the cost of applying a control and the cost of
not reaching the goal configuration under control and state
uncertainty.

We have presented a quantitative and qualitative analy-
sis of the expected behavior of the solutions to the Linear
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Quadratic Gaussian (LQG) problem with control-dependent
noise. We have related the behavior of the expected solu-
tions to the LQG problem to the weights of the immediate
costs, control costs and costs associated to the final config-
uration, and we have given useful bounds for understanding
the effect of the objective function parameters.

We have also given conditions for the quadratic coefficient
in the cost-to-go function to converge to a finite value when
the horizon increases, which induces that the cost associated
to the optimal motion policy is bounded by a finite value
(for a bounded environment) and hence one can evaluate
whether or not, the system can afford to pay that cost.

Finally, we have presented an analysis of the optimal plan-
ning horizonK for the overall cost or objective function used
to assess the motion policy, under control dependent uncer-
tainty. To the best of our knowledge this analysis is novel.

The analysis provided in this is work is directly applica-
ble to the case of quadratic cost λxT x + μuT u and linear
motion model ẋ = x + u, in which x is the state, u is the
control, but it can be extended to a larger class of problems.
Qualitatively, it should hold for systems ẋ = �x + u, being
� a positive diagonal matrix. Then, it could also be extended
to more general dynamic models ẋ = Ax + Bu, when A

is diagonalizable with positive eigenvalues. This is because,
if A = Q�Q−1, the change of variables z = Q−1x leads
to another system of the form ż = �z + v, for which the
discussed properties should hold.
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