
Repairing Plans for Object Finding in 3-D Environments

Judith Espinoza and Rafael Murrieta-Cid

Centro de Investigación en Matemáticas, CIMAT

Guanajuato, México

{jespinoza,murrieta}@cimat.mx

Abstract— In this paper, we address the problem of repairing
previously computed plans for searching for an object. The
object is sought with a 7 degrees of freedom mobile manipulator
robot with an “eye-in-hand” sensor. The sensor is limited in
both range and field of view. Our method computes a set of
sensing configurations, which collectively cover the environment
with the 3-D visibility region of the limited sensor. An order for
visiting sensing configurations, which diminishes the expected
value of the time for finding the object is generated. The search
plan corresponds mainly to the set of sensing configurations to
be visited and the order for visiting those configurations. In this
paper, we show that whenever the environment changes locally
our plan can also be repaired locally. We base our approach on
a 3-D convex regions decomposition dividing the environment.
The plan is repaired by generating a new sub-set of sensing
configurations and a new order for visiting those configurations,
only considering the convex regions related to the change in
the map of the 3-D environment. We have implemented all
our algorithms, and we present simulation results in realistic
environments.

I. INTRODUCTION

Our search problem is related to robot motion planning,

art gallery problems and coverage.

In robot motion planning [9], [10] the typical goal is to find

a collision free path to move a robot (a mechanical system,

which may have many degrees of freedom) from an initial to

a final configuration. Efficient algorithms have been proposed

to solve this problem. These algorithms use sampling to

capture connectivity of high dimensional configuration or

state spaces, for example, [8], [6], [11], [18], just to name

some classical works. In our work we also want to connect

sensing configurations, but we have an additional goal. We

are interested in representing the free space inside the 3-

D workspace for searching for an object and not only

in representing the configuration space for avoiding robot

collision. Nevertheless, we need to find collision-free paths

to the move the robot between sensing configurations. Our

main interest is to address the problem of finding a static

object. This adds a new aspect to our planning problem.

The traditional art gallery problem is to find a minimal

placement of guards such that their respective visibility

regions completely cover a polygon [12], [17], [7]. As we

will see below in Section II, a set of sensing configurations

that collectively see the environment could be used as part

of a solution to our search problem. Notice that differently

to the works presented in [12], [17] and [7] we consider a

3-D environment and not a polygon.

In coverage problems (e.g., [5], [1]), the goal is usually

to sweep a known environment with the robot or with the

viewing region of a sensor. In this problem, it is often

desirable to minimize sensing overlap so as not to cover the

same region more than once. Our problem is related to the

coverage problem in the sense that any complete strategy to

find an object must sense the whole environment.

We have already addressed the problem of finding an

object in a 3-D environment. In [15], we investigated the

problem of finding an object in a 3-D environment for the

case of a point robot equipped with an omni-directional

sensor. In [15], we have also introduced a probabilistic

sampling method to decompose the workspace into convex

regions. In [2], [3] we have extended our work to a mobile

manipulator robot equipped with a sensor limited in both

field of view and range; a practical method to approximate

the visibility region in 3-D of the limited sensor is proposed,

convex regions are used to facilitate this approximation. In

[2], we have also proposed the strategy of selecting the most

important degrees of freedom (DOFs) to be optimized for

minimizing the expected value of the time to find the object.

This strategy significantly reduces the computational running

time to generate a plan. The computational running time of

our algorithm refers to the time taken by our software to

generate a plan to find the object. The expected value of the

time refers to the average time in which the object will be

found by executing that plan. So the first time refers to the

generation of the plan, and the second one to the performance

in average of this plan when the plan is executed.

The algorithm presented in [2], [3] receives as input a 3-D

map of the environment and it returns as output a search plan.

Once that a plan is generated, it can be used several times

for finding an object as long as the environment does not

change. The fact that the cost of planning will be amortized

over many instances of a problem provides a justification

for spending time in generating the plan. In our setting each

instance of a problem corresponds to a different unknown

location of the object that is sought. However, when the

environment changes, the plan should be modified.

The motivation that drives the technique that we present

in this paper is that if the environment only changes locally,

there is not need to change the whole search plan. For

example, imagine the following scenario: a plan has been

generated for finding some object inside a house, but after

the generation of the plan, some furniture inside the house

has changed location, however the house building has not

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-455-8/11/$26.00 ©2011 IEEE 4528

changed. In this kind of situations, the method proposed

in the paper is applicable and useful. In this paper, we

propose a method to repair a previously computed plan, for

dealing with local changes in the 3-D environment. We base

our approach on a 3-D convex regions decomposition, in

which the environment is divided. The plan is repaired by

generating a new sub-set of sensing configurations and a new

order for visiting those configurations, only considering the

convex regions related to the change in the map of the 3-D

environment.

The important advantage of repairing a plan instead of

generating again the whole plan is that the time needed to

repair the plan is in general significantly smaller than the

time needed to generate again the whole plan. This time

actually depends on the percentage of the environment that

has changed.

II. THE ORIGINAL PLAN GENERATION

In our formulation, we assume that the environment is

known, but that we do not have information about the

location of the static object being searched. This is equivalent

to defining an uniform probability density function (pdf)

modeling the object location. We believe that this reasoning

is general given that we do not need to assume a relation

between a particular type (class) of object and its possible

location (for instance, balloons are floating but shoes lie on

the ground), which could reduce the scope of the applica-

tions.

The robot senses the environment at discrete configura-

tions qi (also known as guards, from the art gallery problem

[12]). Let’s call V (qi) the visibility region associated to

the limited sensor. Our searching strategy is as follows:

first the whole environment is divided into a set of convex

regions. To split the environment into convex regions we

use the probabilistic convex cover proposed in [15]. That

method divides the environment into a set called {Cr}, so

that the union of all Cr covers the whole environment, that

is
⋃

r Cr = int(W). The interior of the workspace int(W)
is the free space inside the 3-D environment, Cr denotes

a convex region in a 3-D environment, and r indexes the

region label. Note that all points inside Cr can be connected

by a clear line of sight from any point p(x, y, z) inside

Cr. Second, each convex region is covered with the sensor

frustum denoted by F .

We establish a route to cover the whole environment by

decomposing the problem also into two parts: First an order

to visit convex regions Cr is established. Second, sensing

configurations in a configuration space C of 7 dimensions

are generated to collectively cover each convex region. These

sensing configurations are linked in a graph and perform a

graph search to establish the order to visit the configurations

associated to a single convex region.

In [14] it has been shown that the problem of determining

the global order for visiting sensing locations, which min-

imizes the expected value of the time to find an object is

NP-hard, even in a 2-D polygonal workspace with a point

robot. Hence, in [14], [16], we have proposed an efficient

algorithm, which aims just to diminish the expected value of

the time. In this paper, we use that algorithm to establish the

orders for visiting convex regions and for visiting sensing

configurations inside a single convex region.

Below, we briefly describe the main concepts that found

the algorithm proposed in [14], [16].

The route followed by the robot corresponds to an order of

visiting sensing configurations qi,k that starts with the robot’s

initial configuration and includes every other configuration.

While qi refers to a configuration, qi,k refers to the order in

which configurations are visited. That is, the robot always

starts at qi,0, and the kth configuration that the robot visits

is referred to as qi,k.

For any route R, we define the time to find the object T as

the time it takes to go through the configurations – in order

– until the object is first seen. The expected value of the time

to find an object depends on two main factors: 1) the cost

of moving the robot between two configurations, which is

the elapsed time, and 2) the probability mass of seeing the

object, which is equivalent to the gain.

The expected value of the time that a route takes to find

the object is defined as follows:

E [T |R] =
∑

j

tjP (T = tj) (1)

where

P (T = tj) =
V olume

(

V (qi,j) \
⋃

k<j V (qi,k)
)

V olume(int(W))
. (2)

Here, tj is the time it takes to the robot to go from its ini-

tial configuration – through all sensing configurations along

the route – until it reaches the jth visited configuration qi,j ,

i refers to the label (identifier) of the configuration. Since

the robot only senses at specific configurations, P (T = tj)
is the probability of seeing the object for the first time from

configuration qi,j . The probability of seeing the object for

the first time from configuration qi,j is proportional to the

volume visible from qi,j minus the volume already seen from

configurations qi,k, ∀k < j as stated in Eq. 2.

We use the utility function defined below to measure how

convenient it is to visit a determined configuration from

another:

U (qk, qj) =
P (qj)

T ime (qk, qj)
. (3)

This means that if a robot is currently in qk, the utility of

going to configuration qj is directly proportional to the prob-

ability of finding the object there and inversely proportional

to the time it must invest in traveling. A robot using this

function to determine its next destination will tend to prefer

configurations that are close and/or configurations where the

probability of seeing the object is high. P (qj) is equal to

P (T = tj) defined in Eq. 2.

The utility function in Eq. 3 is sufficient to define a 1-step

greedy algorithm. At each step, simply evaluate the utility

function for all available configurations and choose the one

with the highest value. This algorithm has a running time of

O
(

n2
)

, for n configurations.

4529

However, it might be convenient to explore several steps

ahead instead of just one to try to “escape local minima”

and improve the quality of the solution found. So, we use

this utility function to drive a partially greedy algorithm.

Our algorithm is able to explore several steps ahead without

incurring a too high computational cost. In the worst case,

our algorithm has a running time complexity of O
(

n3 logn
)

.

A description of this algorithm can be found in [16], together

with a comparison between the performance of the algorithm

(in terms of the expected value of the time to find the object)

vs. the optimal path. We stress that our algorithm often

reduces in 3 orders of magnitude the computational running

time compared with the algorithm needed to find the optimal

solution, which is exponential since the optimization problem

to be solved is NP-hard.

A. Paths to move between convex regions

Since the expected value of the time depends on the cost

(time) of moving the robot between sensing configurations,

we need to find shortest paths to move the robot between

convex regions.

Our convex cover gives flexibility about the first sensing

configuration to be visited associated to a given convex

region Cr. Any configuration qi which places the robot’s

sensor inside Cr is a valid configuration. The actual paths

depend on the metric used to measure cost to move between

convex regions. One way to define the cost between two

configurations X and Y in a D-dimensional configuration

space is

‖X − Y ‖Λ ≡ (X − Y)TΛ(X − Y), (4)

where Λ is a diagonal matrix with positive weights

λ1, λ2, . . . λD assigned to the different DOFs.

Our planner coordinates the translation of the robot base

and the rotations of base and the arm’s links, such that both

translation and rotations happen at once, then the cost of

moving the arm is zero (in terms of elapsed time), since the

motions (translation and rotations) are simultaneous.

Consequently, we consider that the coordinates (x, y)
defining the position are the DOFs determining the cost of

moving the whole system. Hence, we optimize only these

two DOFs. To find the shortest path between one given

convex region and all the others, we use the wavefront

expansion (called NF1) proposed in [9]. We determine the

other DOFs using a randomized sampling procedure. Thus,

a robot path to move between convex regions is a sequence

of robot’s configurations, in which some DOFs are planned

optimally and the others do not produce collisions between

the robot and the obstacles (see [2]).

B. Selecting and connecting sensing configurations inside a

single convex region

The method that we propose [2], [3] to cover each convex

region with a limited sensor is based on sampling. A video

showing some simulation results reported in [2] can be found

at:

http://www.cimat.mx/%7Emurrieta/Papersonline/VideoIber.wmv

Sensing configurations q(i,r) are generated with a uniform

probability distribution in a configuration space C of 7
dimensions: A sensing configuration q(i,r) is associated to

a given region Cr. Each convex region has associated a set

Sr of point samples sr ∈ Sr. Each point sample sr lies

in the 3-D space, and is defined by a 3-dimensional vector

p(x, y, z). We use Sr to cover the convex region Cr with a

limited sensor.

Our algorithm for selecting sensing configurations has

been inspired from the algorithm presented in [7], that

method was designed to cover the boundary ∂P of a polygon

P , we have extended the method to cover the interior of the

polyhedral representation of a 3-D environment int(W).
In our method, the point samples lying inside the frus-

tum associated to a sensing configuration q(i,r) are used

to approximate the actual visibility region V (q(i,r)). The

robot’s configurations used to cover a convex region have the

property that all of them place the sensor inside the convex

region being sensed. This property allows us to approximate

the visibility region of the limited sensor without complex 3-

D visibility computations. The visibility region of the limited

sensor at configuration q(i,r) is approximated by:

V (q(i,r)) =
⋃

s

sr ∈ int(F ∩Cr) (5)

Where s indicates sample points.

Fig. 1. Sets {sr} and {sv)}

While covering region Cr, we also mark as sensed and

logically remove, all samples sv belonging to region Cv, v 6=
r, if sv ∈ int(F ∩ Cr ∩ Cv). It is guaranteed, that these

samples are not occluded from configuration q(i,r). In figure

1 dark (magenta) dots are used to show the set Sv , and

light gray (yellow) dots represent the set of point samples

Sr belonging to the region in which the sensor resides and

inside the frustum. A convex region Cr is totally covered if:
⋃

s

sr ∈ int(Cr) = Sr (6)

We select sensing configurations based on the cardinality

of its point samples. Iteratively, we select the configurations

with the largest cardinality of point samples sr until all the

set Sr is sensed. Redundant sensing configurations, with low

point samples cardinality are avoided, yielding a reduced set

4530

containing only sensing configurations with high cardinality

of point samples and a small number of redundant point

samples.

Additionally, in our sensing configuration sampling

scheme, we reject candidate sensing configurations in whose

view frustum is in collision with the robot itself, thus,

avoiding occlusions generated by the robot body. We also

reject sensing configurations, that produce a collision of the

robot with the obstacles and robot self-collisions.

Since we want to have options to move the robot between

sensing configurations, and thus further reduce the expected

value of the time to find the object, we connect the sensing

configuration of each set {q(i,r)} into a fully connected

graph. For reducing the computational time to cover the

environment with a limited sensor, we estimate the cost to

move between sensing configuration as a straight line in the

configuration space C.

In the motion planning problem of generating collision

free paths to move between configurations, we use a lazy

collision checking scheme [13]. Since we proceed visiting

convex regions one by one, it is likely to find collision

free paths among configurations to cover the same convex

region. Often a small region can be covered with small robot

motions, and big regions offer large open space to move the

robot. We postpone the collision checking until an order of

sensing configurations is established. Evidently, sometimes

the fully connected graph splits into two connected compo-

nents, if so, we use an RRT [11] to find a collision-free path

between the two components. We stress that we have found

in our experiments that only 1
10 of the total number of paths

to sense convex regions are computed with an RRT. All other

times, a straight line in C was enough to find collision free

paths.

To cover a single convex region the robot travels a tour, the

first sensing configuration and the last one is the same, this

allows to preserve the path and its cost of moving between

convex regions, and consequently the order to visit them,

which has been previously planned.

III. REPAIRING THE PLAN

A. Dividing the environment into convex regions

In [15] we have proposed an algorithm for a convex

cover. That algorithm is based on sampling and divides the

environment into overlapping convex regions. Roughly, the

algorithm works as follows: first, to capture the size and

shape of the workspace W we generate a set of independent,

uniformly distributed samples S in the interior of W . Among

these samples, we choose a hidden guard set G. A set is

called a hidden guard set if it covers the environment and

individual members of the set are not visible to each other.

There will be a set of sample points that only one particular

guard can see. We call this set of points, the kernel of the

guard g ∈ G. Second, guard kernels are divided into convex

region by using convex hulls. The resulting convex regions

are expanded by adding sample points as long as doing so

does not generate a collision with the obstacles. The main

idea behind our convex cover algorithm is that by growing

convex regions around the guard kernels, we can generate a

low cardinality convex cover (A detailed description of this

algorithm can be found in [15]).

B. Modifying the convex cover to deal with changes in the

environment

The changes in the environment are detected using the

original convex cover. Indeed, the change of location of

an obstacle in the environment will produce the following

modifications over the convex regions originally generated.

1) The regions related to the original location of the obstacle

must be modified 2) the regions related to the new position

of the obstacle must also be modified. Let us call the first

set of regions {C}t and the second set {C}t+1.

To define which regions are members of {C}t, it is

necessary to detect the regions which are adjacent to the

original obstacle position. A way (among others) of detecting

these regions is by measuring the distance between the

convex regions and the obstacle. All regions which are

closer than a given small ǫ to the obstacle are members of

{C}t. The set of regions {C}t has associated a set of point

samples called St. The point samples in the interior of the

union of all the regions in {C}t forms the set St, that is

St =
⋃

s s ∈ int({C}t).
Defining which regions are members of {C}t+1 is simple.

Merely all original convex regions are tested for collision

with the obstacle at its new location, those regions in

collision belong to {C}t+1. The set of regions {C}t+1 has

also associated a set of point samples called St+1, which

is defined by St+1 =
⋃

s s ∈ int({C}t+1) We also need to

determine the point samples in collision with the original and

new obstacle locations. Let’s call the set of point samples in

collision with the obstacle at its original location Obst, and

the set of samples in collision with the obstacle at its new

location Obst+1.

The key idea to compute the new convex regions needed

to take into account of the change of the map is the

following: only a subset of the samples used to compute the

original convex cover are given as input to the algorithm that

generates the local convex cover decomposition considering

the change in the map. Let’s call this subset S∆. The set S∆

is the union of the point samples of the sets St, St+1 and

Obst minus the samples of the set Obst+1, that is:

S∆ =
⋃

s

s ∈
(

St

⋃

St+1

⋃

Obst

)

\Obst+1 (7)

The polyhedral representation of the environment con-

sidering the new obstacle location, and the set of point

samples S∆ are given as inputs to the convex cover algorithm

proposed in [15]. The algorithm returns as outputs the new

set of convex regions needed to take into account the change

in the environment. We call this set {C}∆.

Let’s call {F} to the set of all the original convex

regions, and {N} to the set of all convex regions after

having modified the environment. This new set of convex

regions is composed by the original regions that have not

4531

been eliminated (i.e. {F} \ ({C}t
⋃

{C}t+1) plus the set

{C}∆, that is: {N} = ({F} \ ({C}t
⋃

{C}t+1))
⋃

{C}∆.

{N} totally covers the modified environment.

C. Modifying the orders to visit convex regions and sensing

configurations

As it was mentioned above, the problem of generating

an order to visit sensing configurations was planned in two

steps: first an order to visit convex regions is computed (we

call it the global plan). Second, for every convex region an

order to visit sensing configurations is established. Origi-

nally, this heuristic was proposed to reduce the computational

running time to generate a search route. We will show now

that this heuristic of dividing the large problem into several

smaller sub-problems also facilities to repair a previously

computed plan.

In order to repair the previously computed search path,

several options are possible. For instance, one is just to

recompute the order for visiting convex regions and try to

preserve as much as possibly the local orders for visiting

sensing configurations inside each convex region. However,

under the assumption that the change in the environment

is local, it makes sense to modify the global plan only

locally, preserving as much as possible the order to visit

convex regions. This approach has the advantage that the

computational running time to repair the plan is typically

smaller than the one needed to recompute the whole global

plan, adding reactivity to the re-planning process.

For repairing the plan, the spatial location of the new

convex regions is taken into account. Furthermore, the new

convex regions will appear at spatial locations related to the

site occupied by the regions belonging to {C}t and {C}t+1.

The goal of algorithm 1 is to compute a new order for

visiting regions, preserving as much as possible the original

global plan. Let’s call {O}F to the ordered set of original

convex region, and {O}N to the new ordered set of convex

regions.

First, the set {F} is ordered according to which region

is visited earlier (by the robot) in the original global plan

(line 1 in algorithm 1). The approach to order {F} is briefly

described in section II, more details can be found in [14],

[2].

Regions Cr,j index the elements of this set; r refers to

the region’s label (region’s identifier), and j refers to the jth

visited region. Regions Cv ∈ {C}∆ are the new generated

regions, v refers to the region’s label.

Regions Cr,k index the elements of {O}N (k refers to the

kth visited region in the new set {O}N).

Second, all regions Cr,j ∈ ({C}t
⋃

{C}t+1) are elimi-

nated in the new plan. Every region Cr,j ∈ ({C}t
⋃

{C}t+1)
is checked for collision with every region Cv ∈ {C}∆.

Notice that more than one region Cv might intersect the

same region Cr,j . All regions in {C}∆, which intersect the

same Cr,j are stored in the set {C}aux (line 7 in algorithm

1). Let’s call aj the cardinality of the set {C}aux, for each

region Cr,j .

Algorithm 1 Computing the new order to visit convex

regions

Input: Sets: {F}, ({C}t
⋃

{C}t+1), {C}∆.

Output:{O}N new ordered set of convex regions.

1. {O}F ← Order{F};
2. k = 1, e = a = 0;

for j = 1 to |{O}F | do

3. Cr,j ← {O}F ;

if Cr,j ∈ ({C}t
⋃

{C}t+1) then

4. {C}aux ← ∅;
5. e = e+ 1;

for n = 1 to |{C}∆| do

6. Cv ← {C}∆;

if (Cr,j

⋂

Cv 6= ∅) then

7. {C}aux ← Cv;

8. a = a+ 1;

end if

end for

9.{C}∆ ← {C}∆ \ {C}aux;

10. Local-Order({C}aux,qrobot ∈ Cr,k);
11. {O}N ← {C}aux;

else if Cr,j /∈ ({C}t
⋃

{C}t+1) then

if e = 0 then

12. {O}N ← Cr,j ;

13. k = j;

else if e 6= 0 then

14. k = j + a− e;

15. Cr,k = Cr,j ;

16. {O}N ← Cr,k;

end if

end if

end for

In algorithm 1 (line 10), the method Local-Order is used

to establish the order for visiting regions in {C}aux; qrobot ∈
Cr,k denotes the first visited robot configuration in convex

region Cr,k. Local-Order does the following. Assuming that

the robot is located at qrobot ∈ Cr,k, 1-step ahead evaluation

of the utility function in Eq. 3 is used to establish the region

Cv,k+1. The region which maximizes Eq. 3 is chosen to be

the k+1 region to be visited in the new order. Assuming now,

that the robot is located at qrobot ∈ Cv,k+1 and again using 1-

step ahead utility function evaluation, the remaining (aj−1)
regions in {C}aux are evaluated to determine the visited

region Cv,k+2 ∈ {O}N , and so forth until all aj regions

are ordered. For establishing an order for visiting regions in

{C}aux, the case in which the robot is already located at

region Cv,k ∈ {C}aux must be considered. This mean that

the cost to travel to this region is zero, and therefore there

is not need to evaluate the Eq. 3.

Third, the regions Cr,j /∈ ({C}t
⋃

{C}t+1) are included

in the new order with the following simple rules: If no region

Cr,j has been eliminated then k = j, and region Cr,k has the

same place in the order as region Cr,j (line 12 in algorithm

1). If at least one region Cr,j has been eliminated from the

4532

original plan then k = j + a− e, in which a is the number

of new regions added to the new plan until that j, and e is

the number of regions which have been eliminated also until

that j (lines 14, 15 and 16 in algorithm 1).

Note that each region Cv ∈ {C}∆ is included only once

in the new plan. The location of the first region Cr,j which

intersect region Cv is taken into account to establish the

order of region Cv in the new plan. Once a region Cv is

included in the new plan, it is eliminated from {C}∆ (line

9 in algorithm 1). This procedure avoids redundancy in the

new plan. Since regions Cv ∈ {C}∆ replace regions Cr,j ∈
({C}t

⋃

{C}t+1), there is not need of including a region Cv

more than once. The new order is complete when all original

Cr,j regions have been considered.

The collision free paths to move the robot between new

convex regions in {C}∆, and between a region in {F} and

a region in {C}∆ is a sequence of robots configurations,

in which some DOFs are planned optimally (using the

wavefront expansion proposed in [9]) and the others do not

produce collisions between the robot and the obstacles, as we

have described in Section II-A. Finally, new local plans are

computed for visiting sensing configurations associated to

every new region in {C}∆. These local plans are computed

with the approach described in Section II-B.

Since in our original global plan for covering the envi-

ronment with the limited sensor, while covering region Cr,

all samples sp belonging to region Cp (p 6= r) are marked

and logically removed (whenever sp ∈ int(F ∩ Cr ∩ Cp)),
then it is necessary to recompute new local plans for regions

Cr,j /∈ ({C}t
⋃

{C}t+1), which intersected regions that

have been eliminated and were before in the original order

of visiting convex regions. Those new local plans are also

computed with the approach described in Section II-B.

IV. SIMULATION RESULTS

All the results presented in this paper were obtained with

a regular PC running Linux OS, the processing speed of the

CPU is 2.2 GHz. The programming language used to obtain

our simulation results was C++. In the figures a (cyan) mesh

is used to show the convex regions. Initially, the environment

was divided in 11 convex regions, 44 sensing configurations

were needed to cover the environment with the limited

sensor. The original order to visit convex regions was the fol-

lowing: Cid9,1 → Cid7,2 → Cid6,3 → Cid11,4 → Cid1,5 →
Cid2,6 → Cid3,7 → Cid8,8 → Cid5,9 → Cid10,10 → Cid4,11.

The total computational running time to generate the original

plan (for covering the whole environment with the limited

sensor) was 1 minute and 58 seconds. The expected value

of the time for finding the object associated to this plan was

796.02 units.

Figure 2 (a) shows the initial robot configuration and the

convex region Cid9,1. Figures 2 (b) shows the robot having

the sensor inside region Cid7,2. Figure 2 (c) shows the path

to move between regions Cid1,5 and Cid2,6. Figure 3 (a)

shows the global path to visit convex regions. Figure 3 (b)

shows with light gray (yellow) the point samples used to

approximate the visibility region of the limited sensor.

(a) Region Cid9,1

(b Region Cid7,2

(c) Path Cid1,5 → Cid2,6

Fig. 2. Finding an object

4533

(a) Global path

(b) Covering region Cid2,6 with the limited sensor

Fig. 3. (a) Global path and (b) covering region Cid2,6

The original plan was modified as follows:

({C}t
⋃

{C}t+1)={Cid4,11, Cid5,9, Cid6,3, Cid7,2, Cid8,8, Cid9,1,
Cid10,10, Cid11,4}.
C∆ = {Cid12, Cid13, Cid14, Cid15, Cid16, Cid17, Cid18, Cid19}.
Thus, 8 regions were removed of the original plan and 8 new

regions were generated. The new order for visiting convex

regions is: Cid17,1 → Cid18,2 → Cid16,3 → Cid14,4 →
Cid13,5 → Cid19,6 → Cid15,,7 → Cid12,8 → Cid1,9 →
Cid2,10 → Cid3,11. 43 sensing configurations were needed to

cover the modified environment. The computational running

time to modify the original plan was 21.5 seconds. The

expected value of the time for finding the object associated

to the new plan is 771.20 units.

Figure 4 (a) shows the new obstacle (a bookshelf) loca-

tion and the robot having the sensor inside region Cid18,2.

Figure 4 (b) shows the path between regions Cid18,2 and

region Cid16,3. Figure 4 (c) shows the path between region

Cid12,8 and region Cid1,9. Figure 5 (a) shows the 4 sensing

(a) New obstacle location and region Cid18,2

(b) Path Cid18,2 → Cid16,3.

(c) Path Cid12,8 → Cid1,9

Fig. 4. New order

4534

configuration that collectively covers with the limited sensor

the convex region Cid18,2. Figure 5 (b) shows the new global

path to visit all convex regions.

(a) Sensing configurations, region Cid18,2

(b) New global path

Fig. 5. (a) Sensing configurations, Cid18,2 , and (b) new global path

The sub-order, sensing configurations and paths to cover

the room in which the obstacle has changed location were

modified. However, the sub-order, the paths and sensing

configurations to cover the other two rooms were preserved.

In the experiment included in this paper, the expected value

of the time was improved with the new plan. We have found

that in general, the expected value of the time for finding the

object is almost the same after having update the plan.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach for repairing

previously computed plans for searching for an object in

3-D environments. The object is sought with a 7 degrees

of freedom mobile manipulator robot with an “eye-in-hand”

sensor. The sensor is limited in both range and field of

view. We have shown that whenever the environment changes

locally our plan can also be repaired locally. We base our

approach on a 3-D convex regions decomposition dividing

the environment. The plan is repaired by generating a new

sub-set of sensing configurations and a new order for visiting

those configurations, only considering the convex regions

related to the change in the map of the 3-D environment. The

important advantage of repairing a plan instead of generating

again the whole plan is that the computational running time

needed to repair the plan is in general significantly smaller

than the time needed to generate again the whole plan, while

the expected value of the time for finding the object almost

remains the same. We have implemented all our algorithms,

and we present simulation results in realistic environments.

As a future work we want to test our approach in a real

robot together with a computer vision algorithm to detect

the object.

REFERENCES

[1] E. U. Acar, H. Choset, and P. N. Atkar, “Complete sensor-based
coverage with extended-range detectors: A hierarchical decomposition
in terms of critical points and voronoi diagrams,” in Proc. IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, IEEE/RSJ-IROS 2001.
[2] J. Espinoza and R. Murrieta-Cid, A Motion Planner for Finding an

Object in 3D Environments with a Mobile Manipulator Robot Equipped
with a Limited Sensor, In Proc IBERAMIA-2010, LNCS Vol. 6433, pages
532-541, Bahia Blanca, Argentina.

[3] J. Espinoza, A. Sarmiento, R. Murrieta-Cid and Seth Hutchinson,
A Motion Planning Strategy for Finding an Object with a Mobile
Manipulator in 3-D Environments, To appear in Journal Advanced
Robotics, 2011.

[4] J. E. Goodman and J. O’Rourke, Eds. Handbook of Discrete and

Computational Geometry, CRC Press, 1997.
[5] S. Hert, S. Tiwari, and V. Lumelsky, A terrain-covering algorithm for

an auv, Autonomous Robots, vol. 3, pp. 91–119, 1996.
[6] D. Hsu, J. C. Latombe, and R. Motwani, “Path planning in expansive

configuration spaces,” in Proc. IEEE Int. Conf. on Robotics and
Automation, IEEE-ICRA 1997.

[7] H.H. González and J.-C. Latombe, A Randomized Art-Gallery Algo-
rithm for Sensor Placement. Proc. 17th ACM Symp. on Computational
Geometry (SoCG’01), 2001.

[8] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
Jun 1996.

[9] J.-C. Latombe. Robot Motion Planning. Kluwer A.P., 1991.
[10] S. LaValle, Planning Algorithms, Cambridge University press, 2006.
[11] S. M. LaValle and J. J. Kuffner, Randomized kinodynamic planning.

International Journal of Robotics Research, 20(5):378–400, May 2001.
[12] J. O’Rourke, Art Gallery Theorems and Algorithms. Oxford Univer-

sity Press, 1987.
[13] G. Sanchez and J.C. Latombe, A Single-Query Bi-Directional Proba-

bilistic Roadmap Planner with Lazy Collision Checking. ISRR’01, R.A.

Jarvis and A. Zelinsky eds. STAR, 2003.
[14] A. Sarmiento, R. Murrieta-Cid, and S. A. Hutchinson, “An effi-

cient strategy for rapidly finding an object in a polygonal world,” in
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1153-
1158, Las Vegas, USA, 2003.

[15] A. Sarmiento, R. Murrieta-Cid and S. Hutchinson, A Sample-based
Convex Cover for Rapidly Finding an Object in a 3-D environment,
Proc. IEEE Int. Conf. on Robotics and Automation, IEEE-ICRA 2005.

[16] A. Sarmiento, R. Murrieta-Cid, and S. A. Hutchinson, “An Efficient
Motion Strategy to Compute Expected-Time Locally Optimal Contin-
uous Search Paths in Known Environments,” Advanced Robotics, Vol
23, No 12-13, 1533-1569, October, 2009.

[17] T. Shemer, Recent Results in Art Galleries, Proc. IEEE, 80(9), pages
1384-1399, September 1992.

[18] T. Simeon, J. P. Laumond, and C. Nissoux, “Visibility based proba-
bilistic roadmaps,” Advanced Robotics Journal, vol. 14, no. 6, 2000.

4535

