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Abstract

This work studies the interaction of non-holonomic and visibility constraints
using a Differential Drive Robot (DDR) that has to keep static landmarks
in sight in an environment with obstacles. The robot has a limited sensor,
namely, it has a restricted field of view and bounded sensing range (e.g. a
video camera). Here, we mean by visibility that a clear line of sight can
be thrown between the landmark and the sensor mounted on the DDR. We
first determine the necessary and sufficient conditions for the existence of a
path such that our system is able to maintain one given landmark visibility
in the presence of obstacles. This is done through a recursive, complete
algorithm that uses motion primitives exhibiting local optimality, as they are
locally shortest-lengths paths. Then, we extend this result to the problem
of planning paths guaranteeing visibility among a set of landmarks, e.g. to
observe a given sequence of landmarks or to observe at each point of the path
at least one element of the landmarks set. We also provide a procedure that
computes the robot controls yielding such a path1.

Keywords: motion planning, landmark-based navigation

1. Introduction

In this work, we consider a differential drive robot (nonholonomic sys-
tem) equipped with a sensor limited in field of view (e.g. a video camera).

1A preliminary version of this work has been presented in the 2008 International Work-
shop on the Algorithmic Foundations of Robotics (WAFR’08) and published in Hayet et al.
[2010].
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The robot moves in an environment with obstacles that produce motion and
visibility obstructions. The task given to the robot is to compute a collision
free path between two configurations, while maintaining visibility of one or
several landmark(s) during the execution of the path. More precisely, we
present a complete planning algorithm2, that given a pair of initial and final
configurations and a set of N landmarks can determine whether or not there
exists a path that maintains visibility of (1) one specific landmark among the
N or (2) at least one of the N landmarks, during the execution of the robot
path. If such a path exists, our planner provides a constructive procedure
to execute it. This procedure computes the robot controls yielding such a
path. Note that, in general, during the execution of the resulting path, the
robot may switch from maintaining visibility of one landmark i to another
landmark j and then to another landmark k, and so on. The ability of our
planner to determine whether or not it is possible to maintain visibility of any
pair of landmarks, one after the other, can be used to generate a robot path
that maintains visibility of a given sequence of landmarks. Thus, our planner
can be used to accomplish navigation/surveillance tasks such as: Move the
robot from the red ball to the blue cube and then to the green pyramid, while
not losing sight of these objects, one after the other. Also, the ability of our
planner for generating robot paths that maintain landmarks visibility can be
useful for localization purposes. In this work, we also present applications to
robot localization and compare the evolution of the robot uncertainty when
the robot moves following paths generated with our planner, to the uncer-
tainty when moving in other paths planned without considering landmarks
visibility.

1.1. Related work

Our work is related to motion planning with nonholonomic constraints Laumond et al.
[1994]; Bicchi et al. [1996]; Souères and Laumond [1996]; Laumond [1998];
Balkcom and Mason [2002], motion planning with visibility constraints Isler et al.
[2005]; Michel et al. [2007], and landmark based robot navigation Lazanas and Latombe
[1995]; Roy and Thrun [1999]; Murrieta-Cid et al. [2002]; Ranganathan et al.
[2002]; Madhavan and Durrant-Whyte [2004]; Hayet et al. [2007] and local-
ization Sim and Dudek [1998]; Murrieta-Cid et al. [2002]; Se et al. [2005];

2Such an algorithm is guaranteed to return a correct solution when one exists, or to
report failure in finite time when a solution does not exist.
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Ranganathan et al. [2002]; Hayet et al. [2007]. A landmark used in robotic
navigation can be defined in many different manners: from single characteris-
tic image points Se et al. [2005], appearance-based representations Sim and Dudek
[1998, 2003], up to a 3D object associated with a semantic label and 3D po-
sition accuracy. . . Hayet et al. [2007]. In all cases, this definition involves at
some degree properties of saliency and invariance to viewpoint changes.

Motion planning with non-holonomic constraints has been a very active
research field (a nice overview is given in Laumond [1998]). The most im-
portant results in this field have been obtained by addressing the problem
with tools from Differential Geometry and Control Theory. Laumond pio-
neered this research and produced the result that a free path for a holonomic
robot moving among obstacles in a 2D workspace can always be transformed
into a feasible path for a non-holonomic car-like robot by making car ma-
neuvers Laumond et al. [1994]. The work in Bicchi et al. [1996] uses motion
primitives to build a basic path diagram, similar to a visibility graph, but
for non-holonomic vehicles.

In Murray and Sastry [1993], the authors investigate methods for steer-
ing systems with nonholonomic constraints between arbitrary configurations.
The authors define a class of systems, which can be steered using sinusoids.
However, as pointed out by the authors, the difficulty is to determine the size
of the free space allowed around the steering solution. In Laumond et al.
[1994], the authors show that if the robot path metric induces the same
topology as the metric used to measure distance between the robot and the
obstacles, then the existence of any � > 0 clearance between the robot and
the obstacles guarantees a feasible path. The authors addressed the case of
a car-like robot moving among obstacles, and provided a constructive pro-
cedure for finding a solution path between two robot configurations. In our
work, we find equivalent results as in Laumond et al. [1994], but for a differ-
ential drive robot equipped with a sensor limited in field of view, which must
maintain landmarks visibility in the presence of obstacles.

In Divelbiss and Wen [1997], the authors present an algorithm for find-
ing a feasible path for a nonholonomic system in the presence of obstacles.
First, the path-planning problem without obstacles is transformed into a
nonlinear least squares problem in an augmented space. Obstacle avoid-
ance is included as inequality constraints and simulations results for the
case of a tractor-trailer are presented. However, in Divelbiss and Wen [1997]
the authors did not show the convergence of the proposed algorithm, nei-
ther considered visibility constraints as in the work presented in this paper.
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In Michalek and Kozlowski [2011], the problem of proposing feedback con-
trollers for car-like robots is addressed. The effectiveness and limits of the
method have been illustrated by simulations. However, in Michalek and Kozlowski
[2011] the authors did not take into account either an environment with ob-
stacles or visibility constraints.

In the study of optimal paths for non-holonomic systems, Reeds and
Shepp determined the shortest paths for a car-like robot that can move
forward and backward Reeds and Shepp [1990]. In Souères and Laumond
[1996], a complete characterization of the shortest paths for a car-like robot
is given. In Balkcom and Mason [2002], Balkcom and Mason determined the
time-optimal trajectories for a DDR using Pontryagin’s Maximum Principle
(PMP) and geometry. In Chitsaz et al. [2009], the PMP is used to obtain the
extremal trajectories to minimize the amount of wheel rotation for a DDR.

One of the earliest works in landmark based robot navigation is the
one of Lazanas et al. Lazanas and Latombe [1995]. Geometric visibility is
not explicitly integrated; instead, each landmark defines a circular “safe
zone” in which the robot is supposed to sense and move without uncer-
tainty. The complete, polynomial algorithm uses back-chaining of omnidi-
rectional back-projections to compute plans in the presence of uncertainty.
In Briggs et al. [2004], the landmarks are seen as sub-goals to reach and
the planning uses a probabilistic framework to compute expected shortest
paths, in the landmarks graph. In Roy and Thrun [1999], a landmark-based
navigation approach has been proposed, that generates “coastal navigation”
paths. In a probabilistic robot localization task, an important advantage
of a landmark-based approach is that if landmarks are detected, they stop
the incremental growth of the robot position uncertainty Roy and Thrun
[1999]; Sim and Dudek [1998]; Murrieta-Cid et al. [2002]; Hayet et al. [2007];
Ranganathan et al. [2002].

On the specific problem of maintaining landmarks visibility, similar prob-
lems as the one tackled in this paper have been addressed from quite different
viewpoints. In Bhattacharya et al. [2007], it has been shown that the short-
est distance paths, in the absence of obstacles, for a DDR under angular and

visibility constraints only, are composed of three motion primitives: straight-
line segments, rotations in place without translation and logarithmic spirals.
In that same work, a characterization of the shortest paths for the system
based on a partition of the plane into disjoint regions was also provided. This
synthesis attempted to obtain the globally optimal paths in the absence of

obstacles. Later in Salaris et al. [2008], it has been shown that the synthesis
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presented in Bhattacharya et al. [2007] was incomplete and in Salaris et al.
[2010], the complete partition of the plane and the corresponding globally op-
timal paths in the absence of obstacles that connect any two configurations
of SE(2), while keeping one particular landmark in sight, has been proposed.

In visual servo-control, the problem of moving while keeping an object in-
sight has been usually dealt within a stack-of-tasks formalism Mansard and Chaumette
[2007]. High priority tasks may include collision avoidance and visibility
maintenance of a certain visual feature. An interesting related work is López-Nicolás et al.
[2010] that also uses a visual servoing strategy (based on homographies) to
control a DDR to follow some of the optimal paths proposed by Bhattacharya et al.
[2007] and commented above.

More recently, the (soft) visibility constraints have been integrated quite
naturally in a sampling-based scheme, by filtering out sampled configura-
tions that do not give minimal satisfaction w.r.t. the landmark visibil-
ity Michel et al. [2007]. However, the use of a sample-based strategy, a real-
istic alternative for complex articulated systems, is done at the cost of losing
deterministic completeness.

As shown in the aforementioned works, the use of landmarks for robot
navigation and localization is widespread in robotics Lazanas and Latombe
[1995]; Roy and Thrun [1999]; Murrieta-Cid et al. [2002]; Se et al. [2005];
Michel et al. [2007]; Hayet et al. [2007]; Bhattacharya et al. [2007]; López-Nicolás et al.
[2010]. In any of these contexts (navigation, localization. . . ), the first ba-
sic requirement to use landmarks is to be able to perceive them, especially
during the execution of robot motion, in spite of the sensors field of view
limitations. It is to this end that our current research efforts are focused on:
to integrate traditional kinematic constraints and obstacles altogether with
visibility constraints in the formulation of the motion planning problem.

2. Contributions and paper organization

In this work, we propose an approach that incorporates to the planning
the additional constraint that the robot has to be able to observe at least one

landmark at each point of its path. Obstacles in the environment generate
both, motion and visibility obstructions. An example of an output of this
algorithm is depicted in Figure 1. This Figure shows that the computed
plan (1) leads from a starting point to an end point through the execution
of several motion primitives that, as we will see, exhibit local optimality
properties and (2) is formed exclusively by robot configurations from which
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Figure 1: An example of input/output of our algorithm. Obstacles in the 2D en-
vironment are depicted as polygons, and the visibility areas of each landmark are
shaded. The black dots correspond to the landmarks that populate the environ-
ment, and the two circles centered on them are the minimal and maximal range of
the sensor. The planner outputs paths connecting a start point to an end point.

at least one of the three landmarks are visible with a camera-like sensor (i.e.
with angular limits and distance limits, the latter ones being represented by
the light gray discs). This is to our knowledge the first complete algorithm for
determining whether or not a path for a holonomic robot in the presence of
obstacles that has to maintain visibility of landmarks with a limited sensor
can be transformed into a feasible path for a DDR. We believe that our
research is very pertinent given that a lot of mobile robots are DDRs equipped
with limited field of view sensors (e.g., lasers or cameras) and to the wide
range of applications such as those mentioned in above. For the sake of
clarity, we will explain first the approach for a DDR that has to maintain one
single landmark visible (Section 6); then, we extend it to the case of a DDR
that has to maintain at least one landmark (among N) visible (Section 8).
Obviously, an algorithm capable of solving the second problem will also be
capable of solving the first.

As it was mentioned in the section of previous work, motion planning
with nonholonomic constraints as well as motion planning under visibility
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constraints have been two very active topics in the robotics community.
But, to our knowledge, the works most closely related to our approach
are Laumond et al. [1994]; Bhattacharya et al. [2007]; Salaris et al. [2010].
In Laumond et al. [1994], a complete algorithm for moving a car-like robot
in an environment with obstacles from an initial to a final configuration has
been presented. One of the main results presented in Laumond et al. [1994]
states that a free path for a holonomic robot moving among obstacles in
a 2D workspace can always be transformed into a feasible path for a car-
like robot by making car maneuvers Laumond et al. [1994]. In this work,
we follow a methodology similar to the one proposed in Laumond et al.
[1994]. However, there are two important differences between our work
and Laumond et al. [1994]: 1) Our system is a differential drive robot and
not a car-like system; 2) We consider the sensing constraint of maintain-
ing visibility of landmarks. Visibility restrictions have not been consid-
ered in Laumond et al. [1994]. In Bhattacharya et al. [2007], the problem
of planning optimal Euclidean distance paths for a differential-drive robot
with limited sensing, that must maintain visibility of a single landmark
as it navigates in an environment without obstacles, has been formulated.
In Bhattacharya et al. [2007], the three locally optimal motion primitives for
the problem have been found. In Salaris et al. [2010], the complete partition
of the plane and the corresponding globally optimal paths for the problem
stated in Bhattacharya et al. [2007] have been determined. Although we use
results from Bhattacharya et al. [2007]; Salaris et al. [2010], there are new
significant contributions in this work compared with the results obtained
in Bhattacharya et al. [2007] and Salaris et al. [2010]: 1) We consider an en-
vironment populated with obstacles; 2) We extend the work for maintaining
visibility of a sequence of landmarks in contrast to a single one. It is also
important to notice that while in Salaris et al. [2010] (for an environment
without obstacles and a single landmark) the resulting paths are globally
optimal, in this work, in general, the resulting paths are only feasible.

A preliminary version of portions of this work appeared in Hayet et al.
[2010]. The main distinguishing features of our current work compared with
our previous research in Hayet et al. [2010] are: 1) We extend our work for
maintaining visibility of a sequence of landmarks in contrast to a single one.
2) We provide a complexity characterization of our algorithm. 3) We apply
our approach to probabilistic robot localization, and we compare the robot
localization uncertainty while the robot moves following paths generated by
our planner with other paths that do not necessarily sense landmarks during
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their execution. 4) We implement our approach for landmark-based naviga-
tion on a real robot.

The remainder of this paper is organized as follows: In Section 3, we
present in detail our problem formulation and the notations that we will use
throughout the paper. In Section 4, we provide the controls for the execu-
tion of the locally optimal motion primitives. In Section 5, we present a brief
summary of the complete synthesis (presented in Hayet and Murrieta-Cid
[2009]; Salaris et al. [2010]), yielding the globally optimal paths for main-
taining visibility of a single landmark, in an environment without obstacles.
This synthesis is used, as one of the components, in the generation of a
path in the presence of obstacles. In Section 6, we present a complete mo-
tion planner for a holonomic disc, which generates collision-free paths while
maintaining a single landmark visibility. The path generated by this holo-
nomic planner is used to obtain connectivity in the configuration space. In
Section 7, we propose a motion planner that integrates the non-holonomic
constraints executing robot maneuvers, which correspond to the execution of
the locally optimal motion primitives. In Section 7.3, we study the properties
of completeness and complexity of this planner. Section 8 extends the plan-
ner to obtain paths maintaining visibility of at least one of the N landmarks.
Section 9 presents experiments done in order to prove the effectiveness and
pertinence of our algorithm. Finally in Section 10, we present the conclusion
and future work.

3. Problem settings and approach overview

The DDR is described in Figure 2. It is controlled through the angular
velocities of its wheels wl and wr. We make the usual assignment of a x�y�

frame attached to the robot. The origin is at the midpoint between the two
wheels, y�-axis parallel to the axle, and the x�-axis pointing forward. The
angle θ is formed by the world x-axis and the robot x�-axis. The robot can
move forward and backward. The heading is the direction in which the robot
moves, so it is either zero (forward move) or π (backward move) with respect
to the robot x-axis. The position of the robot w.r.t some global frame R
will be defined either in Cartesian coordinates (x, y) or in polar coordinates
(r, α): r =

�
x2 + y2, α = arctan y

x
3. Figure 2 sums up these conventions.

3It will always be assumed in the remainder that the polar angle is computed in such
a way that no orientations are lost, i.e. as arctan 2(y, x)
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Figure 2: DDR with sensor restrictions in angle (i.e. on the sensor angle φ) and target
visibility. The robot visibility region is the shaded region.

The robot is equipped with a pan-controllable sensor with limited field of
view (e.g., a camera), that can move w.r.t. the robot basis (e.g., a pan-tilt-
zoom camera). We assume that this sensor is placed on the robot so that
the optical center always lies directly above the origin of the robot’s local
coordinate frame, i.e., the center of rotation of the sensor is the same as the
one of the robot. Its pan angle φ is the angle from the robot x�-axis to its
optical axis. The sensor is limited, both in angle and in range: φ ∈ [φ−, φ+].

We suppose that the workspace is populated with N landmarks Li lo-
cated at positions Li = (xi, yi) relative to R. Associated to each landmark
Li is a local frame Ri with axis parallel to the ones of R and in which we
can locate the robot by its cartesian coordinates (x(i), y(i)) or polar coor-
dinates (r(i), α(i)). The constraints we handle for this system are three-fold:
kinematic constraints, landmark visibility constraints and sensor constraints.

Assume first that the robot moves in the absence of physical obstacles.
We will remove this assumption later. Moreover, let us cope with just one

landmark, say L1. We will then extend the problem to observe at least one
of the Li. Hence, we will use R = R1 up to Section 8.

The non-holonomy constraint arises from the robot mechanism (i.e., the
DDR instantaneous velocity is in the robot direction), and translates into

ẏ cos θ − ẋ sin θ = 0. (1)

The visibility constraint results from constraining the landmark L1 to be
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at the center of the robot gaze, which can be written (see Figure 2),

θ = α− φ + (2k + 1)π, k ∈ Z. (2)

Sensor constraints can be defined classically, e.g. in terms of physical
bounds on the sensor range,

φ− ≤ φ ≤ φ+. (3)

The values φ− < 0 and φ+ > 0 are the angle sensor limits. From now, we
simplify the problem by setting φ− = −φ+ (i.e., symmetric sensor).

We also add constraints on the sensor range, e.g. the locations p from
which L1 is visible are such that the Euclidean distance from (x1, y1) to p,

d
(1) ≤ r

(1) ≤ D
(1)

. (4)

The parameters d(i) and D(i) are minimal and maximal ranges for the
sensor with respect to Li. They may vary with the landmark size. Notice that
these limitations on the sensor induce landmark-dependent virtual obstacles
in the configuration space even without physical obstacles. Also, note that
the two sensor constraints presented here will be treated differently: the
angular constraints will be managed at the motion level, whereas the range
constraints will be managed as “regular” (but virtual) obstacles.

Approach overview. As mentioned above, we follow a incremental
methodology, similar to the one in Laumond et al. [1994] for a DDR equipped
with a sensor with a limited field of view. First, we propose a complete
motion planner for a holonomic disc, which generates collision-free paths
while maintaining landmark visibility. Notice that if a path does not exist
for a holonomic robot then a path neither exists for a nonholonomic system
with the same shape and size. The work reported in Laumond et al. [1994]
uses the complete planner proposed in Avnaim and Boissonat [1988], for a
holonomic polygonal robot moving amid polygonal obstacles, to establish
whether or not a path for a holonomic robot exists. In this paper, we propose
a planner for a holonomic disc. On one hand, the assumption about the
shape of the robot (i.e. a disc) facilitates the task, but on the other hand
we also consider visibility constraints in our holonomic planner. Second, we
use the shortest path synthesis Salaris et al. [2010] (partition of the plane)
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for a DDR with visibility constraints to generate a candidate robot path;
if the former is collision free, we use it to move the robot and take the
optimal path in terms of the Euclidean distance for maintaining visibility of
a single landmark. Third, if this path is in collision with an obstacle then it
is recursively divided until a collision free path is obtained. Each element of
the modified path corresponds to one locally optimal motion primitives from
Bhattacharya et al. [2007]. Based on the equivalence between the metric
induced by the shortest path of our system and the Euclidean metric used
to compute the distance between the robots and the obstacles, we show that
the recursive division does converge. Finally, we present an algorithm to
maintain visibility of a sequence of landmarks, which keeps the completeness
of the approach for a single landmark.

4. Controls for executing the locally optimal primitives

Our robot state transition equation has two controls, as, in this scheme,
we suppose that the sensor is pointing to the landmark by adjusting its angle
value according to equation 2. Hence, the sensor control is not independent
in this motion analysis. The state transition equation is:




ẋ

ẏ

θ̇



 =




cos θ 0
sin θ 0

0 1




�

u1

u2

�
, (5)

which corresponds to the classical DRBalkcom and Mason [2002]; LaValle
[2006], where u1 = wr +wl is the linear velocity and u2 = wr−wl the angular
one.

As recalled hereafter, shortest lengths paths satisfying non-holonomic,
visibility and sensor angle constraints can be locally only one of three motion

primitives, straight lines, rotation in place and logarithmic spirals (see Sec-
tion 5). The vector field associated to the straight line is

−→
X1 = (cos θ, sin θ, 0)T ,

the one associated to the rotation in place is simply
−→
X2 = (0, 0, 1)T .

Let us express the vector field associated to logarithmic spirals. In other
words: What are the open-loop controls to follow the logarithmic, saturating
sensor pan angle? The equations of these curves are, in polar coordinates:

r = r0e
(α0−α)/ tan φ

, (6)
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where (r0, α0) is one arbitrary point on the spiral and the camera pan an-
gle φ remains constant along the spiral. When the robot moves drawing a sec-
tor of a logarithmic spiral, the camera pan angle is saturated Bhattacharya et al.
[2007] and hence the landmark is in the limit of the sensor field of view. As a
consequence, φ̇ = 0. Now, by taking the derivative of Equation 2, we obtain
a relation between u1 and u2 after some algebraic developments:

(−y cos θ + x sin θ)u1 = (x2 + y
2)u2,

which can be re-written in its polar form (that does not depend on θ)

u2 =
1

r
u1 sin(φ). (7)

In terms of the wheels controls, we deduce from Equation 7, for r > 0,

�
wr = 1

wl = r−sin(φ)
r+sin(φ) .

Again in terms of u1 and u2, and by setting u1 = 1,

�
u1 = 1

u2 = sin(φ)
r .

From the previous equation, we can derive the corresponding vector field,

−→
X3 =




cos θ

sin θ
sin(φ)

r



 . (8)

Thus, to follow the optimal motion primitives, it is sufficient to consider
three cases of controls (u1, u2) that lead the robot to trace these primitives:
Straight lines, rotation in place and logarithmic spirals. They are respectively

�
1
0

�
,

�
0
1

�
and

�
1

sin(φ)
r

�
. (9)

Note that the first two controls are constant and therefore bounded, and
the third one is also bounded since we consider r > d(1) > 0.
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Figure 3: (a) Distribution of shortest paths, revised from Bhattacharya et al. [2007]
into Hayet and Murrieta-Cid [2009]; Salaris et al. [2010]. The partition is relative to a
given landmark Li (black dot) and a given starting point Ps (the other black dot), and is
symmetric w.r.t. to the line (LiPs). (b) An example of optimal primitive (L−S+∗S− ∗L)
for a pair (Ps, Pe) of starting and ending configurations.

5. Globally optimal paths in the free space

As stated above, the locally optimal motion primitives yielding a globally
optimal path are either line segments, rotations in place or logarithmic spirals.
Spirals are paths saturating the sensor angle φ at φ− or φ+, i.e. satisfying in
the polar coordinates of the local frame Ri related to the landmark Li,

r
(i)(t) = r

(i)
0 e

−
α
(i)
0 −α(i)(t)

tan φk , where k = −, +,

and where P0 = (r(i)
0 , α

(i)
0 ) denotes any point of the spiral. In the re-

maining, logarithmic spirals trajectory parts will be referred to as a letter
“S−” or “S+” (according to whether the sensor is saturated at φ− or φ+),
or simply “S”; line segments trajectory parts will be referred to as “L” and
rotations in place trajectory parts as an “*” between two other parts (non-
differentiable point), or will be omitted if they appear at the beginning or at
the end of the path. Similarly, the “-” will refer to differentiable transitions
between primitives. From this local characterization and by using geometric
arguments Hayet and Murrieta-Cid [2009]; Salaris et al. [2010], it has been
shown that the resulting optimal trajectories are to be found among the
following types: L, L − S+, S+ − L, S+ ∗ S−, L − S+ ∗ S−, S+ ∗ S− − L,
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L− S+ ∗ S− −L, L ∗ L and 6 other types obtained by swapping S− and S+.
It might be debated whether the L ∗ L type should be considered, as it

implies passing through the landmark. Moreover, paths going through the
origin induce a local topology for shortest paths that a priori could lead
our recursive planning algorithm to fail; however, we will see in Section 7.2
that it is not the case. In the same aforementioned article, a plane partition
according to the relative position of initial and final points Ps and Pe is
given. Figure 3(a) illustrates this partition, for a value of φ+ = π

3 . This
partition is centered in the landmark Li and is symmetric with respect to
a landmark-starting position line (the horizontal axis, in this case). As an
example, the dark region including the figure upper right corner is the one
where L− S+ ∗ S−−L trajectories are the shortest, and an example of path
following this primitive is shown in Figure 3(b). We will use this synthesis in
the planning algorithms and the motion primitives from Bhattacharya et al.
[2007] are used to replace parts of a holonomic path.

6. One-visible-landmark paths for a holonomic robot

6.1. Configuration space without obstacles

As mentioned above, our robot must maintain visibility of the landmark
L1. By visibility we mean that a clear line of sight, lying within the minimal
and maximal bounds of the sensor rotation angle and range, can join the
landmark and the sensor. The landmark L1 is static and, for the moment,
will be supposed to be coincident with the origin O of the coordinate system
(i.e. R1 = R). For the sake of clarity, we will omit the superscripts “(1)”
referring to the landmark. In this frame, the constraints can be re-written as

θ = α− φ + (2k + 1)π, k ∈ Z, (10)

φ− ≤ φ ≤ φ+, (11)

d
(1) ≤ r ≤ D

(1)
. (12)

We can now describe the robot admissible configuration space, referred
to as Cadm, a subspace of SE(2), as from Equation 2, φ is not a degree of
freedom. Moreover, Equation 2 adds a constraint that can be rewritten

φ− ≤ −θ + arctan(
y

x
) + (2k + 1)π ≤ φ+ for some k ∈ Z. (13)

14



Figure 4: Admissible configuration space Cφ
adm in the case of a (x, y, θ) configuration space:

visibility acts as a virtual obstacle in SE(2). The obstacle is depicted for (φ−, φ+) =
(−π

2 , π
2 ) (left) and (φ−, φ+) = (−π

3 , π
3 ) (right) .

This means that the visibility and sensor angle limits constraints can be
translated into virtual obstacles in SE(2). From Equation 13, it is straight-
forward to deduce the admissible configuration space, which is SE(2) minus
these obstacles. Figure 4 depicts the virtual obstacle (actually, only one ob-
stacle) in SE(2) for φ+ = −φ− = π

2 (a) and φ+ = −φ− = π
3 (b), as the

hollowed volume. It is worth noting that the free space resulting from this
visibility obstacle is a single, helical-shaped component of SE(2), which is
smaller while the authorized pan range is smaller. We call Cφ

adm the admissible
configuration space resulting from the constraints 3 and 2.

As far as the range constraints of the inequalities in Equation 4 are con-
cerned, they introduce two other virtual cylindrical obstacles which reduce
the admissible configuration space into Cr

adm. Finally the combination of
these constraints gives rise to the admissible configuration space:

Cadm = Cφ
adm ∩ C

r
adm.

A simpler characterization can be made in (x, y, φ), instead of (x, y, θ).
These representations are equivalent, since φ and θ are related by Equation 2,
but the admissible configuration space, as depicted on Figure 5, is easier to
handle, as the constraints over φ (inequalities in Equation 3) do not depend
on x or y. As a result, Cφ

adm is simply the space between the two planes
φ = φ− and φ = φ+, and Cadm is the intersection of this volume with Cr

adm.
The advantage of this representation is that it makes the task of determining
a complete algorithm for the holonomic version of the DDR easier.
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Figure 5: Cadm for a (x, y, φ) configuration space, delimited by two horizontal planes on φ
and two vertical cylinders.

6.2. Finding a path for a holonomic robot among obstacles

Lets assume that our DDR is disc-shaped and that we are given a (virtual)
holonomic robot with the same circular shape, i.e. we will first ignore the
non-holonomy constraints. The holonomic robot evolves in a plane filled with
obstacles and has to respect the visibility constraint.

The free space Cfree is the set of configurations inside Cadm (1) not in
collision with the physical obstacles and (2) not in the shadow areas created
by these same obstacles w.r.t. a light located in L1. We build it explicitly
on top of Cadm as depicted in Figure 6. From now we also introduce the
projection on R2 of the free and admissible spaces, denoted with a superscript
g. Hence, let us consider the projection Cg

adm of Cadm on the xy plane, without
considering φ, as the obstacles shape remain identical while φ is changing.

The obstacles have a two-fold effect, as they prevent the robot presence
(1) by a physical collision with them and (2) by hiding the landmark Li from
the current position. First, all the physical obstacles, dilated by the circular
robot, are subtracted from Cg

adm (Figure 6, upper right part). We get, in
white, the collision obstacles. In a second step, we remove the obstacles
shadows w.r.t. the origin. We get, in pink, the visibility (virtual) obstacles

(Figure 6, lower left part). Finally, we integrate the sensor range constraints
by defining interior and exterior cylinders. The resulting projection of Cfree

(Figure 6, lower right part) is delimited by arcs of circles and straight-line
segments. Note that the obstacles do not depend on the values of φ (but

16



Figure 6: Construction of Cg
free for the (x, y, φ) representation. By dilating physical

obstacles to define collision obstacles (polygons, top left), the circular robot (disc, top
left) can be reduced to a point. Shadows and visibility constraints then define visibility
obstacles (lower right).

on θ), so that, in the x, y, φ space, Cobst is made of cylinders in SE(2), by
translating the projection of Figure 6, right along the φ axis.

Also note that Cobst is not always made of one singly-connected component
as in Figure 6: the dilation of two obstacles may be connected and create a
portion of the free space not connected with the central area, e.g. in Figure 7,
Cfree is made of three different connected components.

Now, let Cg
free be the domain in the xy plane that induces Cfree. Sev-

eral complete algorithms can generate a path for a 2D point in Cg
free, e.g.

by building a roadmap capturing the domain connectivity Latombe [1991].
Among them, we chose the Generalized Voronoi Graph (GVG) approach, a
classical tool for the construction of a roadmap in the environment. Obstacles
here are made of arcs of circles and line segments, hence the GVG is made
of arcs of parabola (circle-line), hyperbola (circle-circle) and line segments
(line-line).

The GVG approach gives a complete algorithm for finding a path for a 2D
point in Cg

free by connecting the desired start and end points to the generated
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Figure 7: A configuration of physical obstacles (left) such that Cg
free is made of three

connected components (right).

graph Latombe [1991]. By using this classical result, we can now make plans
in the projection Cg

free and deduce plans for Cfree, with the following result.

Theorem 1. The problem of planning a path in Cfree ⊂ SE(2) for a holo-

nomic, circular robot with visibility constraints on both range and angular

displacement of its sensor is reducible to the problem of finding a path for a

single point in Cg
free ⊂ R2.

Proof. Let Ps = (xs, ys, θs)T and Pe = (xe, ye, θe)T be two free initial and
final configurations. By construction, the 2D points (xs, ys)T and (xe, ye)T

belong to Cg
free. Suppose that we can find a path sg connecting them in Cg

free,

s
g : [0, 1] → Cg

free

sg(0) = (xs, ys)T , sg(1) = (xe, ye)T , sg(t) = (x(t), y(t))T .

Then, if φs, φe are the sensor angle (given by Equation 2) at the initial
and final configurations, we will define a path for the angle, that can be
combined with sg to provide an acceptable path in SE(2):

sθ : [0, 1] → SO(2)
sθ(t) = arctan 2(y(t), x(t))− (1− t)φs − tφe + π.

The function sθ is continuous on [0, 1] since sg is also continuous and
(x(t), y(t)) �= (0, 0). We can define the following continuous path in SE(2):

s : [0, 1] → SE(2)
s(t) = (x(t), y(t), sθ(t))T .
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It satisfies the initial and final constraints, and, for all t ∈ [0, 1], (1 −
t)φs + tφe ∈ [φ−, φ+], i.e. the visibility constraint is satisfied at every point.

Conversely, if we are not able to find any free path in Cg
free, we cannot

have any free path in SE(2): if there were, its projection on R2 would also
be free, which contradicts our initial assumption. Hence, an algorithm that
solves the planning problem in Cg

free also solves the problem in Cfree.

7. Planning paths for an non-holonomic robot

In this section, the previous results are used to propose a complete plan-
ner for a circular-shaped DDR navigating among obstacles and having to
maintain a landmark in sight, whereas its sensor is under range and angular
constraints. Inspired from the classical roadmap-based approach, we imple-
mented a simple planning algorithm according to the following steps:

1. Build Cg
obst = Cg

free by taking the union of the dilated obstacles with
the shadows induced by the landmark visibility, as explained in 6.2;

2. Build the GVG on Cg
free; as Cg

free is made of line segments and arcs
of circle (from the obstacles dilation), the resulting GVG is made of
line segments (line-line equidistance) and arcs of parabola (line-circle
equidistance) or hyperbola (circle-circle equidistance);

3. Given starting and goal configurations, connect them to the GVG and
compute a path ŝ for the holonomic system associated to the robot
(see 6.2); if not possible, a non-holonomic path does not exist;

4. Recursively connect the starting and ending points with the globally
optimal path (obtained from the synthesis in Salaris et al. [2010]); if the
optimal path is in collision, then use as a sub-goal the point at middle-
path in ŝ and apply the recursive procedure to the two resulting pairs
of points.

Figure 8 (left) shows a path connecting an initial and final configurations,
composed of two spirals and rotations in place. The only obstacles present in
this case are the visibility obstacles and the cylinders at d(1) and D(1). The
Figure 8 (center) shows the first part of step 1, i.e. the construction of the
shadows induced by the landmark, and Figure 8 (right) shows the dilated
obstacles (dashed red areas) and the GVG build in step 2.
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Figure 8: (Left) Path for a DDR under visibility constraints alone (angular and distance
ranges, represented by the inner and outer circles). The robot shape, heading, and gaze
are drawn here, and then omitted for the sake of readability. The recursion has only a
one level depth: a direct connection of the initial and final configurations with optimal
paths is possible ) (Center) Obstacles (red) and regions visible from the landmark (yellow).
(Right) Construction of Cg

free: dilated obstacles (dashed red) are removed from the visible
area and underlying GVG.

7.1. Choice of the underlying holonomic planner

As mentioned above, there are several choices in the literature as for the
holonomic planner. The optimal trajectories (in terms of Euclidean distance)
would be given by the visibility graph Latombe [1991] but the resulting paths
would be in contact with the real obstacles, which is not always desirable,
in particular not in our case, since, for proving the algorithm convergence,
we need the path to be included in the open of Cg

free. The Voronoi has the
advantage of maintaining the robot as far as possible from the obstacles and
its resulting path are in the open of Cg

free.
Another advantage of a Voronoi-based holonomic planner, is that we can

tune the graph to prefer some trajectories to other, by annotating the Voronoi
graph edges. The edges can be weighted with their lengths, to favor shorter
paths, with some decreasing function of the minimal clearance along the edge,
to favor safer paths, or with a combination of both.

7.2. Analysis of the metric induced by shortest paths

The lengths along the shortest paths defined by Bhattacharya curves
(spirals, lines) clearly establish a metric in Cg

free. Let us prove that this metric
is locally equivalent to the Euclidean metric in R2. Let Ps = (xs, ys, θs)T and
Pe = (xe, ye, θe)T be a pair of initial and final points in the free space, and
P g

s = (xs, ys), P g
e = (xe, ye) their projections on Cg

free. As recorded in 5,
there are just a few kinds of shortest paths in a close neighborhood of point
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(S+ − S−)
LiPe

Q

Ps

Li

M

Pe

(L− S+)

Ps

Figure 9: Shortest paths including logarithmic spirals: concatenation of a line segment
and a φ+ spiral (L−S+, left), and concatenation of a φ+ and a φ− spiral (S+ ∗S−, right).

Ps: line segments (its length obviously equal to the Euclidean distance in
R2), concatenations of a line segment and a logarithmic spiral at saturated
φ (Figure 9, left) and concatenations of two spirals at saturated opposite
values of φ (Figure 9, right). The other possible primitives (e.g. L ∗ L)
concern points “far” from point Ps (we will see in the following paragraphs
how far they are). Here, we will use exclusively the norm �.� in R2.

Our approach is the following: (1) We show that we can always choose
a neighborhood of the initial configuration such that no L − L primitives
should be executed; (2) We show that L − S and S − S primitives induce
a metric equivalent to the Euclidean one; (3) Since the remaining possible
primitives are by essence shorter than the S − S ones, we conclude that in a
sufficiently small neighborhood of P g

s , our optimal motion primitives induce
paths of lengths equivalent to the Euclidean metric.

First, note that the length of a logarithmic spiral arc keeping φ constant,
starting from P0 = (r0, α0) and reaching a point P1 = (r1, α1) is

lφ(P0, P1) =
r0

cos φ
|1− e

α0−α1
tan φ |. (14)

Optimal paths in a neighborhood of P g
s . Let us examine the nature of

shortest paths for goal configurations located in a small neighborhood of the
starting configuration P

g
s . Recall that in Figure 3, and keeping in mind the

minimal range constraint, one can see that it is straightforward to choose a
neighborhood around P g

s in order to ensure that the paths to reach the points
of this neighborhood are only lines, concatenations of one spiral and a line,
and concatenations of two spirals. Notice that the choice of this neighborhood
depends on φ

+. Indeed, the Figure 10 represents the distribution of optimal
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Figure 10: Structure of the optimal paths aroung the segment [LiPs] for varying values of
φ+ (respectively π

8 , π
16 , π

40 ).

paths in a given portion of the plane, for three “small” values of the field
of view, π

8 , π
16 , and π

40 . One can observe that in a small neighborhood of
Ps, the optimal paths are still to be found among the L, L − S, S − L and
S ∗S primitives. However, when φ+ tends to 0 (e.g. for π

40), the limits of the
region corresponding to L∗L primitives tend to the x-axis. As a consequence,
for a given fixed neighborhood of P g

s , it is possible to choose φ+ so that all
primitives could be done in this neighborhood.

This fact is without consequence for the optimal paths L − S ∗ S, S ∗
S−L, L−S ∗S−L, since they are by construction Hayet and Murrieta-Cid
[2009] shorter than the S ∗ S ones for a given pair of starting and ending
configurations. Hence, the inequalities that we will establish for S ∗ S and
L− S also hold. Nevertheless, this is not the case of L ∗ L primitives. They
differ from the other paths, since the metric they induce is not equivalent to
the Euclidean one.

Fortunately, we showed in Hayet and Murrieta-Cid [2009] that the L ∗ L

region boundaries (the brightest regions in Figure 10) are given by a straight
line making an angle of 2φ+ − 4 tanφ+ log sin φ+ with the horizontal and by
its symmetric w.r.t. the x axis. This means that it tends to collapse to the
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x−axis at a convergence rate of−4φ+ log φ+. As a consequence, if we suppose
that Ps is separated from the origin L1 by at least d(1), it is always possible
to choose a neighborhood of Ps with a size in O(d(1)φ+) (which converges
faster to 0 than φ+ log φ+), that will guarantee that no L ∗L primitive needs
to be done in this neighborhood. As a conclusion, it is possible to describe
the metrics of the optimal primitives around Ps by only considering the S ∗S

and L− S cases.
Furthermore, notice that, in the recursion, these L ∗ L paths necessarily

collide with the minimal range constraint virtual obstacle and induce new
recursive calls, hence they never need to be executed.

Case of a line segment and a spiral (L-S). Here, we consider the case of
a line followed by a S+ spiral, the L − S− case being symmetric. We have
(see Figure 9, left) the distance between Ps and Pe through

dB(Ps, Pe) = �P g
s M� + lφ+(M, P

g
e ).

One can refer to Hayet and Murrieta-Cid [2009] to make this distance
more explicit, and we develop this in Appendix A, to get the following in-
equality:

rPs|αPe − αPs| ≤ �P g
s P

g
e �, (15)

so that,

�P g
s P

g
e � ≤ dB(Ps, Pe) ≤

1

sin φ+
�P g

s P
g
e �. (16)

Case of two spirals (S*S). Consider a S+ spiral followed by a S− spiral
(Figure 9, right). See Appendix A for a detailed version of the calculus.

By using the Equation 14 twice, and with t+
def
= tan φ+,

dB(Ps, Pe) = lφ+(Ps, Q) + lφ−(Q, Pe)

= rPs
cos φ+

(1− e

αPs−αQ
t+ ) + rPe

cos φ+
(1− e

αQ−αPe
t+ ).

After developments (see Appendix A), we finally get the same inequality
as in the L− S case, i.e.

�P g
s P

g
e � ≤ dB(Ps, Pe) ≤

1

sin φ+
�P g

s P
g
e �.

The previous inequalities allow us to write the following theorem,
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Theorem 2. For any constant K > 1, there exists a neighborhood size � > 0
such that for all the optimal motion primitives in the absence of obstacles,

the length of the path in R2 between two configurations Ps = (xs, ys, θs)T and

Pe = (xe, ye, θe) closer than �, satisfies

�P g
s P

g
e � ≤ dB(Ps, Pe) ≤

K

sin φ+
�P g

s P
g
e �.

The 1
sin φ+

factor comes with no real surprise, as, when φ+ gets smaller

(i.e. when the field of view of the camera shrinks), the maneuverability of
the robot also gets smaller, and, for example, for a pair of close starting
and ending points, a concatenation of two spirals involves a more “peaky”
transition. A natural corollary is the following one,

Corollary 1. For a given configuration c in Cfree, and a neighborhood N(cg)
of its projection cg in Cg

free, there exists another neighbourhood N �(cg) of cg

such that for all configurations c� such that c�g ∈ N �(cg), the shortest path

from cg to c�g is completely included in N(cg).

7.3. Properties of the recursive algorithm

Completeness. An important property of our system is that, in the inte-
rior of Cfree, it satisfies the LARC condition as a normal DDR. Moreover, it is
a symmetric system, so that it is small-time locally controllable Choset et al.
[2005], i.e. it can follow any curve in the interior of Cfree arbitrarily closely.
This argument is used e.g. in Laumond et al. [1994] for the convergence of a
recursive scheme based on the use of time-optimal trajectories. Here, because
we use the optimal synthesis described in 5, this same argument cannot be
used, as some of the points in the neighborhood of any starting configura-
tion have to be reached by paths that cannot be enclosed in an arbitrarily
small neighborhood of the starting configuration in Cfree. This is the case,
for example, of the configurations reachable from the starting one such that
the shortest path includes two consecutive spirals (this implies that the angle
will move at least of 2φ+).

Nevertheless, the same kind of coverage of the holonomic paths with
small neighborhoods can be done in R2 yielding to nice convergence proper-
ties. The topological properties of the previous section help us in proving the
completeness, and, even more, in studying the complexity of the algorithm.

24



N1(�)

N2(�)

�

Figure 11: Convergence of the recursive algorithm is ensured by the topological property
that the optimal curves have in R2.

Indeed, given a pair of starting and ending configurations in Cfree, one will
first notice that, by theorem 1, the existence of a solution for the associated
holonomic robot in Cfree is an equivalent problem to the existence of a free
path in Cg

free. Because of the topological properties above, we can follow any
curve in Cg

free with the primitives from 5, so that the completeness of our
algorithm is guaranteed whenever the planner which is used for the underly-
ing holonomic system is itself complete. Here, the Voronoi-based algorithm
for the underlying holonomic system being complete, we conclude that the
recursive algorithm using the primitives from 5 is also complete.

Convergence and complexity. The same topological properties en-
sures convergence, and gives us an order of the rate of convergence of the
recursive algorithm. Let � be the minimal clearance along the path. For
that value �, we can deduce by the equivalence of the metrics induced by
the optimal primitives with the Euclidean distance, that there exists some
δ > 0 such that for any two pairs of configurations separated by an Euclidean
distance inferior to δ, the shortest path induced by the optimal primitives
from 5 is totally included in a neighborhood of both configurations, N(�), of
diameter �. The theorem 2 tells us that δ = O(� sin φ+).

The path computed for the holonomic robot in Cg
free being compact and

included in the open of Cg
free, it is possible to cover up this path by a finite

number of such neighborhoods Ni(�) totally included in the open of Cg
free, e.g.

as depicted in Figure 11. This way, to each Ni(�), is attached a portion of
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the path of length δ. The number of such neighborhoods is O(1
δ ), with δ pro-

portional to sin(φ+)�, i.e. we have O( 1
� sin(φ+)) of such neighborhoods, which

means that the recursion, at the worst case, leads to O( 1
� sin(φ+)) maneuvers

with optimal primitives. The number of rotations in place is at maximum
of 3 per maneuver (one at the beginning, one, eventually, in the S ∗ S case,
and one at the end) so that the total number of rotations in place is also
O( 1

� sin(φ+)).

8. Planning paths among a set of landmarks

Based on the one-landmark algorithm explained above, we propose a
solution to the problem of generating paths ensuring at least one visible
landmark along its path, i.e. ensuring that a way of localizing itself is always
available to the robot. The idea is to generate a graph Gi for each of the
available landmarks, then to connect these graphs at what we call switch

points (points where the robot changes safely from one landmark to another).

8.1. Switch regions

Our strategy is to connect the different roadmaps, i.e. graphs Gi from
each landmark Li, through the use of switch regions. The constraints for a
switch to be possible are (1) that the two landmarks are in the sensor range
and (2) that at this point, it is possible to change the orientation of the sensor
so that the robot can always see at least one of the two landmarks.

The first constraint defines a region of common visibility Vi,j = Cg
free,i ∩

Cg
free,j. The second constraint prohibits a region Ai,j formed by the points P

such that the angle ∠LiPLj is superior to the robot sensor field of view β.
This regionAi,j is delimited by two arcs of circle, and the resulting switch area
is Si,j = Vi,j\Ai,j. In Figure 12(a), one can observe a switch region (shaded)
Si,j, in the absence of obstacle, formed by just two connected components.
In the presence of obstacles, this structure may be more complex.

A priori, we do not need to establish the entire connectivity on each
Si,j, we just need to use these regions to provide intermediate points for
the computation of holonomic and non-holonomic paths joining parts of the
space where the only visible landmarks are respectively i and j. In fact, even
one single point of Si,j in each connected component of the union is sufficient
to allow for all switching strategies, as we state it below.

Theorem 3. Let {Qk
ij} be a set of interior points associated to each connected

component of the union of the two free spaces Cg
free. If we connect the Qk

ij to
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d(i)

D(i)

d
(j)

D(j)
Li
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(a) An example of a switch region Si,j . (b) Voronoi graphs on switch regions.

Figure 12: Left: an example of a switch region Si,j , for the case of two close landmarks Li

and Lj . Aij is the region delimited by the two arcs of circles passing through Li and Lj

from which ∠LiPLj = β. Right: GVG computed on each connected component of S0,1.
The connected component 0 has one interior point S0 for which we add four nodes in the
graph, nS0

0 , n̂S0

0 connected to G0 and nS0

1 , n̂S0

1 connected to G1.

the graphs Gi and Gj, and denote the resulting graph as G, augmented with

the two initial and final configurations Ps and Pe, the problem of determining

the existence of a holonomic path between Ps and Pe guaranteeing that at least

one of Li or Lj is in sight is equivalent to finding a path in G.

Proof. As the points Qk
ij belong to the two free spaces relative to both land-

marks Li and Lj, then they can be connected to both Voronoi graphs Gi

and Gj. Furthermore, finding a holonomic path satisfying the visibility of
at least one landmark is equivalent to find a holonomic path in the union of
the free spaces. The newly formed graph G captures the connectivity of this
union. Indeed, any connected component in the union is either entirely in
one of the free space (in which case its connectivity is captured by a single
Gi) or partly in both. In that last case, any pair of points in the connected
component can be connected through G: if they are in the same visibility
region, this is through one of the original graphs, otherwise, the one that sees
Li can be connected to Qk

ij , and the one that sees Lj equally.

However, using only one point per connected component of the union
could make the global paths quite far from the optimal ones. For instance,
if one considers Figure 12(a), and if one uses just one point in one of the
connected components of Si,j , e.g. in the lowest part of the upper connected
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component, some of the paths connecting configurations located in the upper
part of the graph would be penalized. Several strategies could be possible,
for example based on sampling, but one could lose the completeness of the
algorithm. Instead, here, we propose to compute explicitly all the connected
components of Si,j, and, for each of these components, we capture the connec-
tivity of the component with a Voronoi graph, as illustrated by Figure 12(b).

8.2. Planning trajectories among the set of landmarks

To plan trajectories among a whole set of landmarks, we use the switch
areas to join the different roadmaps, each proper to one landmark, together.
For each landmark Li, we generate Gi as explained above (case of one land-
mark). Then, switch regions Si,j are computed as in 8.1 and a set of switch
points is computed by taking the interior nodes on the Voronoi graphs of the
connected components Sk

i,j of Si,j . For each switch point S, four new nodes
are created: in Gi, a node nS

i at location S and a node n̂S
i located at the

closest point from S among the edges of Gi; in Gj, nodes nS
j and n̂S

j are
created in the same way. Then, the edge (nS

i , n̂S
i ) (resp. (nS

j , n̂S
j )) is added

to Gi (resp. Gj), as it can be shown in Figure. 12(b). Note that the graphs
Gi, Gj and the one defined in Si,j can intersect or not, depending on the
obstacles, and on the relative position of the landmarks. Furthermore, the
graphs Gi may even be completely outside of the Si,j , but since this region
is contained in the intersection of the individual visibility areas, any point of
it can be connected to Gi or Gj .

For solving a query, given a pair of starting and goal points Ps and Pe, we
first check which landmarks these points may observe. For each of these Lk,
we add nodes corresponding to the starting/goal point to graph Gk, following
the same procedure as the switch points above. A multi-landmark graph G

is built by taking the union of all Gi and by adding edges between the switch
points corresponding to the same locations, i.e. edges (nS

i , n
S
j ).

Following the strategy we described for the single landmark case, we
compute a shortest path ŝ in G for the holonomic system associated to the
robot; this involves evaluating several shortest paths in G, for all pairs of
possible start/end nodes (i.e. we have to choose which landmarks to start
and end with). If this is not possible, then we can deduce that there does

not exist a non-holonomic path satisfying all the imposed constraints ; we are
also sure that if a holonomic path exists, it will be found: thanks to the
Gi, any point aiming at Li is attainable, and thanks to the Sij connected
components, we can also “attain” any landmark switch.
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Once ŝ is computed, we decompose it in its landmark layers, i.e. compo-
nents sharing the same landmark visibility,

ŝ = ŝi1 ∪ (ni1 , ni2) ∪ ŝi2 ∪ (ni2 , ni3) ∪ ... ∪ ŝiK ,

where ik is the landmark to which the part ŝik is relative to. Then,
the problem is divided in instances similar to Hayet et al. [2010], i.e. finding
non-holonomic paths satisfying the sensory constraints for just one landmark.
The solutions s̃ik of these sub-problems are then merged into a single (non-
holonomic) path s̃ by adding switch primitives denoted as Cik,ik+1

(i.e. change
in the sensor orientation and rotation in place) between the s̃ik . This leads
to algorithm 1.

8.3. Algorithmic complexity

Algorithm 1 inherits the complexity of its sub-tasks:

• visibility operations and boolean set-operations on polygons to get
Cg

free,i (the D(i) and d(i) are transformed into polygons in the imple-
mentation). The computation of visibility regions induces O(Nn log n)
computation time where n is the number of vertices in the environment
and N the number of landmarks with the sweep line algorithm;

• the Voronoi computation Karavelas [2004] from line segments induce
an expected computation time in O(Nn log2

n);

• the switch areas may be computed in O(nN2) in the worst case but
remains in most cases in O(N) (landmarks overlap with a few others,
and with a few polygons);

• queries imply the formation of graph G (linear in the number of switch
points) and the computation of a shortest path in G (which depends
on the graph); the output of the recursive procedure, i.e. the number
of maneuvers, is varying in O( 1

sinφ+�) where � is the minimal clearance,
as we saw in Section 7.3.

9. Experiments

This section presents a few simulation results with an implementation of
this planner in C++, by using in particular the library CGAL for its Voronoi
diagram implementation Karavelas [2004]. In this implementation, we took
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Algorithm 1 Path planning ensuring one visible landmark among
L1, . . . , LN

Roadmap construction.

- Build a representation of Cg
obst = Cg

free as the union of the obstacles dilated by the robot volume.
for i = 1 to N do

- Build a representation of Cg
obst,i = Cg

free,i as the union of Cg
obst with the shadows induced by Li

visibility.
- Build the GVG Gi on Cg

free,i; C
g
free,i being made of parts of lines or circles, the GVG is made of

parts of lines, parabolas or hyperbolas.
end for
Switch areas.
for i = 1 to N do

for j = 1 to i− 1 do
- Build a representation Si,j = Cg

free,i ∩ C
g
free,j of the switch area between landmarks i and j.

- Remove from Si,j the areas in which the robot cannot have both i and j in sight: Si,j ←
Si,j\Ai,j .
for all connected components Sk

i,j in Si,j do

- Compute a Voronoi graph for Sk
i,j .

- Connect the nodes of the resulting graph to Gi ({ng
i }g) and Gj ({ng

j }g).
end for

end for
end for
Query resolution.
- Connect Ps and Pg to all the graphs Gk s.t. Lk is visible from the query point.
- Take G = ∪iGi and add edges (ng

i , ng
j ) for all g corresponding to switch points.

- Compute a shortest path ŝ in G among all paths starting from Ps and arriving at Pg.
if No such path exists then

- A solution does not exist.
else

- Write ŝ = ŝi1 ∪ (ng1
i1

, ng1
i2

) ∪ ŝi2 ∪ (ng2
i2

, ng2
i3

)... ∪ ŝiK .
for k = 1 to K do

- Connect the starting and ending points of ŝik with the optimal primitives of 5; if collision,
use the middle-path in ŝik as sub-goal and apply the recursive procedure to the two resulting
sub-paths; result is s̃ik .
- Optimize s̃ik : (i) generate ns randomly shortcuts between the constitutive primitives of the
trajectory and select the one that most shortens the path, and (ii) iterate ni times this procedure.

end for
- s̃ = s̃i1 ∪Ci1,i2 ∪ s̃i2 ∪ Ci2,i3 ... ∪ s̃iK .

end if

advantage of the built Voronoi graph to set the edges weights in such a way
that the edge length, on the one hand, and the minimal clearance along this
edge, on the other hand, are combined, so as to find a compromise between
shortest and clearest paths. In the same vein, we assign very large weights
to the connector edges, i.e. those that connect two graphs Gi, in order to
penalize landmark switches.
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T1 and T2

T3

T1 and T2
T3

Figure 13: An illustration of the localization on the trajectories T1, T2 and T3. On the
left, the robot can localize itself on the first landmark on T2 and T3. On the right, the
robot is localized on T3 only.

9.1. On the utility of our planner in trajectory-based navigation

We illustrate the utility of our planner through a few localization simu-
lations. We generated 50 different environments, each of which is populated
with 4 randomly located landmarks and free of obstacles, with the constraint
that the resulting graph G is connected. We also generated two random start
and goal configurations for this environment such that each of these config-
urations can be connected to G, i.e. it can see at least one of the landmarks.

For each of these environments and pairs of start/goal configurations,
we plan and execute three trajectories T1, T2 and T3, based on two paths:
(1) the shortest path in distance, i.e. the straight line connecting the con-
figurations, that does not take into account the landmarks in the planning
and (2) the path given by our planner, that generates “coastal navigation”
paths Roy and Thrun [1999]. The trajectory T1 is a trajectory following the
straight line, and for which the sensor is kept at φ = 0; T2 is based on the
same path, but it includes a rough “visual servoing” strategy that maintains
the landmark in sight if possible. Finally, T3 follows the path computed by
our algorithm.

In all cases, the resulting trajectories are executed while localizing the
robot, if possible, with a simulation of localization that uses a common prob-
abilistic dead-reckoning model and an observation model integrated in an
Extended Kalman Filter scheme Thrun et al. [2005]. To measure the level of
uncertainty that the robot has at some point, we evaluate the determinant
of the covariance matrix Σt on the state Xt of the robot, det(Σt).
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Figure 14: Maxima (left) and mean (right) values of the determinant of the uncertainty
matrix for 50 random runs of the three strategies, T1 (crosses), T2 (circles) and T3 (dots).
The values have been sorted according to the values obtained in T1.

We illustrate this protocol in Figure 13, that shows, on the left, the ex-
ecution of the three trajectories T1 (darker ellipse), T2 (dark ellipse) and T3

(bright ellipse). On two of the three trajectories, the robot localizes itself on
the upper right landmark (and the position uncertainty is reduced). On the
right, on the two trajectories that follow the straight line path, the robot can-
not localize relative to any landmark; on the contrary, the robot is ensured
all along T3 that it has at least one landmark to look at. A few statistics
over the 50 random runs are also presented in Figure 14. These two figures
show the maximum and mean determinant of the covariance matrix over
(x, y, θ) along the different runs, where the runs are sorted according to the
determinant values in the T1 trajectory. As expected, the determinant (its
maximum or mean) remains lower or much lower in the case of the trajec-
tory done based on the output of our algorithm. This justifies our previous
reference to “coastal” navigation, i.e. ensuring landmarks visibility as we do
brings implicitly some safety on how lost the robot will be. This trend is
more pronounced in the case of the maximum value of the determinant along
the trajectories, i.e. with the trajectories undergone with our planner path
it is difficult for the robot to get lost, which is not the case for trajectories
planned without taking into account the landmarks positions.

The choice of our planner paths induces paths that correspond naturally
to a coastal navigation paradigm. However, this comes obviously with a cost
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Figure 15: Length of path undergone in T3, expressed as a ratio w.r.t. the straight line
length (i.e. the path followed in T1 and T2, for the same 50 random runs.

in terms of traveled distance. In order to evaluate roughly this cost, we depict
in Figure 15, along all the 50 runs mentioned above, that depicts the ratio
between our planner path length and the length of the straight line joining
the start and goal configurations. This cost, as it can be seen, corresponds
in most configurations to 10% to 80% of the straight line path.

9.2. Simulation of path planning among obstacles

We provide planning results in some interesting environment configura-
tions. The first one is the one of Figure 16. The environment is populated
with 5 landmarks and several obstacles generating visibility shadows. The
brightest shaded region depicted in Figure 16(b) is the union of all visibility
regions. The GVG is showed in Figure 16(c) and the final path s̃ appears
in Figure 16(d). By construction, it coincides at several points with ŝ. The
final non-holonomic path is made of 16 non-trivial primitives (pieces of lines
or spirals) and 12 rotations in place or landmark changes.

The second example is illustrated on Figure 17. It is a simpler example
(just two landmarks and two obstacles), but there is a narrow passage that
may have to be passed through. This narrow passage is located between the
left obstacle and the minimal range circle around the right landmark, and a
branch of the GVG naturally goes through it. For some of the pairs of start
and goal configurations, the holonomic path ŝ may take this branch, as in
Figure 17, and as expected, this leads to a number of maneuvers to be done.
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(a) Environment: obstacles and landmarks. (b) Visibility areas.

(c) GVG computed. (d) Non-holonomic path.

Figure 16: Example 1: computing path among obstacles. The final non-holonomic path
is made of 16 non-trivial primitives (pieces of lines or spirals), and 12 rotations in place.

A zoomed view on this narrow passage is showed in 18, where a succession of
spirals S+ and S− spirals can be observed. As mentioned above, a different
choice of weights in the GVG (e.g., taking into account the clearance along
the edge), could lead to paths avoiding the narrow passage.

9.3. Experiments on a DDR robot

Two different experimental setups, the first with one landmark and the
second with two landmarks have been planned for and executed by a Pio-
neer P3-DX differential drive robot from Adept Mobilerobots. The obtained
results are presented hereafter4.

4Videos of one and two landmark experiments on DDR robot can be found at
http://www.cimat.mx/~cesteves/MotionPlanning_DDR_VisibilityConstraints/.
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(a) Environment: obstacles and landmarks. (b) Visibility areas and switch zones.

(c) GVG computed. (d) Non-holonomic path.

Figure 17: Example 2: a path among obstacles. The final non-holonmic path passes
through a narrow passage, leading to a number of maneuvers, depicted in Figure 18.

9.3.1. An environment with one landmark

The experimental setup for this example is depicted in Figure 19. Figure
19(a) shows the map of the environment from an orthographic upper view.
The red point shows the landmark that the robot has to keep within its field
of view at all times. Start and end points are also shown. The obstacles are
shown in dark grey. Figure 19(b) compares the planned and the executed
trajectory measured with the onboard robot sensors. As it can be seen on
the figure, the trajectory that keeps the landmark in sight at all times is
composed of two rotations in place and two logarithmic spiral segments.

Figure 20 shows the robot view of the one-landmark experiment. In
Figure 20(a) the view from the initial configuration of the robot is shown.
Here, the landmark is outside the robot field of view. After an initial rotation
in place, the robot gets the landmark inside its field of view. The camera
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Figure 18: Example 2, zoom on the path computed in 17 in the narrow passage.

is saturated to the right, leaving the landmark (green and blue book) on
the right side of the image. This can be seen in Figure 20(b). The next
primitive in the planned trajectory, a segment of a logarithmic spiral, is
executed approaching the landmark (Figure 20(c)) with a new rotation in
place. The landmark is now centered at the left side of the image (Figure
20(d)). Finally, the last planned segment of logarithmic spiral is executed to
reach the goal configuration, while keeping the landmark in sight.

Figure 21 shows the execution of the same trajectory from an external
camera. Initial and goal configurations are shown in Figures 21(a) and 21(d)
respectively. Figure 21(b) shows the the robot/landmark configuration after
the first rotation in place. Note that the robot camera is aiming at the land-
mark (book in the image foreground). Figure 21(c) shows an intermediate
configuration of the trajectory just before the second rotation in place. Here
the robot is beginning the execution of the last two primitives of the planned
trajectory: a rotation in place and a segment of logarithmic spiral.

9.3.2. An environment with two landmarks

Our second experiment takes place in a two-landmark setting in the same
office environment as before, which makes the planning more constrained.

Figure 22(a) shows and upper view of the map with its initial and final
configurations as well as both landmarks depicted as points, one red and
one blue and their corresponding labels. Figure 22(b) shows a close-up of
the computed trajectory with the starting position on the lower part of the
image and the goal position on the upper-right corner. The resulting path is
composed of several rotations in place and segments of logarithmic spirals.
At around the point (1900, 600), the robot switches from looking at one
landmark to looking at the other. At some point while performing the switch,
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(a) (b)

Figure 19: Experiment with one landmark to keep in sight. (a) 2D map of the environment
with the landmark depicted as a (red) point. The planned trajectory with its start/end
configurations is also shown (in blue). (b) Planned trajectory. The dotted line is the
reference planned trajectory. The continuous line is the executed trajectory.

the robot has both landmarks inside its field of view. In this graph, the
planned (dotted) and the executed trajectories are compared showing their
similarity.

Figure 23 shows a few keyframes of the experiment taken from the robot
point of view. Figures 23(a) and 23(h) show the initial and final configura-
tions respectively. Figures 23(a) through 23(e) show the execution of the first
part of the trajectory, where the robot sees the first landmark (the book) at
all times. Figures 23(f) through 23(h) depict the execution of the second part
of the trajectory, where the focus of the robot perception is on the second
landmark (the basketball). Figure 24 shows the same experiment through
an external camera showing different configurations of the robot during the
execution of the trajectory. Notice the keyframe in Figure 24(d), which is
the configuration where the robot is switching from looking at the book to
looking at the basketball by performing a rotation in place.
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(a) (b) (c) (d) (e)

Figure 20: One-landmark example: (a) Initial configuration. (b) The robot turns towards
the landmark (book at the right side of the image). (c) A logarithmic spiral is performed
to approach the landmark, always keeping it at the right side of the image. (d) After
a rotation in place, the landmark is seen on the left side of the image. (e) The final
configuration is reached following a logarithmic spiral while keeping the landmark in sight.

(a) (b) (c) (d)

Figure 21: One-landmark example, outside view of the experiment. (a) Initial configura-
tion. (b) The robot aligns to see the landmark. (c) Configuration after the first logarithmic
spiral and before rotation in place. (d) Final configuration after second logarithmic spiral.

10. Conclusion

In this paper, we have provided a motion planner to maintain landmarks
visibility, in an environment populated with obstacles, for a differential drive
robot equipped with a limited sensor. Our planner computes a path from
an initial to a final configuration, such that, during its motion, the robot
may switch from one landmark to the other, ensuring that always at least
one landmark is visible to the robot. Based on the equivalence between the
metric induced by the shortest path of our system and the Euclidian metric
used to compute the distance between the robots and the obstacles, we have
shown that if a collision free path exists for a holonomic robot in the presence
of obstacles then this path can be always transformed in a feasible path —
collision free and maintaining landmark visibility. We use the shortest path
synthesis for this system to generate a candidate robot path; if the former is
collision free, we use it to move the robot, i.e. we take the optimal path in
terms of the Euclidian distance for maintaining visibility of a single landmark.
If the path is in collision with an obstacle then it is recursively divided until

38



(a) (b)

Figure 22: Two-landmark scenario. (a) Map of the environment with the initial and final
configuration as well as the landmarks shown as points. (b) The computed trajectory and
the real executed trajectory.

a collision free path is obtained. In this second case, we lose optimality, but
we stress that the completeness of the method is guaranteed.

We have implemented all our algorithms, described path planning in chal-
lenging cases, and we have also presented simulations results showing that
maintaining visibility of landmarks during the system motion helps to main-
tain the robot localization uncertainty bounded.

Although, our planner assumes a static map without uncertainty, we
stress the fact that our planner is complete. It can determine whether or
not under the assumed conditions a solution exists for the addressed task,
and if there is a solution, the planner provides one. If a solution does not
exist then this solution would hardly appear because of the uncertainty. In
contrast, if a solution does exist in the absence of uncertainty, it can be lost
because of uncertainty. Thus, our planner can be considered as a stepping
stone toward the solution of the harder problem of computing feasible paths
under uncertainty. Consequently, as a future work, we would like to consider
the problem of planning with uncertain maps of landmarks.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 23: Two-landmark experiment. View from the robot. (a) Initial configuration.
(b)-(d) Logarithmic spiral and rotation in place keeping the first landmark (the book) in
sight. (e) Backward motion to reach switching point configuration. (f)-(g) Logarithmic
spiral looking at the second landmark. (h) Final configuration.
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Appendix A. Superior bounds on the paths lengths

Case of a line segment and a spiral (L-S). Without loss of generality, we
consider here the case of a line followed by a S+ spiral, the L−S− case
being symmetric. In that case (Figure 9, left), the distance between Ps

and Pe is given by the sun of the line part and the spiral part, i.e.

dB(Ps, Pe) = �P g
s M� + lφ+(M, P

g
e ).

One can refer to Hayet and Murrieta-Cid [2009] to make this distance
more explicit, in terms of the angle αM depicted in Figure A.25, which
corresponds to the relative position of the transition point M between
the line and the spiral, and which is located on an arc of circle LiP

g
s

also depicted in Figure A.25. As M is the transition between line and
spiral (i.e. the point at which saturation of φ occurs), one can get

�P g
s M� = rPs

sin αM

sin φ+
,

and its distance to the landmark, rM , satisfies

rM = rPs

sin(φ+ − αM)

sin φ+
,

so that, by using Equation 14

dB(Ps, Pe) = rPs

sin αM

sin φ+
+

1

cos φ+
rPs

sin(φ+ − αM)

sin φ+
(1− e

αM−αPe+αPs
tan φ+ ).

This expression can be simplified when considering that P g
e is close

enough to P g
s . In that case, one will notice that αM is small too (first

order), so that the exponential can be developed at the first order by
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PsαM

M
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rPs sin(αPe − αPs)
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S+(Pe)

Figure A.25: Line-spiral path from Ps to Pe. M is the point in which the line ends, and
is located on an arc of circle passing through Li and Ps.

1− e

αM−αPe+αPs
tan φ+ ≈ −αM − αPe + αPs

tanφ+
,

which allows to write, for P
g
e in a close neighborhood of P

g
s

dB(Ps, Pe) ≈ rPs

sin αM

sin φ+
− rPs

sin(φ+ − αM)

sin2
φ+

(αM − αPe + αPs),

and by keeping only the first order terms, and by using sin αM ≈ αM ,
and sin(φ+−αM) ≈ sin φ+, since the reasoning is on a small neighbor-
hood of P g

s , hence αM � 1,

dB(Ps, Pe) ≈ rPs

αM

sin φ+
− rPs

αM

sin φ+
+

rPs

sin φ+
(αPe − αPs),

and finally dB(Ps, Pe) ≈ rPs
sin φ+

|αPe−αPs|. Since (αPe−αPs) ≈ sin(αPe−
αPs) and by examining Figure A.25, one sees that for P g

e close to P g
s ,

rPs |αPe − αPs | ≤ �P g
s P

g
e �.

It follows that for K > 1, one can set a neighborhood of P g
e where,
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dB(Ps, Pe) ≤
K

sin φ+
�P g

s P
g
e �.

Case of two spirals (S*S). Here we consider the case of a S+ spiral followed
by a S− spiral (Figure 9, right). By using the Equation 14 twice on the
two spirals , and with t+ = tan φ+, t− = tanφ− = −t+,

dB(Ps, Pe) = lφ+(Ps, Q) + lφ−(Q, Pe)

= rPs
cos φ+

(1− e

αPs−αQ
t+ ) + rPe

cos φ−
(1− e

αPe−αQ
t− )

= rPs
cos φ+

(1− e

αPs−αQ
t+ ) + rPe

cos φ+
(1− e

αQ−αPe
t+ ).

The intersection point Q between spirals can be shown Hayet and Murrieta-Cid
[2009] to be

αQ = −t+

2
log

rPs

rPe

+
1

2
(αPs + αPe),

which is plugged into the previous equation to give,

dB(Ps, Pe) =
1

cos φ+
[rPs + rPe − 2e

−
αPe−αPs

2t+
√

rPsrPe ].

If P
g
e is sufficiently close to P

g
s , we can use a Taylor expansion around

P g
s , at the first order in δr = rPe − rPs and δα = αPe − αPs

dB(Ps, Pe) ≈
1

cos φ+
[2rPs + δr − 2(1− δα

t+
)rPe

�

1 +
δr

rPe

],

and, as
�

1 + δr
rPe
≈ 1 + 1

2
δr
rPe

,

dB(Ps, Pe) ≈
1

cos φ+
[2rPs + δr − 2(1− δα

t+
)rPe(1 +

1

2

δr

rPe

)],

in which the δr terms cancel out to give dB(Ps, Pe) ≈ 1
sin φ+

rPsδα. By
using 15, we finally get the same inequality as in the L − S case, i.e.,
for K > 1, one can define a neighborhood of P g

e such that
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dB(Ps, Pe) ≤
K

sin φ+
�P g

s P
g
e �.
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