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Abstract: This work proposes an approach for wall following with a differential drive robot
in a polygonal environment using laser range finder measurements. We propose an automaton
which manages the robot observations and selects the control set-points according to the state
in the automaton. We also propose a super-twisting sliding-mode control which rapidly reaches
the control set-points. The approach allows the robot to continuously move without the need
to stop when obstacles get in the path of the robot. This approach allows the robot to follow
the walls fast and robustly. The wall following capability can be used to explore an unknown
environment or to find objects in the environment.
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1. INTRODUCTION

This paper proposes an approach for wall following with a
differential drive robot (DDR) in a polygonal environment.
A DDR is a robot with two independent wheels, each
wheel is controlled with a different motor. This system
is nonholonomic (Laumond, 1998), which means that it
has motion constraints, namely the system cannot move
instantaneously perpendicular to the wheels direction. We
propose to use an automaton which manages the robot
observations and selects the control set-points of a single
controller according to the state in the automaton. This is
a novel use of automatons, since typically an automaton
switches controllers (Martinez et. al, 2019; Toibero et. al,
2009, 2011). We introduce a super-twisting sliding-mode
control which rapidly reaches the control set-points, this
is due to the property of this type of control of finite time
convergence (Levant and Fridman, 2002). The approach
allows the robot to continuously move without the need
to stop when corner obstacles get in the path of the
robot. Thus, this approach allows the robot to follow
the walls fast and robustly. The resulting wall following
capability can be used in the task of exploring an unknown
environment (Gonzalez and Latombe, 2002; Laguna et.
al, 2014; Martinez et. al, 2019) or to find objects in
the environment (Tovar et. al, 2007; Sarmiento et. al,
2009; Katsev et. al, 2011). The approach proposed in this
work avoids the estimation of the robot’s state, which is a
typical strategy for robot’s control. Our strategy provides
a mapping that directly relate an observation to control
inputs.

We use two discs for modelling the desired robot trajec-
tories. See Fig. 1, where the black solid disc represents
the physical robot. The disc centred in the robot centre
is used as a virtual circular robot to track the boundary
of the environment touching it or lying close to such
boundary. Another larger disc is used to travel trajectories
corresponding to arcs of circle on the boundary of the
larger disc. The main idea of following the robot boundary
is to make the robot to execute three motion primitives
according to the structure of the environment boundary. If
the robot is following a line segment, then the robot travels
in straight line; if the robot is moving around a convex
corner, then the robot executes a clockwise turn around
the corner and; if robot encounters a concave corner, then
the robot executes a counterclockwise turn.

Fig. 1. Robot trajectory for following the environment
boundary in continuous motion.
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1.1 Related work

This work is about controlling a differential drive robot
to follow walls. Several works exist to control a robot
to follow a wall using information obtained with a range
sensor (Bicho, 2000; Toibero et. al, 2009, 2011). The work
in (Bicho, 2000) focuses on sensing to achieve a correct
modelling of walls. The control scheme in (Toibero et.
al, 2006, 2009) was proposed to avoid obstacles reactively
following the border of the obstacles. The control method
uses distance to the obstacles and odometry, the goal
is avoiding saturation of the angular velocity originated
by discontinuous contours in the environment. In the
work presented in (De and Koditschek, 2013), the sensing
and control of a robot are considered simultaneously for
following walls. In (Lamperski et. al, 2005) a bio-inspired
antennae is used for wall following. In (Juang and Hsu,
2009), the authors propose a reinforcement fuzzy learning
technique for controlling wall following with a mobile
robot. In (Pasteau et. al, 2013), the authors present an
approach for navigation of a wheelchair using a single
camera controlled with visual servo control. They focus
on following a corridor where no prior information of the
environment is needed.

Our work is also related to robot motion planning for
avoiding collision with obstacles (Khatib, 1986; Borenstein
and Koren, 1989; Minguez and Montano, 2004; Minguez
et. al, 2008; Fraichard and Kuffner, 2012), and particu-
larly with nonholonomic robots (Laumond et. al, 1994;
Bicchi et. al, 1996; Hayet et. al , 2014; Cherubini and
Chaumette, 2012; Agarwal et. al, 2012; Martinez et. al,
2019). In (Cherubini and Chaumette, 2012), the authors
propose a method for collision avoidance with obstacles in
a visual navigation task. Visual navigation corresponds to
sense an ordered set of images. The visual navigation is
solved by using image based visual servoing and to avoid
collision the obstacles are detected with a laser. In (Reyes
and Murrieta-Cid, 2019) an approach is proposed, which
integrates image based visual servoing and planning for
road following and to avoid collision with moving obsta-
cles. One objective of that work is to represent a motion
strategy of the robot with an automaton or finite state
machine. This work is somehow related to the work in
(Reyes and Murrieta-Cid, 2019) since an automaton is also
used. However, in (Reyes and Murrieta-Cid, 2019) visual
servo control is used to command the system while in
this work the robot is commanded using a super-twisting
sliding-mode controller. Furthermore, the main tasks are
different, in this work the task is to follow the walls without
colliding with them, while in (Reyes and Murrieta-Cid,
2019) the goal is to keep the robot within a road lane and
avoid moving obstacles. In (Tovar et. al, 2007) an approach
for exploring an environment and to navigate optimally in
the sense of the Euclidean distance traveled by the sys-
tem has been proposed. That method proposes a motion
strategy based directly on measurements obtained with
sensors, the motion strategy in (Tovar et. al, 2007) requires
the capability of following the environment boundary. In
(Katsev et. al, 2011), a wall following method is proposed
to explore an environment with a point robot. That work
proposes a data structure called cut ordering. Once the
date structure is built the authors use it to deal with
a pursuit/evasion problem. In (Laguna et. al, 2014), the

authors proposed an exploration strategy for a differential
drive robot and the motion strategy guarantees that the
robot will discover as much as possible of the environment;
the exploration strategy proposed in (Laguna et. al, 2014)
is based on wall following. However, the works in (Tovar
et. al, 2007; Katsev et. al, 2011; Laguna et. al, 2014) did
not provide a control approach to accurately follow the
walls, in this work we provide that control approach. The
work presented in (Martinez et. al, 2019) deals with an ex-
ploration problem for a planar and polygonal environment,
the theoretical conditions ensuring that the robot discovers
the largest possible region of the environment are provided.
The exploration strategy proposed in that work is based
on a wall following navigation. A finite state machine is
proposed, the machine filters spurious observations and ac-
tivates feedback-based controllers. The control technique
selects controllers according to observations obtained from
sensors. This work improves the navigation component
in (Martinez et. al, 2019) in the following manner. In
(Martinez et. al, 2019) each time that the robot encounters
a concave or convex corner the robot must stop, in con-
trast, in this work the robot continuously moves regardless
whether or not it encounters corners while following the
walls. Other important differences between the work in
(Martinez et. al, 2019) and the work presented in this
paper are described in detail in the next section.

1.2 Main contributions

Several approaches for navigation avoiding collision with
obstacles and particularly for following walls exist, but to
the best of our knowledge, the previous work most closely
related to our approach is presented in (Martinez et. al,
2019). Nevertheless, it is important to stress that there
are several differences between the work in (Martinez et.
al, 2019) and this work, The main differences are the
following:

(1) In this work the robot is commanded with a super-
twisting sliding-mode controller while in (Martinez
et. al, 2019) PD controllers were used. The super-
twisting sliding-mode controller reaches the control
set-points faster than the PD controllers, providing
more reactivity to the robot.

(2) In (Martinez et. al, 2019), in each state of the finite
state machine different controllers are used to gener-
ate the angular and linear velocity of the robot, in
contrast, in the work presented in this paper a differ-
ent approach is proposed, namely, a single controller
is used to compute the linear and angular velocities in
all the states in the automaton, only the control set-
points are changed. This simplifies the system and
makes easier to obtain smoother motions.

(3) The proposed control scheme allows the robot moving
without stopping, keeping the continuity in the angu-
lar and linear velocities of the robot. Indeed, this is a
novel aspect with respect to all existing wall following
strategies.

(4) The time to travel the environment boundary is
significantly reduced compared with the time needed
in the approach presented in (Martinez et. al, 2019).
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1.3 Problem statement

A differential drive robot equipped with an omnidirec-
tional laser sensor used to find features in a polygonal and
simply connected environment and avoid collision with the
obstacles, is given the task of following the environment
boundary traveling to desired nominal linear velocity even
when obstacles get in the robot trajectory. To fulfill the
assumption of availability of the omnidirectional sensor,
in the experiments, this type of sensor is engineered using
two laser range finders with limited field of view, oriented
in opposite directions.

We also assume that the environment where the robot
moves is a structured polygonal environment (such as an
office), that is possible to be represented with line segments
and corners which are modeled from points obtained with
a laser range finder. This type of conditions appears
frequently in indoors environments.

2. AUTOMATON

An automaton or finite-state machine (FSM) is a mathe-
matical model of computation; it is an abstract machine
that can be in one of a finite number of states (Hopcroft
et. al, 2000). Fig. 2 shows a graphical representation of the
automaton proposed in this work.

The automaton has 3 states: SL (straight line), CWT
(clockwise turn) and CCWT (counterclockwise turn),
these states correspond to the motion primitives that the
robots executes, assuming, without loss of generality, that
the boundary of the environment is to the right of the
robot heading. The symmetric case is when the boundary
of the environment is to the left of the robot heading. In
that case, the sensor must be also placed to the left of the
robot heading and all the modeling is equivalent for the
symmetric case. The automaton is at state SL when the
robot is following a line segment, the automaton is at state
CCWT when the robot is executing a counterclockwise
turn, this typically happens when the robot encounters a
concave corner, and the automaton is at state CWT when
the robot is executing a clockwise turn around a convex
corner.

Sensor measurements obtained with the laser are used
in two different ways: 1) They are used as feedback
information in the controller of the robot’s velocities
(see Sections 2.5 and 3). 2) They are used to respond
binary questions, which allows one to change or not from
a state to another; those elemental decisions are called
“observations”, since they are directly based on sensor
measurements. The observations are labeled by a yi in
Fig 2. They are described in detail in Section 2.4.

2.1 Robot’s sensor and discs

The differential drive robot is modeled as a disc of radius
r and it has a defined forward heading. The extrema right
side robot’s point is called rp. The robot is equipped
with an omnidirectional laser range finder, this sensor is
used to measure distances and angles to features in the
environment, and it is located at point rp.

We use two discs for modelling the robot trajectories
and helping defining the transitions between states in the
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Fig. 2. Automaton.
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Fig. 3. Two discs.

automaton. Refer to Fig. 3. A disc centred at the robot
centre, this disc has a radius dd > r, the extrema right
side point over this disc is called rp′. This disc of radius dd
is used as a virtual circular robot to track the boundary
of the environment touching it or lying close to such
boundary. Another larger disc is used to travel trajectories
corresponding to arcs of circle on the boundary of this disc.
This second disc has radius dt (with dt > dd), it is centred
at other point different to the robot centre but sharing
point rp′ with the disc of radius dd. The line segment
passing over points rp and rp′ is called line rp− rp′. The
control algorithm requires that the user defines the value
of dd and dt, see below.

2.2 Feature detection

To detect convex and concave corners that delimit walls,
a local and simple line fitting technique is used. First, the
closest laser point from the laser sensor is detected. Then,
the angles between the ray from the laser sensor to the
closest point obstacle and the rays between the closest
point and the next 10 sensed points, in counterclockwise
sense, are measured. Those ten angles are averaged and
the resulting angle is called reference angle. Then, the
angle between the ray from the laser sensor to the closest
point obstacle and the ray between the closest point and
a given sensed point is computed, that angle is called
angle of the point. Finally, the following conditions are
used to detect corners. A concave corner is detected if the
angle of the point is smaller than the reference angle plus
a given threshold. Similarly, a convex corner is detected
if this angle of the point is larger than the reference
angle plus a given threshold. There are other well known
algorithms, which fit lines based on points and it can
be used for more complex environments (Gonzalez and
Latombe, 2002; Press et. al, 1994).
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2.3 Sensor measurements: angles and distance

Refer to Fig. 4. The ray that points to the closest point
obstacle over the line segment that the robot is following is
called rmin. Let d1 be the smallest distance from the centre
of the robot to the line segment that the robot follows.
Let θ1 be the angle from line rp− rp′ to the ray rmin (in
counterclockwise sense). Angle θ1 and distance d1 are used,
at state SL, as feedback information (see Section 2.5).

Fig. 4. Angle θ1 and ray rmin.

Refer to Fig. 5. Let θ2 be the angle between the line
rp− rp′ and the ray dmin that points to the closest point
in the last polygonal segment (in counterclockwise sense)
of the boundary of the obstacle, that intersects the circle
of radius dt.

a) 

2θ

b) 

2θ
robot heading

d min d min

robot heading

Fig. 5. Angle θ2.

Refer to Fig. 6. The distance between the centre of the disc
of radius dt = a+dd and the concave corner is called h. At
the moment when a bicontact between the disc of radius
dt and the obstacles border occurs, the distance from the
centre of the robot to the concave corner (distance dcorner)
is measured. Using distance dt, distance dcorner, and the
angle γ (which can also be measured with the laser),
distance h is computed using the law of cosines. The first
time that this distance h is computed, it is called h0. Later
during the robot motion the distance h is computed again
at each iteration of the control cycle. Angle θ2 and distance
h are used as feedback information at state CCWT (see
Section 2.5).

h0

dcornerdd

a γ
a h

γ

dcorner

Fig. 6. Distance h

Refer to Fig. 7. The ray from the robot centre that points
to the convex corner is called rcorner. Two distances are
used to compute angle θ3, the distance to an obstacle
in the direction of the line rp − rp′, called dw and the
distance from the centre of robot to the corner dcorner.
The cosines law is used to compute an angle called A,

angle θ3 = π
2 − A. Line rp − rp′ and ray rcorner are

not necessarily colinear. Note that sometimes the robot
aligns its heading to a virtual line segment (called sv),
see Figs. 7 a) and b). However, as the line passing over
point rp and rp′ gets perpendicular to that line segment,
the correct segment will be sensed and considered, see
Fig. 7 c). The motion terminates as soon as the angle
θ3 is smaller than a threshold ε2, this is the same that
having the robot heading aligned with the segment after
the corner (in counterclockwise sense), see Fig. 7 d).
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Fig. 7. Angle θ3

If there exist obstacles points within the disc of radius dt
then angle θ4 is calculated to determine what angle the
robot has to rotate, to avoid a collision with the obstacles.
An obstacle point is a point that does not belong to the
segments sharing the convex corner.

To compute θ4, two distances are used: dcc and dcdo, (refer
to Fig. 8): dcc is the distance from the centre of the disc of
radius dt to the convex corner, dcdo is the distance from the
centre of the disc of radius dt to the closest point belonging
to an obstacle. The cosines law is used for computing
distance dco, it is the distance between the convex corner
and the point at distance dcdo from the centre of the disc
of radius dt. To find the point that collides with the closest
obstacle, from the centre of the disc of radius dt, a circle of
radius dco centred at the convex corner is used. This circle
and the circle of radius dt are intersected. The intersection
point that is closer to the closest obstacle, from the centre
of the disc of radius dt, is denoted point IC. θ4 is the angle
between the ray from the corner to the point IC and the
ray from the corner to the point obstacle that lies closest
to the centre of the disc of radius dt. Fig. 8 a) shows the
case when the obstacle is a corner and Fig. 8 b) the case
when the obstacle is a segment. The angle that the robot
has to rotate around the corner is min{θ3, θ4}. Thus, the
smallest angle between θ3 and θ4 is selected at every time
instance. Angles θ3 or θ4 and distance dcorner are feedback
information at state CWT (see Section 2.5).
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2.4 Observations and bits of the observations

In this work, algebraic Boolean operations of “and” among
several binary answers (bits values) trigger transitions
between states in the automaton. These logic operations of
“and” between different bits are called observations, since
they are established directly based on sensors’ measure-
ments. The bits of the observations represent the answer:
yes or not of a binary question. These answers are deduced
from the laser measurements.

The 4 bits defining an observation are the following:

• rp′: If there is a sensed point belonging to an obstacle
point closer to rp′ than a given threshold ε1 then
this bit is true, otherwise it is false. This bit is only
relevant to transit to state CWT.

• bc: If two different circular sectors of the disc of radius
dt intersect the obstacle region then this bit is true,
otherwise it is false. This bit is relevant to transit to
states SL and CCWT.

• rp′−e: If a convex corner is closer to the point rp′ than
a given threshold ε1 then this bit is true, otherwise
it is false. This bit is only relevant to transit to state
CWT.

• aligned: If |θ1| < ε2 or |θ2| < ε2 or |θ3| < ε2 or
|θ4| < ε2 then this bit is true, otherwise it is false
(the different angles are related to different states in
the automaton). This bit is relevant to transit to the
3 states SL, CCWT and CWT.

Table 1 shows the 3 observations that establish the tran-
sitions between states in the finite state machine. In that
table, X denotes “any binary value”.

yi = (rp′, bc, rp′ − e, aligned) STATE

y1 = (X, 0, X, 1) SL

y2 = (X, 1, X, 0) CCWT

y3 = (1 X 1, 0) CWT

Table 1. Observations yi.

Note that the proposed approach allows some approxima-
tions, 2 thresholds are used. Threshold ε1 is the radius of
the circle that models point rp′ determining whether or
not a convex corner touches point rp′ or whether or not
the robot is touching a wall with point rp′. Threshold ε2
corresponds to an angular threshold determining whether
or not the robot is aligned, the same threshold is used
for the four angles: θ1, θ2, θ3 and θ4. The tuning of
these parameters represents a compromise between precise
control action and robustness against imperfect sensing
measurements.

2.5 Control set-points according to the state in the automaton

The control law is in charge of carrying the robot ori-
entation from an initial value θi to a final value θf . In
this paper, the control set-point corresponding to the fi-
nal orientation θf changes according to the state in the
automaton. We have also an error related to a desired
distance, the control set-point corresponding to a distance
also changes according to the state in the automaton.
Below we specify both the control set point related to the
angle and the distance.

Traveling in straight line SL. In this state θf = θ1 = 0
since we want that the robot is aligned with the line
segment that is following.

Regarding the control set point related to the distance, in
the state, one wants d1 = dd.

Counterclockwise turn CCWT. In this state, one wants
to finish a counterclockwise robot turn CCWT to get
the robot aligned with the last polygonal segment in
counterclockwise sense (after a concave corner) of the
obstacle region boundary that intersects the disc of radius
dt, thus: θf = θ2 = 0. The control set point related to the
distance is h = h0.

Clockwise turn CWT. In this state, the robot’s task is to
finish a clockwise robot turn CWT around a convex corner
to get the robot aligned with the line segment after (in
clockwise sense) that corner, thus: θf = min{θ3, θ4} = 0.
In this state, one wants dcorner = dd.

Table 2 summarizes the important bits in the observations
that change from a state to other in the automaton, and
the control set points for each state.

3. CONTROL SCHEME

In this section, we will describe the proposed control
scheme, yielding the linear and angular velocities, respec-
tively called v and ω.

3.1 Control of linear velocity

The linear velocity of the robot is give by the following
equation:

v =
vn
2

(1 + tanh(α(t− β))) (1)

β is a time shifting and α is a scale factor. These param-
eters establish the duration of the transition from being
motionless to vn, the desired nominal robot’s velocity. The
parameters α and β are calculated such that the maximum
robot acceleration is not exceeded. The velocity profile in
Eqn. 1 allows one to increase smoothly the robot velocity
from 0 to the nominal robot velocity vn.

3.2 Control of angular velocity

The angular velocity is used to correct deviations from the
control set-points in both angles and distances.

A super-twisting sliding-mode controller as in (Rivera et.
al, 2011) is used to obtain the angular velocity of the robot.
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Transition between states Control set points Init. state key bits Final state key bits

SL → CCWT θ1 = 0, d1 = dd bc = 0, aligned = 1 bc = 1, aligned = 0

SL → CWT θ1 = 0, d1 = dd bc = 0, aligned = 1 rp′ = 1, rp′ − e = 1, aligned = 0

CCWT → SL θ2 = 0, h = h0 bc = 1, aligned = 0 bc = 0, aligned = 1

CCWT → CWT θ2 = 0, h = h0 bc = 1, aligned = 0 rp′ = 1, rp′ − e = 1, aligned = 0

CWT → SL min{θ3, θ4} = 0, dcorner = dd rp′ = 1, rp′ − e = 1, aligned = 0 bc = 0, aligned = 1

CWT → CCWT min{θ3, θ4} = 0, dcorner = dd rp′ = 1, rp′ − e = 1, aligned = 0 bc = 1, aligned = 0

Table 2. Transitions between states, bits that determine the transition and control set points
for each state.

The advantage of this type of control is its convergence
property in finite-time of the error to the sliding surface,
which rapidly reaches the control set-points (Moreno and
Osorio, 2012; Utkin et. al, 2013). In this work, the sliding
surface is a linear combination of the distance and angles
set points that must be driven to zero. The angular robot
velocity ωs is calculated as follows:

ωs = −k4|s|
1
2 sgn(s) + σ (2)

where

sgn(s) =

{
−1 if s < 0
1 if s ≥ 0

(3)

σ̇ is given by:
σ̇ = −k3sgn(s) (4)

and the sliding surface s is given by the following equation:

s = k1ed + k2eθ (5)

k1, k2, k3 and k4 are control gains.

Finally, the control errors eθ and ed related respectively to
the robot orientation and the distance between the robot
and the obstacles are given by the two following equations:

eθ =

{
θ1 if SL

θd − θ2 if CCWT
θd −min{θ3, θ4} if CWT

(6)

ed =

{
dd − d1 if SL
h0 − h if CCWT

dd − dcorner if CWT
(7)

where θd follows a profile to avoid undesired discontinuities
in the controls. This profile is described in the next section.

3.3 Changing smoothly the task specifications

From a state to another, the desired orientation of the
robot w.r.t a local robot’s reference frame might change
abruptly, then the error in the orientation might also
change from a small to a large value. This will generate
undesired jumps in the controls. To avoid this discontinu-
ities in the control errors, we shall enforce that the desired
θd varies smoothly from an initial θi to a final θf = 0 value
in a predetermined time (τ). This profile is given by the
next equation:

θd =
θi∈{2,3,4}|t=0

2

(
1 + cos

(
πt

τ

))
(8)

4. SIMULATIONS AND EXPERIMENTS IN A REAL
ROBOT

4.1 Simulation results

Our simulation software run on a 2.2GHz Intel Core i7-
2670QM quad-core processor PC, equipped with 8 GB

(a) Robot is executing a counterclockwise turn at a
concave corner

(b) Robot is executing a clockwise turn around a convex
corner

Fig. 9. Simulations: The real robot is depicted with a black
disc, a red circle represents a virtual robot that is
moving in contact with the environment boundary.
The blue circle represents the trajectories that the
robot executes when it encounters a concave corner.

of RAM, executing Linux, and are programmed in C++
using the computational geometry library LEDA (Zaro-
liagis , 2008), which provides implementations of several
algorithms for graph theory and computational geometry.



Control Engineering and Applied Informatics 9

A laser range finder is simulated to obtain sensed points.
Based on these points a current local representation (local
map) of the environment is obtained, a very simple line
fitting technique (see Section 2.2) is used to obtain the
segments and corners in the environment and measure
the distance and orientation from these features. Those
distances and angles are used as feedback information in
the robot’s controller.

The line fitting technique assumes that the environment
is such that is possible to easily detect their segments and
corners. However, for more complex environments, other
well known algorithms exist to fit lines based on points
(see for instance (Press et. al, 1994).)

Additionally, in our software implementation, both in
the numerical simulation and in the experiments in the
physical robot, we have emulated the finite state machine
presented in Fig. 2, that determines the control set-points
of the robot’s controller.

Fig. 9 shows two snapshots of a simulation experiment. In
that figure the line segments delimiting the environment
are shown in black, the real robot is depicted with a black
disc, its heading is shown with a red arrow, a red circle
represents a virtual robot that is moving in contact with
the environment boundary, the blue circle represents the
trajectories that the robot executes when it encounters
a concave corner. The green point represents the robot’s
sensor that is placed at point rp. A cyan circle represents
distance’s tolerance of the point rp′, if there is an obstacle
inside this circle then it is said that the point rp′ is touch-
ing an obstacle. The yellow region represents the robot’s
visibility region. The dashed red lines depict distance dis-
continuities generated by convex corners. Fig. 9(a) shows
the robot executing a counterclockwise turn at a concave
corner, and Fig. 9(b) shows the robot executing a clockwise
turn around a convex corner.

4.2 Experiments with a physical robot

In all the experiments, we used a robot Pioneer P3-DX,
which is a differential drive system. A disc of radius 0.2 m
is used to model the robot; this robot has a maximum
translational velocity of 1.2 m/s and a maximum rota-
tional velocity of 5.236 rad/s. The nominal linear velocity
vn, used in the experiments, was set to 0.35 m/s. The
distance dd between the environment’s boundary and the
robot’s centre was set to 0.4 m. Hence, the distance
between the environment and the robot’s boundary is
regulated to 0.2 m.

Our algorithms run directly on the robot computer in all
the experiments; this computer is a Pentium M at 1.8
GHz with 1 GB of RAM. Linux is the operating system
and some ROS functionalities are used, the control cycle
runs to 12.5 Hz. The software is programmed in C++.
The omnidirectional sensor is engineered using two laser
range finders Hokuyo model URG-04LX, those lasers are
mounted on the robot in opposite directions, see Fig. 10.

The used control gains are tuned experimentally, one starts
with small positive gains and progressively the values are
increased to obtain a faster converge of the errors to zero.
This process is repeated while no large oscillation in the
robot’s trajectory appears.

Fig. 10. The robot and the lasers.

Two different environments were used to perform the
experiments: a robotics lab and an office, see Figs. 11 and
12. First, we describe the results in the robotics lab.

(a) Robot turning around a convex corner
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(b) Distance to the wall (top) and angular velocity (bottom)

Fig. 11. Experiment in a robotics lab.

Experiment in a laboratory. Table 3 shows the statistics
over 3 laps in a robotics laboratory. The perimeter of lab is
approximately 27.4 meters. The method for wall following
proposed in (Martinez et. al, 2019) is compared with the
method proposed in this paper. The reported performance
metrics are: the average distance between the robot centre
and the environment boundary, the corresponding stan-
dard deviation and the maximum and minimum distance
to the wall per lap. All these values are given in meters.
Finally, it is reported the time per lap in seconds. All the
performance metric are almost the same for both methods
with the exception of the time needed to complete a lap.
The average time required to complete a lap is 162.136 sec
for the method in (Martinez et. al, 2019). In contrast, the
average time per lap obtained with the method reported
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in this work is 83.62 sec, this represents a reduction of
approximately 78.5 sec., that is a reduction of 48.5%. This
reduction is explained because in the method presented
in (Martinez et. al, 2019) the robot totally stops when it
reaches a convex or concave corner while in the method
proposed in this work, the robot does not stop when it
encounters a corner.

Fig. 11(a) shows the robot turning around a convex corner,
Fig. 11(b) (top) shows the distance between the centre
of the robot and the wall while the robot is following
the environment boundary. Fig. 11(b) (bottom) shows the
robot’s angular velocity, the evolution of states in the
automaton as time elapses are labeled in the figure. One
can observe that discontinuities in the angular velocity do
not happen.

(a) Robot executing a counterclockwise turn at a concave
corner
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(b) Changing to right lane

Fig. 12. Experiment in an office

Experiment in an office. Table 4 shows the statistics
over 3 laps in an office. The perimeter of the office
is approximately 16 meters. Again the method for wall
following proposed in (Martinez et. al, 2019) is compared
with the method proposed in this paper. The reported
performance metrics are the same that in the previous
experiment. Again, all the performance metric are almost
the same for both methods with the exception of the time
to complete a lap. The average time to complete a lap
is 59.616 sec with the method reported in (Martinez et.
al, 2019). The method proposed in this paper yields an
average time per lap of 43.109 sec; this is a reduction of
approximately 16.5 sec. equivalent to 27.7%

Fig. 12(a) shows the robot executing a counterclockwise
turn at a concave corner. Fig. 12(b) (top) shows the
distance between the centre of the robot and the wall

while the robot is following the environment boundary.
Fig. 12(b) (bottom) shows the robot’s angular velocity.
Again discontinuities in the angular velocity do not ap-
pear.

In the experiments, we observed that spurious corner de-
tection sometimes instantaneously appeared. To alleviate
this problem, a way is to filter the raw data. However, this
issue has never prevented the robot to terminate the task.
Nevertheless, for dealing with more difficult environments,
our implementation of the corners detection must be im-
proved either using robust line fitting methods to detect
convex corners (Press et. al, 1994) or well known filtering
techniques (Gonzalez and Latombe, 2002) on the raw laser
data, making it more robust.

Based on the experiments, one can conclude that the
approach proposed in this paper allows the robot to contin-
uously move without the need to stop when obstacles get
in the path of the robot. Our experiments show that the
robot’s velocities did not present discontinuities, and that
the approach proposed in this paper allows the robot to
use a single controller in all the states in the automaton,
which makes the implementation and the tuning of the
controller gains easier. This approach also allows the robot
to circumnavigate faster the environment compared with
the method proposed in (Martinez et. al, 2019).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach for wall
following with a nonholonomic differential drive robot in a
polygonal environment. An automaton manages the robot
observations and select the control set-points according to
the state in the automaton. We have also proposed a super-
twisting sliding-mode control which rapidly reaches the
control set-points. In all the states in the automaton the
same controller is used to compute the linear and angular
velocities, only the control set-points are changed. The
approach allows the robot to continuously move without
the need to stop when obstacles get in the path of the
robot. This approach allows the robot to follow the walls
fast and robustly. The wall following capability can be used
to explore an unknown environment or to find objects in
the environment. The control law and the algorithms to
get the observations have been implemented; simulation
results and experiments with a physical robot are included
and discussed.

As a future work, we would like to explore another control
strategy, in which the robot reduces the linear velocity
when it approaches a corner without totally stopping the
robot. We think that this strategy can further reduce the
time to complete a lap.
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