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Abstract— In this paper, we present a multi-robot exploration
strategy for map-building. We consider a team of robots
with different sensing and motion capabilities. We combine
geometric and probabilistic reasoning to propose a solution
to our problem. We formalize the proposed solution using
dynamic programming in states with imperfect information. We
apply the dynamic programming technique in a reduced search
space that allows us to incrementally explore the environment.
We propose realistic sensor models and provide a method
to compute the probability of the next sensor reading given
the current state of the team of robots based on a Bayesian
approach.

I. INTRODUCTION

Automatic environment exploration and map building is

an important problem in mobile robotics. Autonomous robots

must posses the ability to explore their environments, build

representations of those environments (maps), and then use

those representations to navigate effectively. Maps built upon

exploration can be used later by the robot to perform other

tasks such as object finding.

A strategy for exploring an unknown environment and

building an environment representation with a mobile robot

can be performed as follows: (i) the robot builds a local map

with the sensor readings (ii) the robot moves to an intermedi-

ary goal, which is defined based on suitable properties (iii) a

global map is updated merging the information between the

current global map and the new local map.

In the last two decades several approaches have been

proposed for map-building, for instance [5], [8], [10], [19]

just to name a few. Most previous research has focused on

developing techniques to extract relevant information from

raw data and to integrate the collected data into a single

model. However, a robot motion strategy to explore the

environment has been less studied. In this work, we deal

mainly with this latter problem.

In this paper an exploration strategy is proposed. Our

exploration strategy considers sensing and motions capa-

bilities of each robot. Our algorithm outputs the sensing

configurations to be visited. The sensing configurations are

associated to the borders between the known and unknown

space. Our method assigns a robot of the team for visiting

a selected sensing configuration, according to its capabilities

and without considering predefined roles.

Our main contributions are: (1) We consider a team of

robots with different sensing and motion capabilities. (2) We

formalize the proposed solution using dynamic programming

in states with imperfect information. (3) We propose realistic

sensing models. (4) We propose a method to compute the

probability of the next sensor reading given the current state

based on the Bayes rule.

II. RELATED WORK

Several robot exploration strategies for map building have

been proposed. It is possible to classify those exploration

strategies into two main types: (i) systematic exploration

and (ii) strategies in which sensed information is taken into

account to define the next sensing location.

In systematic explorations, the robots follow a predefined

motion pattern, for instance following walls [3], moving in

concentric circles [15], and so forth.

In non-systematic exploration, information taken by the

sensor is frequently used to select an appropriated sensing

location. A common strategy is the frontier-based explo-

ration, originally proposed by Yamauchi in [23]. In this

strategy to explore the environment, the robot goes to the

imaginary line that divides the known and unknown parts of

the environment.

In [16], [11], [13], the proposed exploration strategies lead

the robot to locations in which maximal information gain

is expected, a cost function is defined to maximize the new

information that will be obtained in the next sensing location.

Several works have proposed to generate random sensing

locations and then evaluate them to select one that maximizes

a cost function. The exploration strategy presented in [12] is

based on the computation of the next best view and the use

of randomized motion planning. In [12] the proposed motion

strategy only considered the case of a single robot.

In [1] an interesting experimental evaluation of several

exploration strategies is presented. However, in that work

the case of multi-robot exploration is not studied.

Some works have proposed multi-robot exploration and

mapping [17], [7]. In both of these works, the information

gain and the exploration cost are considered simultaneously

to define the next locations for each robot of the team. In [7]

the map is represented using an occupancy grid and the pos-

sible locations for the next exploration step are defined over

cells lying on the border between the known and unknown

space. In [22] the authors propose a multi-robot exploration

strategy in which instead of frontiers, the authors use a

segmentation of the environment to determine exploration
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targets for the individual robots. This segmentation improves

the distribution of the robots over the environment.

We have already proposed motion strategies for explo-

ration and mapping. In [21] we have presented techniques

that allow one or multiple mobile robots to efficiently explore

and model their environment. We developed a utility function

that measures the quality of proposed sensing configurations,

and a randomized algorithm for selecting the next sensing

configuration. In that work we have considered a team of

homogeneous robots (same sensing and motion capabilities).

Some previous works have already proposed exploration

with multiple robots having different capabilities. The work

presented in [18] considers a team composed by robots of

different sizes. During the exploration, if a robot is too big to

navigate among obstacles and reach a sensing location, then

it asks to a smaller robot to perform the task. In [9] robots

have one of two roles: Navigator or cartographer, navigators

randomly move in the environment until they find a target

location for a cartographer, after that the cartographer moves

to the target location. In the works mentioned above each

robot follows a specific and predefined role according to its

type.

In this work, we propose motion strategies for exploration

and map building considering the robots capabilities, but we

do not assign pre-defined roles to the robots of the team,

instead, we model the robots capabilities probabilistically.

III. PROBLEM DEFINITION, NOTATION AND APPROACH

OVERVIEW

The problem addressed in this paper consists in exploring

an unknown environment and incrementally building a model

of that environment with a team of mobile robots having

different sensing and motion capabilities. We assume that the

sensors and motors of each robot are imprecise. Our goal is

to propose a robot motion strategy, which generates a fast

and reliable map building. We also want to profit the most

of the different capabilities of each robots according to the

exploration and map building tasks.

We propose a discrete time approach and consider a team

with n robots. To explore the environment as quickly as

possible, sensing configurations that provide maximal view

of unexplored areas should be preferred. Hence, we use a

frontier-based exploration.

Points belonging to the obstacles (discrete sensor reading)

are obtained by a sensor (e.g. a laser range finder). Every

point is denoted sj ∈ R
2. The ensemble of points is denoted

S =
⋃

j

sj

This ensemble is a set. Based on this set, obstacles can

be model with poly-lines applying a line fitting technique

[21] over the sensed points. This step is needed to facilitate

visibility computations.

Visibility computation (which yield visibility polygons)

over the sensed environment is used to define the borders

between the known and unknown environment. We denote

by V (qi) a visibility polygon of robot i at configuration

qi ∈ R
2 × SO(2). We consider disk robots, a robot is free

to move in the interior of its visibility polygon, so long as it

does not collide with an obstacle. We denote by F (qi) the

visibility polygon reduced by the robot radius, i.e., F (qi) is

a safe region for navigation that is visible from configuration

qi. We define Vtot as the total visibility region for the team

of robots, and Ftot as the total visible region in which any

robot can move, i.e.,

Vtot =
⋃

i

V (qi) and Ftot =
⋃

i

F (qi).

A frontier (free edge) is defined as the border between the

visibility region V (qi) and the unseen environment. Local

maps are composed by points (the original sensor readings

signaling the obstacles) and by frontiers. Thus, while the

local maps contain free edges, the robots have not finished

the exploration. Indeed, our local maps are located at the

border between the known and unknown environment. The

local maps are denoted Stp(q(i,k)). They are related to the

robots configurations q(i,k), k indexes the time step in which

the local map is sensed, i the robot, and tp ∈ N denotes a

type of local map (we consider that there are different types

of local maps, more details are given below).

Let C, U and Z respectively denote the configuration, con-

trol and observation spaces, which respectively correspond

to all possible robots configurations, controls and sensor

readings. The state space is X ⊂ C × E, E is the set

of all possible environments in which the robots might be.

Evidently, there is a relation between the state xk and the

robots observation state zk. Thus, zk = h(xk), zk ∈ Z ,

xk ∈ X and q(i,k) ∈ C.

Based on sampling, we generate candidate sensing config-

urations over the configuration space C. The samples are only

generated close to the free edges. Besides, only the samples

inside Ftot are considered. Thus, visibility computations

are used to bias the sampling. Since selected samples are

close to the border between the explored and unexplored

environment, they have a good chance of seeing unknown

environment.

The robots move following only two motion primitives:

Rotation in site without translation and straight line motions.

Between two configurations q(i,k), q(i,k+1), the robot path is

composed by 3 motion primitives. First, the robot rotates

aiming to the goal. Second, it translate to this goal. Finally,

the robot rotates again to reach its final orientation. The

resulting robot path lies totally inside F (qi), and hence, it is

not needed to be tested for collision.

For multiple robots, the motion primitives are the same for

each robot. Furthermore, the exploration starts assuming that

Ftot has a single connected component. In general, if a robot

i of the team has to visit a candidate sensing configuration

of another robot j then it might not be possible for the robot

i to travel between the two configurations by following a

straight line. In those cases, we use a reduced visibility graph

(computed over C) to follow the shortest path between the

sensing configuration. The resulting path is totally inside

Ftot.
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We deal with uncertainty in both sensing and control.

We model this uncertainty using probabilistic methods. We

assume that each robot has its own control model that

indicates the probability of reaching a next state xk+1 from a

current state xk applying some controls uk ∈ U . We denote

this probability p(xk+1|xk, uk), which probabilistically take

the robots to the next state xk+1. The relation between

p(xk+1|xk, uk) and the inaccuracy of the control uk can be

found in [20].

We assume that our robots are equipped with sensors

having different range, resolution, and different precision to

determine the distance from the robot to the obstacles. Since,

we want to incrementally build a map of the environment, we

need to find the best alignment between the current sensor

reading and the new one. We used original data to align

local maps with the global one. The best transformation

according to the Hausdorff distance is used to correct the

robot position and merge the maps. But, at the end the stored

map is composed of polylines obtained through line fitting

of the sensor reading [21].

Inspired by Bayesian approaches, we propose to use a

priori information of the environment, which can be incor-

porated to our models to make better decisions. We define

the mapping zk+1 = h(xk+1) between the observation state

zk+1 and the system state xk+1. This mapping h(xk+1) is

simply defined as an equivalent relation zk+1 ∼ tp. This is

useful, because it provides a manner to estimate the sensor

reading zk+1 given the state xk+1. p(zk+1|xk+1) denotes the

probability of the observation state zk+1 given the system

state xk+1. The Bayes rule is used to calculate it.

In this setting, p(xk+1|zk+1) can be estimated using a

nearest neighbor method. Since a local map is a set of points,

we use the Hausdorff distance as metric in the nearest neigh-

bor method to measure the resemblance between the sets Stp

(related to the observation state zk+1) and a hypothesized set

S(k+1) (related to the system state xk+1). We estimate the

type of local map tp that we would obtain as sensor reading

zk+1.

For a set of explorer robots, the system can be mod-

eled as a dynamic system. The system evolves from an

state to another while robots of the team move to fron-

tiers. The system information state is defined as Ik =
(u1, . . . , uk−1, z1, . . . , zk). Ik is the history of all sensor

readings until time k and all controls that have been applied

to the system until time k − 1. Dynamic programming is

used to select the next sensing configuration considering the

information state Ik [4].

IV. MODELING A SOLUTION WITH DYNAMIC

PROGRAMMING

Since, we assume uncertainty in both sensing and control,

we model our problem as a dynamic system with imperfect

information state.

Our dynamic system is defined as follows:

• The set of possible states is denoted as X , for n robots

a state is x = (x1, . . . , xi, . . . , xn)
T , x1, xi and xn

respectively denote the state of robot 1, robot i and

robot n. We assume mobile robots with 3 degrees of

freedom, so the configuration of each robot i is a vector

qi = (px, py, θ)
T , px and py denote the robot position

in a two dimensions global reference frame, θ denotes

the robot orientation with respect to the abscissa axis

in the global reference frame. We consider that a robot

state xi is equivalent to a robot configuration qi × e,

e ∈ E denotes the environment in which the robot is.

The environment e is represented as a set of local maps

e =
⋃

(i,k)

S(q(i,k))

• The set of possible controls is denoted U , each element

of the set ui ∈ U is a vector having the controls for

each robot. We consider differential drive robots.

• The set of possible readings taken by the robots sensors

is Z , zi ∈ Z is a vector, which includes the sensor

reading of each robot.

• We use probabilistic modeling. The system changes

from a state xk in time k to another state xk+1 after hav-

ing applied control uk with probability p(xk+1|xk, uk).
Since there are n robots, we have a probability

p(x(i,k+1)|x(i,k), u(i,k)), in which i denotes the i − th

robot. We assume this probability independent for each

robot. Therefore, we have:

p(xk+1|xk, uk) = p(x(1,k+1)|x(1,k), u(1,k)) . . .

p(x(n−1,k+1)|x(n−1,k), u(n−1,k))p(x(n,k+1)|x(n,k), u(n,k))

In this paper we consider those probabilities given.

• p(zk+1|uk, xk+1) is the probability of obtaining a sen-

sor reading zk+1 given that the system is at state

xk+1, having applied control uk. We assume that the

sensor reading zk+1 is independent of the control uk. It

means that robots sense the environment, when they are

motionless, after reaching a given sensing configuration.

Hence, p(zk+1|xk+1, uk) = p(zk+1|xk+1). Further-

more, we also assume these probabilities independent

for each robot, thus:

p(zk+1|xk+1) = p(z(1,k+1)|x(1,k+1))p(z(2,k+1)|x(2,k+1))

. . . p(z(n,k+1)|x(n,k+1))

In Section IV-C we propose a Bayesian approach to

estimate p(zk+1|xk+1).
We apply dynamic programming in the system defined

above to obtain the optimal action to be executed. We con-

sider all the information available: History of both controls

and sensor reading. Thus, we select the action to be executed

at time k based on Ik.

The dynamic programming equation considering Ik is

given by equation 2 [4].

Jk(Ik) = max
uk

[g(Ik, uk) + E{Jk+1(Ik, zk+1, uk)|Ik}] (2)

In equation 2, g(Ik, uk) represents the utility (gain over

cost) of applying a given action. It indicates how useful it
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p(xk+1|Ik+1) =

∑

xk
p(xk|Ik)p(xk+1|xk, uk)p(zk+1|uk, xk+1)

∑

xk+1

∑

xk
p(xk|Ik)p(xk+1|xk, uk)p(zk+1|uk, xk+1)

(1)

is to apply a control uk in which the information vector is

Ik (history of both controls and sensor reading). g(Ik, uk)
can be calculated in terms of g(xk, uk) with the following

equation [4].

g(Ik, uk) =
∑

xk

p(xk|Ik)g(xk, uk) (3)

Since we consider uncertainty, g(Ik, uk) depends on both

p(xk+1|Ik+1) and g(xk, uk). While the dynamic program-

ming equation 2 is evaluated backwards, starting with the

last step, the equation 1 is evaluated forwards beginning with

k = 0.

Notice that the dynamic programming technique considers

all possible states (assuming that all the information is

available from the beginning). However, in our setting, we

do not have all the information at time k = 0. Besides, we

want to incrementally explore the environment and build a

global map. Consequently, when we make the decision of

applying control uk and thus changing the system from state

xk to xk+1, we commit with that decision and we move the

robots to obtain new information. In some future state, the

possibles actions which consider robot motions different to

the ones already executed are not considered.

In our motion strategy, we do the following: (1) we

consider p(xk+1|Ik+1) to generate the action uk, and (2)

we make short term plans.

The first point means that, we do consider statistic of

the history of past actions and sensors readings. Indeed, in

[2], it has been shown that this is sufficient statistic of the

information state.

The second point means that, we only plan the action to

change a state from k to k+1, we do not plan a long order

for visiting free edges. For instance, for a team composed

by two robots (robot A and robot B), a state k transits to the

next state k+1, whenever one of the three following options

happens: 1) robot A moves twice and robot B does not move,

2) robot B moves twice and robot A does not move, or 3)

robot A moves once and robot B also moves once.

The reason for generating short term plans is that we have

previously shown [21] that making long term plans with

partial and dynamic information will often result in a waste

of resources. Notice that as soon as new frontiers (free edges)

appear (which have not been considered in the original plan),

the robot might need to come back to some configurations

near to other configurations already visited, thus traveling

longer than required.

Changing a state from k to k+1 might imply that all the

robots of the team move. In order to facilitate the motion

coordination of the robot’ team and avoid collision among

them, we impose that a motion for a given robot j starts

until the motion of other robot i is finished. However, we

do consider as an option to send a robot to a frontier that is

sensed by another robot.

A. Objective function g(xk, uk)

g(xk, uk) indicates how useful it is to apply a control uk

given that the the system is at state xk.

Distance

Area

Fig. 1. Expected discovered area and traveled distance.

For each robot we define g(xi,k, ui,k) as a function

depending only on two factors (other functions depending

on more factors, which might yield more realistic setting,

can also be used in our formulation). These two factors are:

(1) The new area A(q(i,k+1)) that the robot can perceive at

a next configuration. (2) The distance the robot would travel

to reach that configuration d(q(i,k), q(i,k+1)).
Figure 1 shows a robot at a configuration near to the border

between the known and unknown environment. The circle

around the robot depicts the area within the sensor range (the

radius of the circle represents the sensor range). The shaded

area is the maximum new area that the robot can discover

at that configuration. We use the global map at time k to

eliminate portions of this area that we know are obstacles

already sensed [12].

We define g(xk, uk) as an objective function that relates

the utility (ratio of gain over cost) of the action with the

control uk given the current state xk.

g(xk, uk) = g(x(i,k), u(i,k)) =
A(q(i,k+1))

d(q(i,k), q(i,k+1))
(5)

Equation 4 defines the distance between

configuration q(i,k) and configuration q(i,k+1), in which

α = min{|θ(i,k) − θ(i,k+1)|, 2π − |θ(i,k) − θ(i,k+1)|}

B. Computing p(xk+1|Ik+1)

First, equation 1 is calculated to apply the dynamic pro-

gramming equation. p(xk+1|Ik+1) represents the probability

of being in a state xk+1 considering the applied controls and

sensed data. This equation is used in [20] to calculate the bel
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d(q(i,k), q(i,k+1)) =
√

(px(i,k) − px(i,k+1))
2 + (py(i,k) − py(i,k+1))

2 + α2 (4)

in Bayes Filter and in [14] for representing a mapping on

probabilistic information spaces.

The equation 1, can be obtained from the Bayes’ rule,

applying joint probability methods and marginalization.

p(xk+1|Ik+1) is expressed in terms of p(zk+1|xk+1, uk),
p(xk+1|xk, uk) and p(xk|Ik).

As it was mentioned above, we assume

p(zk+1|xk+1, uk) = p(zk+1|xk+1). Indeed, we estimate

p(zk+1|xk+1) without actually taking the robot to state

xk+1, but computing its hypothesized visibility region (see

figure 1). In fact, we make a prediction from state xk.

To compute p(xk+1|Ik+1), p(x0|I0) is needed at the first

step. At the beginning, no control has been applied and the

only sensor reading is z0, therefore I0 = z0 and p(x0|I0) =
p(x0|z0). This probability is directly estimated using the

nearest neighbor method described in the next Section.

C. Estimating the probability p(zk+1|xk+1) of the next sen-

sor reading given the state

We want to estimate the probability of the next sensor

reading zk+1, given that the robots are in the state xk+1. We

assume this probability independent of the controls uk. The

Bayes rule is used to estimate p(zk+1|xk+1).

p(zk+1|xk+1) =
p(xk+1|zk+1)p(zk+1)

∑

xk+1
p(xk+1|zk+1)p(zk+1)

(6)

We assume that the environment contains a bounded

number of local map’ types. tp denotes a type, the local

maps are sets of points obtained with a sensor (e.g. a laser

range finder). The robots are provided with a training set of

local map’ types. Each type itself has associated a probability

of being sensed p(zk+1). In the absence of information this

probability can be set equal for all types, or it can be obtained

from supervised learning process. p(xk+1|zk+1) is estimated

using the nearest neighbor method [6].

p(xk+1|zk+1) =
ζ

ntpφtp

(7)

ζ is the ζ − th nearest neighbor, ntp is the number of

elements used in a training set belonging to the local map

of type tp, and φtp is the surface that assigns a class (type

of local map). For a training set in a feature space with a

single characteristic, φtp is defined by:

φtp = 2rtp (8)

In this last equation rtp is the distance to the ζ−th nearest

neighbor.

Since a local map is a set of points, we use the partial

Hausdorff distance as metric rtp, in the nearest neighbor

method to estimate the resemblance between the sets Stp

(related to the observation state zk+1) and the hypothesized

set Sk+1 (related to the system state xk+1). We evaluate

the partial Hausdorff distance considering a transformation

including both translation and rotation.

Given two sets of points Stp = P and S(k+1) = Q, the

partial Hausdorff distance is defined as (see [21]):

H(P,Q) = max(h(P,Q), h(Q,P )) (9)

where

h = Mp∈P min
q∈Q

‖p− q‖ (10)

where Mp∈P f(p) denotes the statistical mean value of f(p)
over the set P and ‖.‖ is the Euclidean metric for measuring

the distance between two points p and q.

Thus, the Hausdorff distance is computed between the set

S(k+1) and the five types of local maps Stp.

a) b) c)

d)

e)
Local map of type intersection

Local map of type T

Local map of type corridorLocal map of type single wall Local map of type corner

Fig. 2. Types of local maps Stp.

Figure 2 shows the five types of models that we use. We

consider this five models as typical for an indoor structured

environment. The dots represent the sensor reading. We use

models with different number of points to simulate robots

equipped with sensors having different resolutions, and the

training data consider some variants of each one of the five

main patterns (types of local maps) shown in figure 2.

Obviously, our approach has the disadvantage that other

types of local maps can appear. However, the type of map is

only used for selecting the most appropriated robot according

to its sensing and motion capabilities. At the end, the local

map integrated to the global map corresponds to the actual

sensor readings.

V. SIMULATIONS RESULTS

In this section, we present simulation results. All our

simulation experiments were run on a quad-core processor

PC, equipped with 3 GB of RAM, running Linux. Our

software is written in C++.

For distinguishing the robots, in all the figures robot R1 is

shown with a square and robot R2 with a circle, however for

finding collision free paths both robots are modeled as disks
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a)

b)

c)

d)

e)

Fig. 3. Exploration 1

a) b)

c)
d)

e) f)

Fig. 4. Exploration 2

with the same radius. In all simulation the visibility region

of both robots is computed used a polygonal approximation

of the data points obtained with the sensor. The visibility

region of robot R1 is shown in dark gray (green) and the

visibility region of robot R2 is shown in light gray (yellow).

In the first experiment (figure 3), robot R1 has better

sensing capabilities, but worse control capabilities compared

with robot R2. That is, the robot R1 is equipped with a

sensor having bigger range and better resolution than robot

R2, However R1 has a associated probability of reaching the

next state to which the robot is sent smaller than robot R2.

In figure 3 an indoor environment (office type) is shown.

The environment is 3000 units long and 2300 wide. The

probability for reaching the next state p(xk+1|xk, uk) is

set 0.2 for robot R1, and 0.9 for robot R2. Robot R1
has a sensing range of 1200 units and R2 has a range of

800 units. The sensor’s resolution of robot R1 is set to 2
degrees, and the sensor of robot R2 has a resolution of 4
degrees. Furthermore, the sensor of robot R1 may produce
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an error over the sensed distance to the obstacles bounded

by 2 units, and the sensor of of robot R2 may produce an

error bounded by 4 units. In this environment, we have run

20 simulations with the same initial robots configurations.

Figure 3 a) shows the initial robots’ configurations, figures 3

b), 3 c) and 3 d) show snapshots of one of these experiments.

In average, R1 has moved 4 times and robot R2 3 times

to explore the environment. 15 over 20 times the following

happened: robot R1, the one with better sensing capabilities,

was selected to explore the richer visual local maps (left

part of the environment) and robot R2 (having better control

capabilities) was selected to explore local maps composed

only by two parallel lines, the corridor in the right part

of the environment (See figures 3 c) and 3 d)), which are

hard to be matched with the global map. Notice that in

corridors bounded with parallel featureless walls, a matching

procedure only finds an alignment between the local and

global maps, in the direction perpendicular to the walls.

Figure 3 e) shows the sensed points collectively obtained by

both robots. Based on these first results, we conclude that our

approach generates robot behaviors, that is, robots with good

sensing capabilities are selected to explore visually rich local

maps, and robots with good control capabilities are used to

explore local maps, which are hard to be matched with the

global map. However, we plan to test our algorithms in real

robots to verify this result.

Figure 4 shows an environment with holes. In this envi-

ronment, we have run a simulation in which both robot R1
and robot R2 have exactly the same sensing capabilities, but

robot R2 has better control than robot R1. p(xk+1|xk, uk)
is 0.5 for robot R1, and 0.7 for robot R2. In this simulation,

robot R2 has moved 5 times and robot R1 has only moved

twice. Furthermore, the total length of the path traveled by

robot R1 is significantly smaller than the one traveled by

robot R2.

Finally, we stress that in all our simulations ran over the

environments shown in figures 3 and 4, our software has

found a plan to explore the whole environment in less than

a minute.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a multi-robot exploration

strategy for map-building. We have considered a team of

non-identical robots; in particular, robots have different capa-

bilities in both sensing and control. We have formalized our

solution using dynamic programming in states with imperfect

information. We have applied the dynamic programming

technique considering a reduced search space, in which we

avoid to consider unnecessary robot’ motions that could arise

from a lack of knowledge about the unexplored part of

the environment. This strategy greatly reduces the number

of operations needed to evaluate the dynamic programming

equation and allows us to incrementally explore the environ-

ment. We have also proposed a Bayesian method to estimate

the probability of the next sensor reading given the state

of the team of robots. As future work, we plan to obtain

simulation results with a bigger number of robots, we would

like to analyze unsupervised learning algorithms to adapt the

types of local maps during the exploration. Finally, we also

want to test our approach in real robots.
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