
A Reactive Motion Planner to Maintain

Visibility of Unpredictable Targets

Rafael Murrieta-Cid∗ Héctor H. González-Baños† Benjamı́n Tovar∗

∗ ITESM Campus Ciudad de México † Honda’s Fundamental Research Labs
Calle del Puente 222, Tlalpan, México D.F. 800 California St. 300, Mnt. View, CA 94041
{rmurriet,betovar}@campus.ccm.itesm.mx hhg@hra.com

Abstract—This paper deals with the problem of com-
puting the motions of one or more robot observers in
order to maintain visibility of one or several moving tar-
gets. The targets are assumed to move unpredictably,
and the distribution of obstacles in the workspace is
assumed to be known in advance. Our algorithm com-
putes a motion strategy by maximizing the shortest dis-

tance to escape —the shortest distance the target needs
to move in order to escape the observer’s visibility re-
gion. Three main points are discussed: 1) The design
and implementation of a reactive planner; 2) the inte-
gration and testing of such a planner in a robot system
which includes perceptual and control capabilities; 3)
The design and simulation of a motion planner for the
task of maintaining visibility of two targets using two
mobile observers.

Keywords— Target tracking, motion planning, visibil-
ity constraints, robotics, shortest distance to escape.

I. Introduction

The target-tracking problem has been traditionally
attacked with a combination of vision and control tech-
niques [18], [4]. Purely control approaches, however,
do not take into account the complexity of the en-
vironment nor the problem of coordinating different
robots to track several targets. The basic question
which has to be answered is where should the robot
observer move in order to maintain visibility of a tar-
get moving in a cluttered workspace. Both visibility
and motion obstructions have to be taken into account.
Thus, a pure visual servoing technique will fail because
it ignores the geometry of the workspace.

Maintaining visibility of targets is intimately related
to the art-gallery problem [17], where the goal is to
compute the locations of a minimal number of guards
such that all points in the workspace (the art gallery)
are visible to at least one guard. In tracking, we are in-
terested in guarding a moving point (the target) using
a mobile guard (the observer).

Previous works have studied the motion planning
problem for target tracking. The case for predictable
targets is presented in [15], which describes an algo-
rithm that computes numerical and optimal solutions
for problems of low-dimensional configuration spaces.
However, the assumption that the motion of the target
is known in advance is a very limiting constraint. The
algorithm in [15] relies on a heavy discretization of the
environment in order to apply a recursion based on
the dynamic programming principle. This discretiza-
tion severely limits the number of degrees of freedom
that can be handled by the algorithm.

∗This research was partially funded by CONACyT, México

In [1], a tracking algorithm is presented which op-
erates by maximizing the probability of future visibil-
ity of the target. This algorithm is also studied with
more formalism in [15]. Given a polygonal map of the
workspace, the planner first computes a disk of radius
VR centered at qt, where qt is the current location of
the target and VR is the maximum speed of the target
multiplied by the sampling rate. This disk represents
a very crude probability distribution of the target’s lo-
cation. Next, the planner computes the area of the
disk that remains visible when the observer position is
randomly perturbed around its current location. The
planner selects the position that maximizes the area
of the disk that remains visible from the new observer
location. It is assumed that the disk has uniform prob-
ability density, and geometric constraints are incorpo-
rated by setting zero probability mass in the regions
within the disk that correspond to configuration-space
obstacles. This technique was tested in a Nomad 200
mobile robot with relatively good results. However,
the probabilistic model assumed by the planner is of-
ten too simplistic, and accurate models are difficult to
obtain in practice.

The work in [5] presents an approach which takes
into account the positioning uncertainty of the robot
observer. The game theory is proposed as a framework
to formulate the tracking problem. The main contribu-
tion of this work is a technique that periodically com-
mands the observer to move into a region that has no
localization uncertainty (a landmark region) in order
to re-localize and better track the target afterwards.

In [7], a technique is proposed to track a target with-
out the need of a prior map. Instead, a range sensor
is used to contruct a local map of the environment,
and a combinatorial algorithm is then used to com-
pute a differential motion for the observer at each it-
eration. The advantage of this technique is that no
explicit self-localization mechanism is required. Thus,
the implementation of the tracking system becomes
simpler. This work has yet to be extended to multiple
observers and multiple targets.

II. Planner

A basic issue in target tracking is determining the
time horizon h of the plan. Tracking can be seen as
a sequence of motion decision problems, and each de-
cision in this sequence represents the action executed
by the observer at each stage.

If the target is totally predictable (i.e., if the tar-
get trajectory is known) it is then possible to make
a global optimization for long time horizons. For in-
stance, an utility function which maximizes the time



that the observer sees the target and minimizes the ob-
server motion can be defined and globally optimized.
Planners that require knowledge of the target’s trajec-
tory produce off-line strategies.

For the case of partial or total unpredictable tar-
gets, it makes more sense to compute short term plans.
Unanticipated changes in the target trajectory can be
taken into account by re-planning. An on-line strategy
computes a motion plan for the next h future stages,
and re-plans in the next iteration for the following h
future stages. Typically, h is a very small number.

We have designed a reactive planner that expects
the target to execute the worst possible move in the
next iteration (i.e., h = 1). This worst move is as-
sumed to be in the direction of the shortest path con-
necting the target position qt with a point in free space
outside the visibility region of the observer. The length
of this path is the shortest distance to escape (sde).

The planner computes an observer position that lo-
cally maximizes the shortest distance to escape. This
maximization is done using a randomized algorithm.
We have opted for a randomized approach in order
to “break” the complexity of the computation and
handle multiple observers and multiple targets. The
algorithm samples a number of potential milestones
near the observer (its reachability region), and selects
among them the one that maximizes the sde.

The quality and success of the generated plans
depends significantly on the observer’s capabilities,
mainly on the size and shape of its reachability region.
In this paper, we study this dependence in terms of
high-level parameters describing the sensor, such as
maximum sensor range and viewing frustum.

A. Algorithmic description

We represent each robot observer and each target
with a point, and we model their motion using discrete-
time transition equations. Let each time step be of
length δ. The position of the observer at time kδ is
denoted by qok, and that of the target by qtk. The tran-
sition equation for the observer is qok+1 = f(qok, φk),
where φk is an action chosen from a given action space
Φ. Constraints such as velocity bounds can be en-
coded in f . Similarly, the equation for the target is
qtk+1 = g(qtk, θk), where θk is an action taken from
some space Θ. When the target is only partially pre-
dictable, the observer knows Θ, but not know the spe-
cific action θk executed by the target.

In our on-line planner, the action φk is computed at
each step in order to maximize the shortest distance
to escape (sde) between the target location qtk and
the boundary of the visibility region at the observer’s
future position qok+1. Let V (qok+1) be this region.

One basic operation in the calculation of the sde is
the computation of region V (q) for different candidate
configurations q. For a polygonal model with n edges,
this computation can be done in O(n log n) time us-
ing a ray-sweep technique. In this technique, one point
sees another one if the line segment between them does
not cross an obstacle at any point other than the end-
points. However, limitations in vision sensing require
the use of more realistic models, such as the view-
ing frustum of the sensor (angular field of view) and
its maximum range. We have adapted the ray-sweep

technique to take into account these parameters, which
the planner reads as inputs. For typical cameras, the
visibility region is shaped as a cone.

Each edge in V (q) borders either an obstacle or free
space. Let us denote the edges that border the obsta-
cles as solid edges Efs and the edges that border the
free space as free edges Efr. Also, let E∗

fr be the free

edge of V (q) closest to the target.
To maximize the distance between the target and

the boundary of the visibility region of the observer
we need to compute the distance between qtk and E∗

fr,

where E∗

fr ∈ V (q) and q is candidate for qok+1. Here-
after we call this distance Dqt

k
/E∗

fr
. In order to com-

pute Dqt
k
/E∗

fr
, we need to determine the distance be-

tween the target position qtk and every free edge be-
longing to V (q) for all candidates q.

We can identify two main cases for computing the
distance between qtk and a given free edge Efr. The
first one happens when the target can see a given free
edge Efr. The computation of this distance is eas-
ily done using the Euclidean metric. The second case
happens when the Efr is not directly visible from the
current location of the target. In this case, we are
using a geodesic metric to determine the distance be-
tween a given free edge Efr and the target location
qtk.

The computation of the geodesic distance is done
by determining the shortest path between qtk and all
the free edges in V (q) which are not visible from qtk
by using the visibility graph of the polygonal map. In
order to save time during the execution of the on-line
planner, part of this calculation is pre-processed prior
to the real experiment.

B. Pre-processing

Since the planner must be capable to run in real
time, we exchange time requirements for memory re-
quirements to accelerate execution.

Given a polygonal map of the environment, the pre-
computation steps are the following: 1) Compute the
the visibility region from every vertex in the polygo-
nal map — see Fig. 1(B). 2) The space is discretized
into a very thin grid. For every cell center of this grid
(called the visibility grid), we compute a visibility re-
gion. These regions are stored in an indexed array.
Retrieval time is thus linear in the size of the visibility
region retrieved from the array. 3) The time to com-
pute the visibility grid may be very large if we consider
environments with thousands of vertices. To reduce
the time required by the visibility computations we
use another grid called the index array. We associate
to every bin of this grid a list of the segments in the
environment that lie inside the bin (see Fig. 1(A)). For
every visibility computation in the visibility grid, we
use the segment list from the corresponding bin in the
index array to calculate the visibility region. The in-
dex array is computed at a much lower resolution than
the visibility grid. 4) An approximate visibility graph
is computed. Two vertices in the map are considered
to be visible from each other only if the Euclidean dis-
tance is less than 2ρ and the line-of-sight between them
is in free space —see Fig. 1(C). The constant ρ is the



(A) Index Array

(B) Visibility Polygons from every vertex

(C) Visibility Graph

Fig. 1. Pre-proccesing

range of the observer’s sensor. 5) The shortest path
between every pair of vertices in the visibility graph is
computed using Dijkstra’s algorithm.

We now describe how the pre-procomputations are
used to reduce the comp. cost during run-time.

First, the visibility computation takes constant time
using the lookup-table instead of O(n log n). When a
free edge of V (q) is not visible from a given target lo-
cation, the shortest path between the target and such
edge must then pass through a vertex of the environ-
ment. In consequence, the geodesic distance between
a free edge and the target in the general case can be
computed as follows:
1. Determine the vertices of V (q) that are visible to

the target by testing which vertices are contained in
the target’s visibility region. Store this vertices in the
list Lv.
2. Temporarily add the current target location qtk as a
new node in the visibility graph, and connect this node
to those ones corresponding to the vertices stored in
Lv. The shortest distance between qt and any vertex
visible to the target can computed by running Dijk-
stra’s algorithm on this new graph.
3. The distance between qtk and each free edge in V (q)
is the solution to:

Dqt
k

/E∗

fr
= min(vo,vf ){Dqt

k
/vo

+ Dvo/vf
+ Dvf /Efr

}, (1)

where vo is any vertex in Lv, and vf is any vertex in
V (q) that sees the free edge Efr.

The visibility graph is used to compute the distance
between every pair of vertices in V (q). Thus, the term
Dvo/vf

can be quickly evaluated using a pre-computed
lookup-table. Similarly, we use the pre-computed visi-
bility grid to determine the list Lv and evaluateDqt

k
/vo

.

And finally, the visibility region from every vertex of
the polygonal map (first step of the pre-computation
process) is used to query which vertices in V (q) can see
a free edge in order to evaluate Dvf/Efr

. Thus, the use
of pre-computations allows us to accelerate the calcu-
lation of Dqt

k
/E∗

fr
during run-time operation.

The smallest geodesic distance Dqt
k
/E∗

fr
among all

free edges of V (q) is finally selected as the shortest
distance to escape (sde).

C. General Algorithm

The general algorithm to maintain visibility of an
unpredictable target is as follows:

Preprocessing

I ← COMPUTE INDEX ARRAY(Map)
for every bin bi ∈ I do

for every discret point p ∈ bi do
V (p) ← COMPUTE VISIBILITY(p, bi)
Vgrid ← Vgrid ∪ V (p)

COMPUTE VISIBILITY GRAPH(Map)

Target Tracking

do
V (qτ ) ← Vgrid(qτ )
P ← RANDOM POINTS
D

q
t1
k

/E∗

fr

← 0

for every p ∈ P do
V (p) ← Vgrid(p)
dist ← MIN DIST ESCAPE(t, V (p))
if dist > D

q
t1
k

/E∗

fr

then
qτ+1 ← p
D

q
t1
k

/E∗

fr

← dist

qτ ← qτ+1

while t ∈ V (q)



D. Planner for two-observers/two-robots

We have developed, implemented and simulated a
planner for two-observers/two-targets. What is inter-
esting in our approach is that there is no predeter-
mined assignment of a given target to a given observer.
At any instant in time, the two observers locate them-
selves so as to maximize the distance to escape re-
quired by either of the targets.

Let us denote V (qo1

k+1
) as the visibility region of ob-

server 1 at location qo1

k+1
, and V (qo2

k+1
) as the visibility

region of observer 2 at location qo2

k+1
. The sde for a

target tracked by two observers is defined as the short-
est distance between qtk and the boundary of the union
of the visibility regions V (qo1

k+1
) ∪ V (qo2

k+1
).

We use max(U) as a criteria to select the future
positions qo1

k+1
and qo2

k+1
for both observers, with U

defined as:

U =
[

1
2

(

d1

w1

)−p
+ 1

2

(

d2

w2

)−p
]− 1

p

, (2)

with d1 = D
q

t1
k

/E∗

fr

and d2 = D
q

t2
k

/E∗

fr

, (3)

where qt1k and qt2k are the positions of target 1 and tar-
get 2, respectively, and d1 and d2 denote the distances
between the two targets and the closest free edge be-
longing to the boundary of V (qo1

k+1
) ∪ V (qo2

k+1
). Here

w1, w2 and p are positive constants.
The constants w1 and w2 weight the relative im-

portance of keeping track of each target. U can
take different forms according to the value of p: (1)
U = min(d1, d2) when p tends to ∞ (assuming w1 =
w2 = 1); (2) U =

√
d1d2 when p tends to 0. The

first case was tested in simulations and behaved as ex-
pected (good performance). An oscillation in the ob-
servers, however, appears if the targets exchange po-
sitions. The criteria for p→ 0 produced better results
(second case), and less oscillations occurred when the
targets exchanged positions.

Given that there is no predetermined assignment of
a given target to a given observer, the observers can
switch targets in order to maximize U . Currently, we
are working on a number of cases where there is an un-
desirable ‘shadowing’ effect: if one observer sees both
targets and the other observer does not see any of the
targets, the last observer remains still rather than as-
sisting the first observer.

III. Implementation/Experimentation

Our tracking system is implemented on a Su-
perScout mobile robot from Nomadic Technologies.
The SuperScout is a differential-drive robot, and is
equipped with a Pentium 233 MHz computer. The
robot is fitted with an upward-pointing Sony XC-75
CCD camera for landmark detection, and a forward
Sony EVI-30 CCD moving camera for target tracking.

A. Architecture

Our target-tracking software incorporates 5 main
modules: (1) A frame server, (2) a visual target de-
tector and motion camera controller, (3) a localization
module based on artificial landmark detection, (4) a

motion planner and (5) a motion controller and sys-
tem coordinator.

Our robot is equipped with two cameras. Both cam-
eras are synchronized with each other and the images
are combined into a single RGB image by a junction
box. The frame server grabs the RGB images from the
hardware and separates the RGB components of the
image.

A Sony EVI camera with an integrated pan-tilt unit
is used to detect a target. The visual target detector
and the camera controller maintain a lock on the tar-
get. The detector module recognizes a target and iden-
tifies its pose with respect to the camera in real-time.
The visual servoing problem has received considerable
attention in the computer vision community over the
last years. Several techniques have been reported in
the literature, and a variety of algorithms have been
proposed for visual servoing [3], [10].

Our visual target detection uses a very simple and
fast vision algorithm. A cylindrical mobile robot (a
Nomad 200) acts as target, and un-obtrusive rectan-
gular patterns are placed on its hull. Each pattern has
a binary bar-code identifier. The algorithm computes
sub-pixel image positions of the pattern’s corners to es-
timates its 3-D pose [11]. With the pose and bar-code
information of the detected patterns, the algorithm
then infers the location and bearing of the target

Although our detection algorithm is very simple, we
could instead use more advanced tracking algorithms
such as those described in [9], [18], [16].

The range of the target detection module is approx-
imately 80 in. and runs at a rate of 30 frames per
second.

We use the pan-tilt unit to extend the maximal
range and angular field of view of the camera. This
unit is able to execute [−100, 100] deg. pan action,
[−25, 25] deg. tilt action and active zoom (f = 5.4 mm
to 64.8 mm). Our implementation presently only uses
the pan action. We are currently incorporating tilt and
zoom actions. The motion of the camera is computed
by a dedicated controller rather than by the planner.
This camera motion, however, is taken into account by
the planner, which considers the total field of view of
the vision system as the sum of the field of view of the
camera (40 deg.) plus the motion of the pan-tilt unit
([-100 100] deg.).

As the observer moves around in its environment,
it must keep track of its current position. To localize
the robot we are using artificial landmarks. Our land-
marks are placed on the ceiling at known positions
throughout the observer’s workspace. Several works
have dealt with the use of landmarks in robot navi-
gation [12], [13], [14], [19]. The landmark detection
module on-board our observer is the result of the work
developed in [2]. The idea behind this approach is to
provide the positions of the landmark as an input map
to the observer. Since it is not necessary to re-localize
at a high frequency rate, the landmark detector runs
at 0.5-1 Hz.

The global planning algorithm is the one described
in Section II. The output of this planner is sent to a
motion controller that drives the robot observer to the
goal provided by the planner. The robot executes a
plan by first aiming to the goal and then translating
to the goal. In general, it is not possible to execute a



Fig. 2. Simulation using the map of the Stanford’s Robotics
Laboratory.

plan in just one step with a nonholonomic robot. How-
ever, it is possible to stabilize two of the configuration
variables (x, y) or (x, θ) [20].

We avoid the use of a real time kernel with a specific
controller design. The controller consists of a triple-
layered strategy: A linear compensator, an adaptive
scheme that keeps the compensator tuned, and a time
pacer that regulates the control cycle to a specified
rates [8]. The linear compensator is designed using a
pole-placement scheme. The adaptive loop keeps the
compensator poles in place by recomputing the con-
troller parameters as the control rate and the duty cy-
cle drift from their initial estimated values. The time
pacer is particularly important as it gives the kernel
an appropriated time slack to attend other processes.
Without the time pacer, the control cycle will be in-
terrupted arbitrarily during the execution.

In order to improve the performance of the whole
system, we run the planner program in an off-board
computer. This allow us to increase the execution
speed of the system by splitting tasks among two pro-
cessors. The motion controller, the landmark mod-
ule and vision programs run on-board the robot. The
planner runs on a separate Celeron 600 MHz computer

B. Simulation and experiments using a mobile robot

We have tested our planner in several simulated
scenarios and in actual experiments with the Super-
Scout robot. We will describe here the results of 3
simulations: one-robot/one-target in an environment
with holes, one-robot/one-target in an environment
composed of over a thousand vertices, and a two-
robot/two-target example in a simple environment.
We also provide snapshots of a test run with the Su-
perScout robot using our planner.

Results
In general, the performance of the planner and its

eventual ability to keep the target always in view, de-
pend on a number of parameters: (1) Size of the view-
ing frustum of the sensor (cone angle), (2) the maxi-
mum range of the sensor, (3) the number of samples
generated as candidates of qtk+1, (4) and the shape and
size of the observer’s reachability region.

Fig. 3. An example of an environment with holes.

Figure III-B shows the result of a simulation for one-
robot/one-target in a typical environment. The blue
point represents the observer and red point represents
the target. The yellow region represents the observer’s
visibility region. Figure III-B shows a more compli-
cated example consisting of an environment composed
of 48 edges and 8 holes. The target is shown with a red
disk and the observer with a blue (bigger) disk. For
this example, plans can be computed with a frequency
of 19.44 Hz for a sampling set of size 9, at 10.31 Hz
for a set of size 18, and at 7.71 Hz. for a set of size 50

Figure 4 (next page) shows a very large polygonal
map. The maps corresponds to a section of the Lou-
vre museum. In this figure, the target is shown with a
red disk and the observer with a blue (bigger) disk.
The map has 1407 vertices. The index array con-
sists of 400 cells, the running time to compute this
index array was 37 s. The visibility grid has 92,416
cells. The time required to compute this grid was 9
min. and 30 s. The visibility graph was computed in
144 s. The visibility regions for all the vertices in the
map required 5.9 s. The entire pre-computation pro-
cess took about 13 minutes. At each iteration during
run-time, the planner generated 75 random samples
in a neighborhood around qok in order to compute the
next observer position. By using pre-computations,
the planner can compute qok+1 with a freq. of 13 Hz.
Without the pre-computation the sole visibility region
computation with 1400 vertices takes about 3 seconds
per random sample.



Fig. 4. Large Map

Fig. 5. Fig. 6.

Fig. 7. Fig. 8.

Figures 5, 6, 7 and 8 show a simulation experiment
with two-robots/two-targets. It is possible to see how
the observers switch targets. At first, observer 1 (red
square) tracks target 1 (red disk) and observer 2 (blue
square) tracks target 2 (blue disk). Once the targets
cross each other the switch is done, observer 1 tracks
target 2 and observer 2 tracks target 1.

Figures 9, 10, 11 and 12, present as experiment with
the mobile robot. The tracking is done by pure visual
servoing without any planner. The controller tries to
track the target from a given distance (50 in.) and
maintain the target in the center of the camera’s field
of view. We can see in the figures that this strategy
fails when the target turns around a corner, and the
observer runs into a wall.

Figures 13, 14, 15 and 16, show snapshots of an ex-
periment performed on a real robot running our plan-
ner. The planner and global architecture presented in
this paper were used. It is possible to see how the

Fig. 9. Fig. 10.

Fig. 11. Fig. 12.

Fig. 13. Fig. 14.

Fig. 15. Fig. 16.



robot observer is capable of tracking the target even
when it turns around a corner. The experiment shown
in Figures 13-16 were done under the same conditions
as that shown in Figures 9-12. The velocity and tra-
jectory of the target were the same in both cases. The
difference between both experiments is that one was
done with planner and the other without it.

Failures
Often the size of the observer’s reachability region

is too small and the planner fails to track the target.
On the other hand, a large reachability region requires
more samples, and thus a plan requires more time to
compute. This can also be a reason of failure. A small
sample set can also hurt performance, because it af-
fects the precision by which the sde is calculated.

Another reason for failure is a small visibility region.
Usually, this is due to a very narrow viewing frustum
or a short sensor range. In simulation this can be
easily corrected, but not so in a real system. For a real
system, small visibility regions can only be improved
through better sensing hardware.

IV. Discussion and future work

In this paper we have argued that visual-servoing
approaches to target tracking have limited success be-
cause they do not take into account the complexity of
the environment. Geometry-based algorithms go be-
yond these limitations.

Our strategy is an improvement over maximizing
the probability of future visibility for those cases when
a probability model of the target is hard to obtain.
By maximizing the distance to escape, we compute an
observer motion that anticipates the worst-case action
of the target in the immediate future. The result is a
short-term reactive planner that can run in real-time.

For future work, we want to sample the control
space as opposed to the workspace in order to com-
pute the sde. In this scheme, the maximization of sde
is carried-out in control space, but the evaluation of
each sample is still done using the workspace geometry.
With this strategy we can avoid the use of heuristics
for estimating the size and shape of the reachability
region. Instead, the observer’s angular and transla-
tional speeds are computed directly by the planner.
This scheme will also improve the hand-shaking be-
tween the planner and the controller because the com-
mands sent to the robot observer will be generated
more smoothly.

Our current strategy assumes that the target is un-
predictable. It is for this reason that our planner is
reactive. If a motion model of the target is available,
it should be possible to compute a longer-term plan
by maximizing sde over the feasible target trajecto-
ries. Currently, the shortest escape path computed by
our algorithm may not be feasible to the target at all.
As a result, our algorithm may act more conservatively
than it is required.

For the case of multiple robots and multiple targets,
an interesting topic for future research is the coordi-
nation of multiple observers with a decentralized plan-
ner. Our current approach is centralized, and does not
admit an easy decomposition into distributed compo-
nents. For a real system consisting on many observers,

such decentralized planner will be preferable over a
centralized approach.

Acknowledgements We want to thank Jean-Claude
Latombe for his advice and suggestions on the imple-
mentation of our algorithms, and Cheng-Yu Lee for his
help in the development of the robotic system. This
research was partially funded by CONACyT, México.

References

[1] C. Becker, H. Gonzlez-Baños, J.-L. Latombe and C. Tomasi,
An intelligent observer. In Int. Symposium on Experimental
Robotics, 1995.

[2] C. Becker, J. Salas, K. Tokusei, and J.C. Latombe, Reliable
navigation using landmarks. IEEE Int. Conf. on Robotics
and Automation, pages 401-406, May 1995.

[3] P. Delagnes, J. Benois and D. Barba, Adjustable polygons:
a novel active contour model for objects tracking on complex
background. Journal on communications, 8(6), 1994.

[4] B. Espiau, F. Chaumette, and P. Rives, A new approach to
visual servoring in robotics. IEEE Trans. Robot and Autom.,
8(3):313-326, June 1992.

[5] Patrick Fabiani and J.C. Latombe, Tracking a partially pre-
dictable object with uncertainty and visibility constraints:
a game-theoretic approach, IJCAI, 1999.

[6] H.H. González Baños E. Mao, J.-C. Latombe, T.M. Mu-
rali and Alon Efrat, Planning robot motion strategies for
efficient model construction In Robotics Research - The 9th
Int. Symp, 1999.

[7] H.H. González-Baños, C.-Y. Lee and J.-C. Latombe, Motion
Strategies for Maintaining Visibility of a Moving Target In
Proc IEEE Int. Conf. on Robotics and Automation, 2002.

[8] H.H. González Baños, J. L. Gordillo, D. Lin, J.-C. Latombe,
A. Sarmiento and C. Tomasi, The Autonomous Observer:
A Tool for Remote Experimentation in Robotics SPIE Intl.
Symp. on Voice, Video, and Data Communications, 1999.

[9] D.P. Huttenlocher, W.J. Rucklidge and J.J. Noh, Tracking
non-rigid objects in complex scenes, Fourth Int. Conf. on
Computer Vision, 1993.

[10] S. Jiansho and C. Tomasi, Good features to track, Conf.
on Computer Vision and Pattern Recognition, 1994.

[11] K. Kanatani, Geometric Computation for Machine Vision,
Oxford Science Publications, 1993.

[12] S. Hutchinson, Exploiting visual constraints in robot mo-
tion planning, In Proc IEEE Int. Conf. on Robotics and
Automation ,pages 1722-1727, 1991.

[13] D.J. Kriegmen, E. Triendl, and T.O. Binford, Stereo vision
and navigation in buildings for mobile robots, IEEE Trans.
on Robotics and Automation,5(6):1722-1727, 1991.

[14] A. Lazanas and J.C. Latombe, Landmark-based robot nav-
igation, Algorithmica, 13:472-501, 1995.

[15] S.M. LaValle, H.H. González-Baños,C. Becker and
J.C. Latombe, Motion Strategies for Maintaining Visibility
of a Moving Target In Proc IEEE Int. Conf. on Robotics
and Automation, 1997.

[16] R. Murrieta-Cid, M. Briot, N. Vandapel, Landmark iden-
tification and tracking in natural environment In Proc. Int.
Conf on Intelligent Robots and Systmens, 1998.

[17] J. O’Rourke, Visibility. In Handbook of Discrete and
Computational Geometry, 467-479. J.E. Goodman and J.
O’Rourke Ed. 1997.

[18] N.P. Papanikolopous, P.K. Khosla, and T. Kanade, Visual
tracking of a moving target by a camera mounted on a robot:
A combination of control and vision, IEEE Trans. Robotics
and Automation, 9(1):14-35, February 1993.

[19] C. Parra, R. Murrieta-Cid, M. Devy, and M. Briot, 3-D
Modelling and Robot Localization from Visual and Range
Data in Natural Scenes. In Proc First Int. Conf on Vision
Systems. Henry I. Christense Ed. January 1999.

[20] C. Samson and K. Ait-Abderrahim, Feedback control of
a nonholonomic wheeled cart in cartesian space. Technical
Report 1228 INRIA, France. Octuber 1990.


