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Abstract. This paper presents a hybrid segmentation algorithm, which
provides a synthetic image description in terms of regions. This method
has been used to segment images of outdoor scenes. We have applied our
segmentation algorithm to color images and images encoding 3D infor-
mation. 5 different color spaces were tested. The segmentation results
obtained with each color space are compared.

1 Introduction

Image segmentation has been considered one of the most important processes
in image analysis and pattern recognition. It consists in partitioning an image
into a set of different regions such that each region is homogeneous under some
criteria but the union of two adjacent regions are not. A poor segmentation
method may incur in two types of errors: i) over-segmentation, meaning that an
object is split into several different regions; and ii) under-segmentation (which
is the worst), meaning that the frontier of a class is not detected.

Existing segmentation approaches can be divided into four main categories: i)
feature based segmentation (e.g. color clustering), ii) edge based segmentation
(e.g. snake, edging), iii) region-based segmentation (e.g. region growing, splitting
and merging) and iv) hybrid segmentation [7].

More recent methods in image segmentation are based on stochastic model ap-
proaches [1,6], watershed region growing [17] and graph partitioning [19]. Some
segmentation techniques have been especially developed for natural image seg-
mentation (see for instance [2]).

In this paper, we introduce a segmentation method, which provides a precise
and concise description of an image in terms of regions. The method was designed
to be a component of a vision system for an outdoor mobile robot. This vision
system is capable of building a global representation of an outdoor environment.

It makes use of both an unsupervised scene segmentation (based on either
color or range information) and a supervised scene interpretation (based on
both color and texture). Scene interpretation is used to extract landmarks and
track them using a visual target tracking algorithm. This vision system has
been presented in several various papers [8,9,10,11]. However, the segmentation
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method, about its main component, has never been reported on at an appropriate
level of detail.

In the design of our segmentation method, we were driven by the following
assumption: unsupervised segmentation on its own without classification does
not make any sense. This is because a region cannot be labelled without an
interpretation mapping it to a known element or class. Thus, our segmentation
method is designed to be embedded in a bigger system and satisfies the system
specification.

What counts as a correct segmentation has no universally accepted answer;
some researchers argue the segmentation problem is not well-defined. Following a
pragmatical perspective, we take a good segmentation to be simply one in which
the regions obtained correspond to the objects in the scene. Our method rarely
incurs in under-segmentation and, since it yields a small number of regions, has
an acceptable over-segmentation rate.

Given that our method produces regions that closely match the classes in a
scene and that there tend to be a small number of regions, the computational
effort required to characterize and identify a region is greatly reduced. Also,
statistically speaking, the more accurate one region captures a class, the more
representative the features computed out of it will be.

1.1 Related Work

Feature thresholding is one of the most powerful methods for image segmenta-
tion. It has the advantage of small storage space and ease of manipulation. Fea-
ture thresholding has been largely studied during the last 3 decades
[12,14,15,18,5]. Here, we describe briefly the most relevant work in the litera-
ture (for a nice survey, the reader is referred to [18].)

In [12], Otsu introduced a segmentation method which determines the optimal
separation of classes, using an statistical analysis that maximizes a measure of
class separability. Otsu’s method remains as one of the most powerful threshold-
ing techniques [18]. It was not until recently that we have seen enhancements to
this algorithm [15,5].

In [15], Liao et al. presented an algorithm for efficiently multilevel thresholding
selection, that makes use of a modified variance of Otsu’s method. This algo-
rithm is recursive and uses a look-up table so reducing the number of required
operations.

In [5], Huang et al. introduced a technique that combines Otsu’s method and
spatial analysis. So, this technique is hybrid. The spatial analysis is based on the
manipulation of a pyramid data structure with a window size adaptively selected
according to Lorentz’s information measure.

There also are thresholding techniques that do not aim at maximizing a mea-
sure of class separability, thus departing from Otsu’s approach [14,22]. In [14],
the authors presented a range based segmentation method for mobile robotics.
Range segmentation is carried out by calculating a bi-variable histogram coded in
spherical coordinates (θ and φ). In [22], Virmajoki and Franki introduced a pair-
wise nearest neighbor based multilevel thresholding algorithm. This algorithm
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makes use of a vector quantization scheme, where the thresholding corresponds
to minimizing the error of quantization.

We will see that our image segmentation algorithm is also hybrid, combining
feature thresholding and region growing. It proposes several extensions to Otsu’s
feature thresholding method. Below, section 2, we give a detailed explanation
of our method and argue how it extends Otsu’s approach. Then, section 5, we
compare our method with those above mentioned and with a previous method
of ourselves, presented in [8,21].

2 The Segmentation Method

Our segmentation algorithm is a combination of two techniques: i) feature thresh-
olding (also called clustering); and ii) region growing. It does the grouping in the
spatial domain of square cells. Adjacent cells are merged if they have the same
label; labels are defined in a feature space (e.g. color space). The advantage of
our hybrid method is that the result of the process of growing regions is inde-
pendent of the beginning point and the scanning order of the adjacent square
cells.

Our method works as follows: First, the image is split into square cells, yielding
an arbitrary image partition. Second, a feature vector is computed for each
square cell, associating a class to it. Feature classes are defined using an analysis
of the feature histograms, which defines a partition into the feature space. Third,
adjacent cells of the same class are merged together using an adjacency graph (4-
adjacency). Finally, regions that are smaller than a given threshold are merged
to the most similar (in the feature space) adjacent region.

Otsu’s approach determines only the thresholds corresponding to the separa-
tion between two classes. Thus, it deals only with a part of the class determina-
tion problem. We have extended Otsu’s method. Our contributions are:

– We have generalized the method to find the optimal thresholds to k classes.
– We have defined the partition of the feature space which gives the optimal

classes’ number n∗. Where n∗ ∈ [2, . . . , N ].
– We have integrated the automatic class separation method with a region

growing technique.

For each feature, λ∗ is the criterion determining the optimal classes number
n∗. It maximizes λ(k), the maximal criterion for exactly k classes (k ∈ [2, . . . , N ]);
in symbols:

λ∗ = max (λ(k)) ; λ(k) =
σ2

B(k)

σ2
W(k)

(1)

where σ2
B(k)

is the inter-classes variance and where σ2
W(k)

is the intraclass vari-
ance. σ2

B(k)
and σ2

W(k)
are respectively given by:

σ2
B(k)

=
k−1∑

m=1

k∑

n=m+1

[ωn · ωm(μm − μn)2] (2)
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σ2
W(k)

=
k−1∑

m=1

k∑

n=m+1

[
∑

i∈m

(i − μm)2 · p(i) +
∑

i∈n

(i − μn)2 · p(i)] (3)

where μm denotes the mean of the level i associated with the class m, ωm denotes
the probability of class m and where p(i) denotes the probability of the level i
in the histogram. In symbols:

μm =
∑

i∈m

i · p(i)

ωm
ωm =

∑

i∈m

p(i) p(i) =
ni

Np

The normalized histogram is considered as an estimated probability distri-
bution. ni is the number of samples for a given level. Np is the total number
of samples. A class m is delimited by two values (the inferior and the superior
limits) corresponding to two levels in the histogram. Note that this criterion
is similar to Fisher’s one [3], However, our criterion is pondered by the class
probability and the probability of the level i.

To compute σ2
B(k)

and σ2
W(k)

(as described above) requires an exhaustive anal-
ysis of the histograms. In order to reduce the number of operations, it is pos-
sible to compute the equivalent estimators σ2

T (k) and μT (k) (respectively called
histogram total variance and histogram total mean). σ2

T (k) and μT (k) are inde-
pendent of the inferior and superior limits locations. For the case of k classes
they can be computed as follows:

μT (k) =
i=L∑

i=1

i · p(i) ; σ2
T(k)

=
i=L∑

i=1

i2 · p(i) − μ2
T (k) (4)

where L is the total number of levels in the histogram.
The equivalence between σ2

T (k) and μT (k) and σ2
B(k)

and σ2
W(k)

are defined as
follows:

σ2
B(k)

=
k−1∑

m=1

k∑

n=m+1

[ωn · ωm(μm − μn)2] (5)

=
k∑

m=1

ωm · (μm − μT )2

σ2
T(k)

= σ2
B(k)

+
σ2

W(k)

k − 1
(6)

Thus, to compute σ2
B(k)

and σ2
W(k)

in terms of σ2
T and μT , we proceed as

follows. First, tables containing the cumulated values of p(i), i ·p(i) and i ·p2
(i) are

computed for each histogram level. These values allow us to determine σ2
T , μT

and ωm. Instead of computing σ2
B(k)

and σ2
W(k)

, as prescribed by (2) and (3), for
each class and each number of possible classes, we use the equivalences below:

σ2
B(k)

=
k∑

m=1

ωm · (μm − μT )2 (7)
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σ2
W(k)

= (σ2
T(k)

− σ2
B(k)

) · (k − 1) (8)

The automatic class separation method was tested with the two histograms
shown in figure 1: in both histograms the class division was tested with two and
three classes. For the first histogram, the value λ∗ corresponds to two classes.
The threshold is placed in the valley bottom between the two peaks. In the
second histogram, the optimal λ∗ corresponds to three classes (also located in
the valley bottom between the peaks.)

λ

λ

λ

λ’’(k=3 classes)λ’’(k=3 classes)

λ’(k=3 classes)

’’(k=3 classes)=5.58λ’(k=3 classes)=
λ∗=λ

(k=2 classes)

(k=3 classes)λ λ (k=3 classes)

λ’(k=3 classes)

(k=2 classes)=2.34
(k=3 classes)=6.94λ∗=λ

(k=2 classes)=7.11

(k=2 classes)λ

Histogram levels

Histogram

Histogram

Histogram levels

Fig. 1. Threshold Location

In the Otsu approach when the number of classes increases the selected thresh-
old usually becomes less reliable. Since we use several features to define a class,
this problem is mitigated.

2.1 The Color Image Segmentation

A color image is usually described by the distribution of the three color compo-
nents R (red), G (green) and B (blue). Moreover many other features can also
be calculated from these components. Two goals are generally pursued: First,
the selection of uncorrelated color features [13,20], and second the selection of
features which are independent of intensity changes. This last property is es-
pecially important in outdoor environments where the light conditions are not
controlled [16].

We have tested our approach using several color models: R.G.B., r.g.b. (nor-
malized components of R.G.B.), Y.E.S. defined by the SMPTE (Society of Mo-
tion Pictures and Television Engineers), H.S.I. (Hue, Saturation and Intensity)
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and I1, I2, I3, color features derived from the Karhunen-Loève (KL) transforma-
tion of RGB. The results obtained through our experiments, for each color space,
are reported and compared in section 3.

2.2 The 3D Image Segmentation

Our segmentation algorithm can be applied to images of range using 3D features
as input. In our experiments we use height and normal vectors as input. We have
obtained a 3D image using the stereo-vision algorithm proposed in [4].

Height and normal vectors are computed for each point in the 3D image. The
height corresponds to the distance from the 3-D points of the object to the plane
which best approximates the ground area from which the segmented object is
emerging. The normal vectors are computed in a spherical coordinate system [14]
(expressed in θ and φ angles). Height and normal vectors are coded in 256 levels.

3 Color Segmentation Results

We have tested our segmentation method with color images, considering 5 differ-
ent color spaces. In the case of experiments with 3 features, (I1, I2, I3), (R, G, B)
and (r, g, b), the optimal number of classes was determined with k ∈ [2, 3] for
each feature. In the case of experiments with 2 features, (H, S) and (E, S), the
optimal number of classes was determined with k ∈ [2, 3, 4] for each feature. For
these cases, we may respectively have 33 and 24 maximal number of classes.

Figures 2 I), II), III) and IV) show the original color images. Figures 2 I a),
II a), III a) and IV a) show the result of segmentation using (I1, I2, I3), while
Figures 2 I b), II b), III b) and IV b) show these results using H and S. Figures 2
I c), II c), III c) and IV c) show the results of segmentation using (R, G, B), while
Figure 2 I d), II d), III d) and IV d) show similarly but using (r, g, b). Finally,
figures 2 I e), II e), III e) and IV e) show the segmentation results obtained using
E and S.

Obtaining good results using only chrominance features (rgb, HS and ES)
depends on the type of images. Chromimance effects are reduced in images with
low saturation. For this reason, the intensity component is kept in the segmen-
tation step. Over-segmentation errors can occur due to the presence of strong
illumination variations (e.g. shadows). However, over-segmentation is preferable
over under-segmentation. Over-segmentation errors can be detected and fixed
during a posterior identification step.

The best color segmentation was obtained using the I1, I2, I3 space, defined
as [20]. Where I1 = R+G+B

3 , I2 = (R − B), I3 = 2G−R−B
2 . This space compo-

nents are uncorrelated. Hence, it is statistically the best way for detecting color
variations. In our experiments, the number of no homogeneous regions (under-
segmentation problems) is very small (2%). A good tradeoff between few regions
and the absence of under-segmentation has been obtained, even in the case of
complex images.

Segmented images are input to a vision system, where every region in each im-
age is then classified, using color and texture features. Two adjacent regions are
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I) color image I a) I1I2I3 features I b) HS features I c) RGB features I d) rgb features I e) ES features

II e) ES featuresII d) rgb featuresII a) I1I2I3 featuresII) color image II b) HS features II c) RGB features

III) color image III a) I1I2I3 features III b) HS features III c) RGB features III d) rgb features III e) ES features

IV) color image IV b) HS features IV c) RGB featuresIV a) I1I2I3 features IV d) rgb features IV e) ES features

Fig. 2. Color segmentation

merged whenever they belong to the same class, thus eliminating remaining over-
segmentation errors. Errors incurred in the identification process are detected
and then corrected using contextual information. Example classified images are
shown in figure 3. Figures 3 I a)—d) show snapshots of an image sequence.
Figures 3 II a)—d) show the segmented and classified images. Different colors
are used to show the various classes in the scene. Note that even though the
illumination conditions have changed, the image is correctly classified. Figures 3
I e) and II e) show the effect of our method in another scene.

In this paper, we present only our segmentation algorithm; the whole system is
described in [10]. We underline that the good performance of the whole system
depends on an appropriate initial unsupervised segmentation. The segmenta-
tion algorithm presented in this paper is able to segment images without under
segmentation errors and yields a small number of large representative regions.

4 3D Segmentation Results

We have also tested our segmentation method with images encoding 3D infor-
mation (height and normal vectors).

We have found out that for our image database the height generally is enough
to obtain the main components of the scene. Of course, if only this feature is
used small objects are not detected.



796 R. Murrieta-Cid and R. Monroy

I a) I b) I c) I d) I e)

II a) II b) II c) II d) II e)

Fig. 3. Identified images

In contrast, if all features (height and normals) are used often a important
over-segmentation is produced, even if only two classes are generated for each
feature. Each region corresponds to a facet of the objects in the scene. If only
normals are used as inputs of the algorithm, it is not possible to detect flat
surfaces at a different height (e.g. a hole is not detected).

The height image is obtained using a stereo-correlation algorithms. Shadows
and occlusions generate no-correlated points. Our segmentation algorithm is able
to detect those regions. They are labeled with white in the images.

Figures 4 a), d) and g) show the original scenes. Figures 4 b), e) and h)
show images encoding height in 256 levels. Frontiers among the regions obtained
with our algorithm are shown in these images. Figures 4 c), f) and i) show the
regions output by our segmentation algorithm. As mentioned above, if only the
height is used small objects that do not emerge from the ground may be no
detected. The small rock close to the depression (image 4 g) ) is not extracted
from the ground. Figure 4 l) shows an example of re-segmentation. We have
applied our algorithm to the under segmented region using both height and
normals. Then, the rock is successfully segmented. φ and θ images encoded in
256 levels are shown respectively in Figures 4 j) and k). The under segmented
region was detected manually. However, we believe that it is possible to detect
under segmented regions automatically, measuring some criteria such as the
entropy computed over a given feature.

5 Comparing Our Method with Related Work

In [5], the image is divided into windows. The size of the windows is adaptively
selected according to Lorentz’s information measure and then Otsu’s method is
used to segment each window. Our approach follows a different scheme: the image
is divided into windows, but we use our multi-thresholding technique to generate
classes just once in the whole image. One class is associated to each window and
then adjacent windows (cells) of the same class are merged. This reduces the
number of operations by a factor of N , the number of windows. Furthermore,
the approach in [5] is limited to only two classes. We have generalized our method
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b) c)a)

d) e) f)

g) h) i)

j) k) l)

Fig. 4. 3D segmentation

to find the optimal thresholds to k classes and defined the partition of the feature
space which gives the optimal classes’ number n∗.

In [15], the authors introduced a method that extends Otsu’s one in that it is
faster at computing the optimal thresholds of an image. The key to achieve this
efficiency improvement lies on a recursive form of the modified between-class
variance. However, this extended method still is of the same time complexity as
Otsu’s one. Moreover, the introduced measure considers only variance between
classes. In contrast, our proposed measure is the ratio between the inter-classes
variance and the intraclass variance. Both variances are somehow equivalent [18],
particularly in the case of two classes separation. However, in the case of a pri-
oritized multi-thresholding selection problem, the combination of these two vari-
ances better selects a threshold because it looks for both: separation between
classes and compactness of the classes. Hence, our method proposed a better
thresholding criterion. Furthermore, the method proposed in [15] segments the
images only based on feature analysis. Spatial analysis is not considered at all.
Thus, there is not a control of the segmentation granularity. The segmented im-
ages may have a lot of small regions (yielding a significant over segmentation).
Since our segmentation method is hybrid, it does control the segmentation gran-
ularity, thus yielding a small number of big regions.

In [22], a pairwise nearest neighbour (PNN) based multilevel thresholding al-
gorithm is proposed. The proposed algorithm has a very low time complexity,
O(N log N) (where N is the number of clusters) and obtains thresholds close to
the optimal ones. However, this method just obtains sub-optimal thresholding
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and it does not do any spatial analysis, which implies it suffers from all the
limitations that [15]’s method does.

In our previous work, classes have been defined detecting the principal peaks
and valleys in the image’s histogram [8,21]. Generally, it is plausible to assume
that the bottom of a valley between two peaks defines the separation between
two classes. However, for complex pictures, precisely detecting the bottom of the
valley is often hard to achieve. Several problems may prevent us from determining
the correct value of separation: The attribute histograms may be noisy, the
valley flat or broad or the peaks may be extremely unequal in height. Some
methods have been proposed to overcome these difficulties [13]. However, they
are considerably costly and sometimes demand unstable calculations.

Compared with that proposed in [14], our technique is more generic (we may
add as many features as required) and less dependent on the parameter selection.
Our previous method only considered bi-classes threshold.

6 Conclusion and Future Work

In this paper a hybrid segmentation algorithm was presented. Our method pro-
vides a synthetic image description in terms of regions. We have applied our
segmentation algorithm to color images and images encoding 3D information.
Our method produces regions that closely match the classes in a scene and
there tend to be a small number of regions. 5 different color spaces were tested.
Obtaining good results with only chrominance features depends on the type of
images to be segmented. Chromimance effects are reduced in images with low
saturation. The best color segmentation was obtained using I1, I2, I3.

As future work, we want to explore a technique to automatically detect under-
segmented regions. We also want to study in detail which combination of features
provides a better segmentation. We would also like to have a method that takes
into account the level of detail at which the segmentation should be carried out.
This way, we could extract an entire object or the object components, depending
on the system requirements. Thanks to how we compute inter and intra classes
variances (c.f. (7) and (8)), our method is fast enough for the applications in
which we are interested. However, ongoing research considers the use of a sam-
pling selection threshold scheme (yielding sub-optimal thresholding) to see if this
improves the efficiency of our method.
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