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Abstract— In this paper, we consider the surveillance problem
of maintaining visibility at a fixed distance of a mobile evader
using a mobile robot equipped with sensors.

Optimal motion for the target to escape is found. Symmet-
rically, an optimal motion strategy for the observer to always
maintain visibility of the evader is determined.

The optimal motion strategies proposed in this paper are based
on critical events. The critical events are defined with respect to
the obstacles in the environment.

I. INTRODUCTION

In this paper, we consider the surveillance problem of
maintaining visibility at a fixed distance of a mobile evader
(the target) using a mobile robot equipped with sensors (the
observer).

We address the problem of maintaining visibility of the
target in the presence of obstacles. We assume that obstacles
produce both motion and visibility constraints. We consider
that both the observer and the target have bounded velocity.
We assume that the pursuer can react instantaneously to evader
motion.

This problem has two important aspects. The first one is
to find an optimal motion for the target to escape and sym-
metrically to determine the optimal strategy for the observer
to always maintain visibility of the evader. The second aspect
is to determine the necessary and sufficient conditions for the
existence of a solution.

In this paper we address the first aspect of the problem. That
is, determine the optimal motion strategy, which corresponds
to define how the evader and pursuer should move. We have
numerically found which are the optimal controls (velocity
vectors) that the target has to apply to escape observer surveil-
lance. We have also found which are the optimal controls that
the observer must applied to prevent the escape of the target.

In our previous research, we have considered variations of
the problem of maintaining visibility of a moving evader with
a mobile robot. In [13] we considered the case where there is
a delay but no velocity bounds for the observer. In [14] we ad-
dressed the case in which there is no delay, but the observer’s
velocity is bounded. We define necessary conditions for the

existence of a surveillance strategy and give an algorithm that
generates surveillance strategies. Additionally, we provide the
observer control to prevent the target escape for the case of a
straight line target trajectory.

As in [14], here we consider the case of no delay and
both observer and target bounded speed, but in this paper,
we provide optimal controls for the target to escape and
we propose an observer motion strategy to prevent target
escaping.

Geometric reasoning and optimal control techniques are
the tools to model the problem and find appropriate motion
strategies.

A. Previous Work

Our problem is related to pursuit-evasion games. A great
deal of previous research exists in the area of pursuit and
evasion, particularly in the area of dynamics and control in
the free space [5], [10], [1]. These works typically do not take
into account constraints imposed on the observer motion due
to the existence of obstacles in the workspace, nor visibility
constraints that arise due to occlusion.

The pursuit-evasion problem is often framed as a problem in
non cooperative dynamic game theory [1]. A pursuit-evasion
game can be defined in several manners.

One of them consists in finding an evasive target with one
or more mobile pursuers that sweep the environment so that
the target does not eventually sneak into an area that has
already been explored. Deterministic [17], [21], [4], [20] and
probabilistic algorithms [22], [6] have been proposed to solve
this problem. The pursuers could also be interested to actually
“catch” the evaders, that is, move to a contact configuration
or closer than a given distance [10].

As mentioned above, our problem is related to the problems
of pursuit-evasion. However, the previous problems are not the
same as ours. In this paper, we assume that initially the pursuer
can establish visibility with the evader. The problem consists
in determining a motion pursuer strategy to always maintain
the visibility between the evader and the pursuer. We call such
a task target tracking.



The target tracking problem has often been attacked with a
combination of vision and control techniques (see, e.g., [15],
[3], [8]). Purely control approaches, however, do not take into
account the existence of obstacles in the the environment.
The basic question that must be answered is where should
the robot observer move in order to maintain visibility of a
target moving in a cluttered workspace? Both visibility and
motion obstructions must be taken into account, and thus, a
pure visual servoing technique can fail because it ignores the
global geometry of the workspace.

Previous works have also studied the motion planning
problem for maintaining visibility of a moving evader (tar-
get tracking) in the presence of obstacles. Game theory is
proposed in [11] as a framework to formulate the tracking
problem and an online algorithm is presented.

In [2], an algorithm is presented which operates by maxi-
mizing the probability of future visibility of the target. This
algorithm is also studied with more formalism in [11]. This
technique was tested in a Nomad 200 mobile robot with rela-
tively good results. However, the probabilistic model assumed
by the planner was often too simplistic, and accurate models
are difficult to obtain in practice.

The approach presented in [12] computes a motion strategy
by maximizing the shortest distance to escape —the shortest
distance the target needs to move in order to escape the ob-
server’s visibility region. In this work the targets are assumed
to move unpredictable, and the distribution of obstacles in the
workspace is assumed to be known in advance. This planner
has been integrated and tested in a robot system which includes
perceptual and control capabilities. The approach has also been
extended to maintain visibility of two targets using two mobile
observers.

In [7], a technique is proposed to track a target without
the need of a global map. Instead, a range sensor is used to
construct a local map of the environment, and a combinatoric
algorithm is then used to compute a differential motion for the
observer at each iteration.

More recently, some works have considered the problem of
maintaining visibility of several targets with multiple robots.
In [12] an algorithm is proposed to maintain visibility of
two evaders with two pursuers. In this approach, there is no
predetermined assignment of a given target to a given observer.
At any instant in time, the two observers locate themselves so
as to maximize the distance to escape required by either of
the targets.

In [16] a method is proposed to accomplish this task in
uncluttered environments. The objective is to minimize the
total time in which targets escape observation by some robot
team member. In [9] an approach is proposed to maintain
visibility of several targets using mobile and static sensors.
A metric for measuring the degree of occlusion, based on the
average mean free path of a random line segment is used.

The problem of planning observer’s motions to maintain
visibility of a moving target has received a good deal of
attention in the motion planning community over the last
years. Several techniques have been reported in the literature,

and a variety of strategies have been proposed to perform
the tracking. However, the optimal motion strategy for the
target to escape in the presence of obstacles and, the optimal
observer motion response (for any target trajectory) has never
been found before. To give these optimal motion polices is the
goal of this paper.

II. PROBLEM DEFINITION

The target and the observer are represented as points. The
visibility between the target and the observer is represented
as a line segment and it is called the rod (or bar). This rod is
emulating the visual sensor capabilities of the observer. The
constant rod length is modeling a fixed sensor range.

We address the problem of maintaining visibility of the
target in the presence of obstacles. The obstacles are modeled
with polygonal barriers. We assume that the observer is
provided with a map of the environment.

Violation of the visibility constraint corresponds to collision
of the rod with an obstacle in the environment. The target
controls the rod origin (x, y) and the observer controls the
rod’s orientation θ and must compensate to maintain a fixed
rod length L.

We are assuming that the evader is antagonist, hence, it
will not cooperate with the target either helping it to maintain
visibility or by inaction. If the target has the opportunity to
escape, then it will take the required action to do it. The target
can defeat the observer by hiding behind an obstacle (breaking
the rod with a vertex), by making the observer collide with and
obstacle (a segment or a vertex) or by preventing the observer
from being at the required fixed distance.

The target moves continuously, its global trajectory is un-
known but its maximal speed is known. We are assuming a
feedback control scheme where the target velocity is measured
(or reported) without delay. Symmetrically, we assume that
the target knows the observer velocity vector as soon as the
observer moves (without delay). Both observer and target are
limited to move with bounded speed. Both observer and target
are holonomic robots.

The optimal target and observer motion strategies are de-
fined as the ones that give the quantitative conditions to prevent
the target from escaping. This requires to determine the last
moment (critical event) -with respect to the obstacles- when
the observer must start changing the rod configuration before
it is too late.

III. PROBLEM MODELING

We work at the frontiers of computational geometry algo-
rithms and control algorithms. The originality and the strength
of the work is to bring together both aspects.

A. Dealing with obstacles

We are able to express the constraints on the observer
dynamics (velocity bounds and kinematics constraints) geo-
metrically, as a function of the geometry of the workspace
and the surveillance distance.



In order to maintain surveillance, it is necessary that the line
segment connecting the pursuer and evader not intersect any
obstacle in the environment (this would result in occlusion of
the evader).

Our approach consists in partitioning the configuration
space and the workspace in non-critical regions separated by
critical curves [19], [13], [14]. These curves bound forbidden
rod configurations [13]. These rod configurations are forbidden
either because they generate a violation of the visibility
constraint (corresponding to a collision of the rod with an
obstacle in the environment [13]) or because they require the
observer to move with speed greater than its maximum [14].

In order to avoid a forbidden rod configuration, the pursuer
must change the rod configuration to prevent the target to
escape. We call this pursuer motion the rotational motion [14].

This type of motion will be finished either when the
observer brings the rod to a configuration that avoids an
escapable cell [13], when the observer reaches and aspect
graph line [18] associated to a reflex vertex or, when the
observer is able to move the rod in contact with an obstacle
[14].

If the observer has bounded speed then the rotational
motion has to be started far enough for any forbidden rod
configuration. The pursuer must have enough time to change
the rod configuration before the evader brings the rod to a
forbidden one. There are critical events that tell the pursuer to
start changing the rod configuration before it is too late. These
critical events depend on the geometry of the environment, the
initial location of the evader x, y, the relative configurations
of the pursuer and evader θ, the final rod configuration that
prevents the evader to escape and the maximal observer and
evader speeds. The critical events signal the observer to start
the rotational motion with enough time for preventing that the
target reaches an escape point.

In [14] we define an escape point as a point on a critical
curve associated to an escapable cell [13], or a point in a region
bounding an obstacle. This region is bounding either a reflex
vertex (those with interior angle larger than π) or segment of
the polygonal workspace.

Merely reaching an escape point does not guarantee that the
evader can escape the surveillance. An escape point is a point
from which the evader may escape for some set of observer
positions (i.e., for some set of configurations, (x, y, θ) of the
rod). Thus, when the evader nears an escape point, the observer
must take action to ensure future visibility of the evader. Since
the observer has bounded velocity, it must react before the
escape point is reached by the evader. For more details see
[14].

Similarly, we denote by D the minimal distance from an
escape point such that, if the evader is further than D from
the escape point, the observer will have sufficient time to react
and prevent escape. Thus, it is only when the evader is nearer
than D to an escape point that the observer must take special
care. Thus, the critical events are to D distance from the escape
points.

In order to better clarify our description, we present one

simple example. This example shows a convex corner (see
figure 1). Solid lines indicate the critical curves at l distance
from the obstacles and dashed lines indicate the critical events
as a function of the distance from the first set of critical curves.
The dot labeled (T) indicates the target and the dot labeled
(O) the observer. A rod of length l is indicated with a segment
finished with T and O labels. The graph in the figure indicates
cell adjacency in the configuration space (see [13]).

When the evader is approaching the corner, the observer
must rotate around the evader to change the rod configuration,
otherwise the evader can violate the visibility constrain. This
can be by making the rod collide with a obstacle or by forcing
the pursuer to move with speed greater than its maximum (see
[14]).

The observer can choose to go to anywhere in region R3.
The shorter rotation in this case is moving just to the border
of R3.

Fig. 1. Convex Corner

Therefore, if the rod is in a non-admissible configuration
then the target can get further from the observer than the fixed
surveillance distance.

IV. OPTIMAL TARGET AND OBSERVER MOTIONS

Take the global Cartesian axis to be defined such that the
origin is the target’s initial position, and the x-axis is the line
connecting the target’s initial position and the escape point.
The target and observer velocities are saturated at Vt and
Vo respectively, and because the rod length must be fixed at
all times, the relative velocity Vot must be perpendicular to
the rod. This information yields the following velocity vector
diagram (see figure 2).

The law of cosines can be used to determine ‖V ot‖.

Vo
2 = Vt

2 + Vot
2 − 2VtVot cos(α + θ +

π

2
) (1)

After solving the equation and some simplification, the final
result is:

‖V ot‖ = −Vt sin(α + θ) ±
√

Vo
2 − Vt

2 cos2(α + θ) (2)

The rate of change of theta can be found easily as:



Fig. 2. velocity vector diagram

dθ

dt
=

V ot

L
=

−Vt sin(α + θ) ±
√

Vo
2 − Vt

2 cos2(α + θ)

L
(3)

Because the boundary conditions of the geometry are de-
fined in terms of x, a more useful derivative would be:

dθ

dx
=

dθ

dt
(
dx

dt
)−1 =

−R sin(α + θ) ± √
1 − R2 cos2(α + θ)

L cos(α)
(4)

Where R = Vt

Vo
< 1

The optimal path for the target can be defined in two
equivalent ways. One formulation, given a starting point at
the origin, an escape point at (x1, y1), and an initial angle
θ1, the optimal path α(x), x ∈ [0, x1] should minimize the
amount of angle that the observer can make up in its rotation
up until the target reaches the escape point. The alternate
formulation would be to find for a given initial rod angle θ0,
the maximum distance to an escape point x1 such that the
final rod configuration is at a specified final angle θ1 and the
corresponding target motion α(x)x ∈ [0, x1]. The proposed
solution method gives the solution to both formulations. First,
define a state space model with boundary conditions.

The natural representation would be:

dθ

dx
=

−R sin(α + θ) ± √
1 − R2 cos2(α + θ)

L cos(α)
= f1 (5)

dy

dx
= Vt sinα = f2 (6)

θ(0) = θ0, θ(x1) = θ1, y(0) = y(1) = 0 (7)

To maximize x1, the appropriate cost function is:

V = −
∫ x1

0

dx (8)

The optimal control problem can be stated using 4 condi-
tions:

1) There exists two functions of x, p1 and p2 such that
α∗ = argmin[p1f1 + p2f2 − 1] is satisfied pointwise
for all x.

2) The state vector satisfies the state equations and 4
boundary conditions above

3) The final value x1 satisfies p1(x1)f1(x1) +
p2(x1)f2(x1) − 1 = 0

4) The state equations for are given by:

∂p1

∂x
= −∂f1

∂θ
p1 =

cos(α − θ)R2 cos(α+θ) sin(α+θ)√
1−R2 cos2(α+θ)

L cos α
p1 (9)

∂p2

∂x
= −∂f2

∂y
p2 ≡ 0 → p2(x) = P2 (constant) (10)

If we choose p2 as zero, the minimization condition 1
simplifies to

α∗(x) = argmin[p1f1+p2f2−1] → ∂

∂α
[p1f1+p2F2−1] = 0

→ ∂f1

∂α
= 0 (11)

The last step can be inferred because for nonzero initial p1,
p1 will not reach equilibrium at zero.

A strategy to generate the solution to the boundary value
problem is as follows:

Generate the θ-Minimizing Curve by integrating the ob-
server and target positions forward in x, choosing the min-
imizer α∗ at every step ∆x.

Select two points on the curve and let the line through them
represent the new x-axis. The two points can be chosen so that
the initial and final angle conditions are satisfied (as measured
with respect to the new x-axis), and the optimal path is then the
section of the θ-Minimizing Curve connecting the two points.
The distance between the two points is x1, the critical distance
D to the escape point for the given initial angle and critical
escape angle.

The alternate problem, finding the minimum angle turned
given an initial angle and distance D to an escape point, can be
solved similarly. Select two points on the curve such that the
distance between the two is D, and define the new x-axis as
the line between them. If the initial angle condition is satisfied
with respect to the new axis, then the minimum final angle is
given by the angle at the second endpoint. The optimal path
is again the section of the curve between the two points.

Since we minimized over all α in taking a step dx, mini-
mization condition 1 is satisfied . In the new rotated x-axis,
condition 2 (boundary conditions) are satisfied. Conditions 3
and 4 can be satisfied since we theoretically can always find
some value of p1(x0) that will satisfy this condition just by



integrating the equation of condition 4 backwards in time.
Therefore we are certain to have a solution to the optimal
control problem. Moreover, since f1(α) has a unique mini-
mizer, this is the unique solution. It is graphically illustrated
below (see figure 3).

Fig. 3. Θ Minimizing Curve

Figure 4 shows the general case when the initial distance to
the escape point is fixed. We wish to find the optimal path that
the target should take to the escape point, and what the critical
escape angle is L = D = 1, θ0 = 15deg, Vo = 2, Vt = 1

Fig. 4. Fixed distance to the escape point

Searching along the θ minimizing curve, we can find two
points which satisfy the initial condition and distance to escape
criteria.

The final angle is found to be 81.1 degrees. For corners
whose sharpness exceeds this angle, the target will be able to
escape. Otherwise, the observer will be able to track the target
(see figures 5 and 6).

In some cases, instead of a single escape point, there is an
escape line to reach. For example, in the situation below (see
figure 7), if the target can reach cell II (escapable cell, see
[13]) before the observer can rotate θ to 180 deg, the target
escapes. Because there is no constraint in the y-direction now,
the solution is much simpler. In this case, it is simply the θ
minimizing curve generated with the origin at the target initial
position and x-axis perpendicular to the escape line. The initial
condition is the observer’s initial angle. The point where the
trajectory hits the escape line is the potential escape point, and
we can also find the final angle, determining success or failure
of escape.

Fig. 5. Distance to escape point

Fig. 6. Zoom: Distance to escape point

Note that a straight line path minimizes the time to reach
an escape point, but the optimal target path to escape is a
different curve (see figure 3). This happens because there are
two different times that must be considered. The time taken
for the target to reach the escape point and the time taken for
the observer to change the rod configuration. Because of the
kinematic constraints (bounded speeds and fixed surveillance
distance), there is a trade-off between minimizing the time
taken for the target to reach the escape point and maximizing
the time taken for the observer to change the rod configuration.
Therefore, the optimal target path is the one that minimizes
the amount of angle that the observer can make in its rotation
up until the target reaches the escape point.

The optimal observer motion strategy consists in once a
critical event is detected then the observer must saturate its
speeding and, start its rotation around the target.

In fact, there are several motions that will keep the observer
at a constant distance from the target. The simplest is to apply
the same motion vector as the target. Another option is to
always move in the direction of the target. However, the only



Fig. 7. Escapable cell case

motion in which the observer can change the bar to a particular
final orientation independently of the target trajectory consists
in applying the same velocity vector to the observer as the
one that the target applies and an additional vector to get an
observer rotation around the target.

Therefore, this is the only strategy that does not require
target cooperation (antagonistic target). Note that the target
trajectory can influence the rate of change, but not the initial
and final orientations.

For the above reason, the movement policy for the observer
is the same regardless of the actual target trajectory. Because
of the constant distance constraint, the observer can only move
perpendicularly to the rod (rotate around the target).

V. CONCLUSIONS AND FUTURE WORK

This paper solved the game of degree [10], [1] of main-
taining visibility at a fixed distance of a moving target with a
mobile robot in the presence of obstacles.

Solving this game corresponds to find the quantitative
conditions to prevent the target from escaping. This problem
is solved by determining the last moment (critical event) -with
respect to the obstacles- when the observer must start changing
the rod configuration before is too late.

The critical events are defined according to the optimal
(maximal and minimal) target and observer control polices
(which will correspond to target and observer optimal trajec-
tories).

Maintaining visibility at a constant distance of a evader with
a mobile robot is one (amount others) of the possible problem
formulations. This formulation allows us to get a well defined

problem. However its main drawback is that this task requires
very accurate control over the observer.

Another problem formulation is to relax the constraint and
maintain visibility at a variable distance. As future work, we
want to investigate that problem. We also want to investigate
the case of a non-holonomic pursuer and a holonomic evader.
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