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Abstract—In this paper a complete strategy for scene

modelling from sensory data acquired in a natural envi-

ronment is defined. This strategy is applied to outdoor

mobile robotics and goes from environment recognition

to landmark extraction. In this work, environment is

understood as a specific kind of landscape, for instance

prairie, forest, desert, etc. A landmark is defined as a

remarkable object in the environment. In the context

of outdoor mobile robotics a landmark has to be useful

to perform localization and navigation tasks.

Keywords—Environment modelling, landmarks, out-

door mobile robotics

I. Introduction

This paper deals with perception functions required
on an autonomous robot to build a multi-level model
of the environment. The model here presented com-
bines geometrical, topological and semantic informa-
tion. The main contribution of this paper concerns the
enhancement of our previous modelling method [7], [8],
[9] by including more semantic information.
From a sequence of range and video images acquired

during the motion, the robot must incrementally build
a model and correct its situation estimate. The pro-
posed approach is suitable for environments in which
(1) the terrain is mostly flat, but can be made by sev-
eral surfaces with different orientations (i.e. different
areas with a rather horizontal ground, and slopes to
connect these areas) and (2) objects (bulges or depres-
sions) can be distinguished from the ground. Exper-
imentation over data acquired on these kind of envi-
ronment has been done. This approach was tested on
two suitable sites: a terrestrian site (a prairie located
at LAAS-CNRS) [7], [8], and on a simulated planetary
terrain [9].
In section II, we describe our global approach to deal

with the navigation of a mobile robot in a natural envi-
ronment, thanks to a multi-level model with geometri-
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cal, topological and semantic knowledge. Then, in sec-
tion III, we present the different perceptual functions
used to build such a model from range and color images
acquired from the robot itself. These functions provide
a landmark-based model. Landmarks will be selected
as successive sub-goals along a path the robot must
execute. Finally, in section IV, experimental results
for a sensor-based navigation task are presented and
analyzed. The experimental platform used to carry
out these experiments is the robot LAMA (figure 1).
LAMA is equipped with a stereo-vision system com-
posed by two black and white cameras. Additionally
to this stereo-vision system a single color camera has
been used to model scenes far away from the robot.

Fig. 1. The robot LAMA

II. The global approach

In order to build a robust and complete scene mo-
del, instead of a single method, this work proposes a
system which integrates several functions and tasks.
Previous papers [9] focus on the interactions between
these functions: image analysis, landmark selection,
landmark tracking and Simultaneous Localization and
Modelling (SLAM). The system as a whole approach
is original and quite functional. This paper points out
mainly the image analysis level.



A. Related work

The construction of a complete model for outdoor
natural environments applied to mobile robotics is a
quite difficult task. The complexity resides on several
factors: (1) the great variety of type of scenes to be
found in outdoor environments; (2) the fact that the
scenes are not structured then difficult to represent
with simple geometric primitives; (3) the variation of
the current conditions in the analyzed scenes, for in-
stance, illumination and sensor motion, and (4) finally,
the need of fast algorithm execution so that the robot
can react appropriately in the real world.
Several types of models have been proposed to rep-

resent natural environments. Some of them are nu-
merical dense models [4], other are probabilistic and
based on grids [6]. There exist also object-based mod-
els [1] or topological models [5]. In [2], the informa-
tion belonging to an environment model, is structured
in three levels (one given model can contain one or
several levels):

1. Geometric level: it contains the description of the
geometry of the ground surface or some of its parts.
2. Topological level: it represents the topological
relationships among the areas in the environment.
These areas have specific characteristics and are called
“places”.
3. Semantic level: the most abstract and knowledge-
based representation. This level gives to everyone of
their entities the name of a class (tree, rock, ground,
etc). The classification is based on a priori knowl-
edge: the list of possible classes to be found in the
environment, the attributes to measure, the kind of
environment to be analyzed, etc.

B. The navigation modes

We have proposed two navigation modes which can
profit of the same landmark-based model: trajectory-
based navigation or sensor-based navigation.
The sensor-based navigation mode needs only a

topological model of the environment. It is a graph,
in which a node (a place) is defined both by the influ-
ence area of a set of landmarks and by a rather flat
ground surface. Two landmarks are in the same area
if the robot can execute a trajectory between them
having always landmarks of the same set in the stere-
ovision field of view (max range = 8m). Two nodes
are connected by an edge (1) if their ground surfaces
are adjacent, but have significantly different slopes, or
(2) if they have the same ground surfaces, but sensor-
based motions can be executed to reach one place from
the other.
The trajectory-based navigation mode requires a

path provided by a geometrical planner (see [6]). This

navigation mode is selected inside a given landmark(s)
influence area. The landmarks in this type of naviga-
tion mode must be perceived by 3D sensors, because
they are used to localize the robot. The sensor-based
navigation mode can be simpler, because it exploits
the landmarks as sub-goals where the robot has to go;
the landmark position in a 2D image, is used to give
the robot a motion direction

Actually, both of the navigation modes can be
switched depending on (1) the environment condi-
tion, and (2) whether there is 3D or 2D information.
When it is available, 3D information make possible a
trajectory-based navigation based on robot localiza-
tion from the 3D landmark positions.

C. Environment modelling

The global model has two main components: the
first one describes the topological relationships be-
tween the detected ground areas, the second one con-
tains the perceived informations for each area. The
global model is a connectivity graph between the de-
tected areas (a node for each area, an edge between
two connected areas). In this paper, we focus only on
the knowledge extracted for a given area: (1) the list
of objects detected on this area, with their positions
and classes, and (2) the ground model.

The nodes in the graph (places) are defined as land-
mark(s) influence areas or ground surfaces with sig-
nificant different slopes. The boundary between two
ground surfaces are included in the environment model
by using a B-Spline representing the area border [3].
These boundaries can be interpreted as “doors” to-
wards other places. These entrances towards other
places are defined by using their slope; such a tilted
surface becomes an entrance if the robot can navigate
through it.

In order to build this multi-level model our approach
consists in steps executed in sequence using different
attributes in each one and profiting intensively by con-
textual information inferences. The steps are envi-
ronment recognition, image segmentation, region char-
acterization and classification, contextual information
inferences and landmark selection.

The steps are strongly connected. A new step cor-
rects the errors that might arise on the previous ones.
We take advantage from the cooperation between the
segmentation and classification steps so that the re-
sult of the first step can be checked by the second
one and, if necessary, corrected. For example, over-
segmentation is corrected by classification; identifica-
tion errors are corrected by contextual information in-
ferences.

For some applications, a robot must traverse differ-
ent types of environment (urban or natural), or must



take into account changes in the environment appear-
ance (season influence in natural scenes). All these
variations could be given as a priori knowledges to
the robot. It is possible to solve this problem by a
hierarchical approach: a first step can identify the en-
vironment type (i.e. whether the image shows a for-
est, a desert or an urban zone) and the second one
the elements in the scene. Global image classification
is used as an environment recognition step where a
single type of environment is determined (i.e forest,
desert or urban zones). In such a way, an appropri-
ate database is found making it easier to label the
extracted regions by a reduced number of classes and
allowing to make inferences from contextual informa-
tion. Involving this information helps controlling the
complexity of the decision-making process required to
correctly identify natural objects and to describe nat-
ural scenes. Besides, some objects (such as a river, a
hole, or a bridge) cannot be defined or recognized in
an image without taking into account contextual infor-
mation [10]. It also allows to detect incoherences such
as a grass surrounded with sky or rocks over trees on
a flat ground.

For several reasons, it is better to perform the inter-
pretation of the scene in different steps by using dif-
ferent attributes in each one. The attributes used to
characterize environments must be different because
they must have different discriminative capacity ac-
cording to the environment. For instance, in lunar-like
environment color is not useful, but texture and 3D in-
formation are. In terrestrial natural areas the color is
important because it changes drastically according to
the class the object belongs to.

Now, let us describe the sensors used in our expe-
riments. Thanks to a stereo-vision system, image re-
gions corresponding to areas which are closer to the
sensors (max range 8m), can be analyzed by using 3D
and intensity attributes. In these areas, stereo-vision
gives valid information. Intensity attributes can be
associated to a region extracted from the 3D image.
This 3D region corresponds to a 2D region in the in-
tensity image acquired at the same time than the 3D
one. For the 2D acquisition, two different sensor con-
figurations have been considered. (1) If we are only
interested on the texture information, the stereo im-
ages have enough resolution. The left stereo image
provides the 2D image on which the texture informa-
tion will be computed. The indexes between the 3D
points and the 2D points are the same, so that the re-
gion extracted from the 3D image is directly mapped
on the 2D image. (2) If we want to take advantage of a
high-resolution color camera, the 2D image is provided
by a specific camera, and a calibration procedure must
be executed off line in order to estimate the relative

position between the 2D and the 3D sensors. The 2D
region created by an object extracted from the 3D im-
age is provided by the projection of the 3D border line
of the object on the 2D image.
Regions corresponding to areas further from the

stereo reliable range, will be analyzed by using only
color and texture attributes given that 3D informa-
tion is not available or too noisy. For these areas, since
color is a point-wise property of images and texture in-
volves a notion of spatial extent (a single point has no
texture), color segmentation gives a better compromise
between precision of region borders and computation
speed than texture segmentation. Consequently, color
is used in the segmentation step.

III. Perceptual functions

We describe briefly six perceptual functions that are
successively executed in order to generate the model
of a single area of the environment: (1) the global
environment recognition to select the kind of entities
that can be found inside, (2) the image segmentation
that extracts regions, (3) the region characterization
that computes attributes for each region, (4) the region
classification that labels these regions, (5) the verifica-
tion of some contextual constraints in order to improve
the region-based representation and at last,(6) the ex-
traction of salient and discriminant landmarks from
some labelled regions.
The step (1) is introduced in this paper. For the

other steps, more details can be found in [8]. The
model is built from the range, color and texture infor-
mation acquired from the robot. Several color repre-
sentations have been tested, the best color segmenta-
tion was obtained by using the I1, I2, I3 space, defined
as [12]: I1 =

R+G+B

3
, I2 = (R − B), I3 =

2G−R−B

2
.

These components are uncorrelated, so statistically it
is the best way for detecting color variations.

A. Environment recognition

Our environment recognition method is based on the
metric known as the Earth Mover’s Distance [11]. This
metric is based on operation research theory and trans-
lates the image identification problem into a trans-
portation problem to find the optimal plan to move
a set of ground piles to a set of holes. The ground
piles and holes are represented by clusters on the im-
ages which map to a feature space and may be con-
structed by any attributes (i.e. color spaces, textures,
...). These approaches are not able to identify the ele-
ments in the scene, but the whole image as an entity.
We construct a 3-dimensional attribute space for the

images comparison. Two axes map to I2I3, the un-
correlated chrominance attributes obtained from the
Principal Components Analysis. The other axis corres-



Fig. 2. Forest Fig. 3. Mars

Fig. 4. Moon Fig. 5. Prairie

Fig. 6. Dessert Fig. 7. Snowed Forest

Fig. 8. Test image

ponds to the texture entropy feature computed from
the sum and difference histograms [13]. We do not
use I1 to make the system robust against changes in
images illumination, neither perform a spatial distri-
bution analysis of the image, which is left to the fol-
lowing steps. Once the environment type or context is
known from this first step, a simpler scene interpreta-
tion method can be used. In the region identification
function, a database organized with respect to the en-
vironment type is suitable. It allows to reduce the
number of classes, then decreasing the complexity of
the problem (i.e. in lunar environment the tree class
is not looked for, but the depression class “holes” is).

For the environment recognition step we feed our
system with six classes of environments: forest (Fig
2), Mars (Fig. 3), Moon (Fig. 4), prairie (Fig. 5),
desert (Fig. 6) and a snowed forest (Fig. 7). Every
class is constructed with a set of images. Our system
finds the environment class where the test image (Fig.

8) belongs. The test image shows a prairie. Even
thought the classes prairie and forest are similar the
system assigns correctly the image test to the prairie
class. It is also capable to differentiate Moon images
of the snowed forest images although the colors are
similar. In our tests the system was also capable of
differentiate Mars from the desert, but the similarity
was greater (the work to move a set of clusters to the
other was smaller).

B. Image Segmentation

The segmentation algorithm is a combination of two
techniques: feature clustering and region growing. The
method does the grouping in the spatial domain of
square cells, that are associated with the same label
defined in an attribute space. The advantage of this
hybrid method is that it allows to achieve the process
of growing independently of the beginning point and
the scanning order of the adjacent square cells.

The division of the image into square cells provides
a first arbitrary partition (an attribute vector is com-
puted for each cell). Several classes are defined by the
analysis of the attribute histograms, which brings the
partition into the attribute space. Thus each square
cell in the image is associated with a class. The fusion
of the square cells belonging to the same class is done
by using an adjacency graph (adjacency-4). Finally,
the regions which are smaller than a given threshold
are integrated into an adjacent region.

The cell classification is done by using a non super-
vised classification process, which determines an opti-
mal criterion of class separation by the use of statistical
analysis. This approach maximizes a measure of class
separability based on standard deviation analysis [8].

This segmentation algorithm can be applied to range
images acquired by a stereo-vision algorithm, by the
use of 3D attributes (height and normals) computed
for each point in the 3D image. The normals (θ and
φ) are computed in a spherical coordinate system, and
are coded in 256 levels.

Image regions corresponding to areas of the environ-
ment close to the sensors (in our robot, up to 8 meters)
are segmented by using this 3D information. Figure 9
shows a lunar-like environment, figure 10 shows the 3D
segmentation. In this example a ground depression in
the scene has been successfully segmented. White pix-
els in segmented images correspond to non correlated
points (too distant 3D points, regions with low texture,
shadows or occlusions).

Regions corresponding to areas far away from the
sensor (beyond 8 meters) will be segmented by using
only intensity attributes given that 3D information is
not available or too noisy. Color segmentation usua-
lly gives a better compromise between the precision of



Fig. 9. Original image Fig. 10. 3D segmenta-
tion

region borders and the speed of computation than the
texture segmentation; consequently, we decided to use
color instead of texture to achieve the segmentation
step. The number of no homogeneous regions (sub-
segmentation problems) is very small (2%). A good
tradeoff between fewer regions and the absence of sub-
segmentation has been obtained, even in the case of
complex images.

C. Region Characterization

Each object of the scene is characterized by an at-
tribute vector: the object attributes correspond either
to 3D features extracted from the 3D image and/or to
its texture and its color extracted from the 2D image.
The 3D features correspond to the statistical mean and
the standard deviation of the distances from the 3-D
points of the object with respect to the plane which
approximates the ground area from which this object
is emerging. We also associate intensity attributes to
an object extracted from the 3D image.
Texture and color features are associated globally

with the regions provided by the segmentation step on
3D or color images. This strategy generally gives more
discriminative information than the one obtained from
an arbitrary division of the image.
The color attributes used are I2I3. I1 is not used

given that it represents the luminance component
which changes drastically with change of illumination.
I2I3 (chrominance components) are not correlated so
information redundancy is not present.
Texture attributes are based on histogram analysis.

Histograms change gradually in function of the view
point, distance from the sensors to the scene and oc-
clusions. If the acquisition conditions are rather sta-
ble (especially constant illumination), the number of
data samples required to represent different elements
to identify can be reduced [12]. Statistical informa-
tion can be extracted from these histograms. We have
used 6 texture features computed from the sum and
difference histograms, these features are [13]: Mean,
variance, energy, entropy, contrast and homogeneity.

D. Region Classification

Our identification step is based on a supervised
learning process. For this reason its good perfor-

mance depends on the use of a database representative
enough of the environment. It is important to remark
that prototyping is done to build the learning samples
set in order to get a representative enough database.
Actually we are making two types of prototyping, one
with the images using image comparison and the other
with the learning sampling set.

Bayesian classification is used to associate every re-
gion in the image with a semantic label. This process
provides for each region, a probability of belonging to
a given class. This classification method has advan-
tages and drawbacks. It takes into account the differ-
ent factors in a formal and rigorous frame, it does not
need the partition of the attribute space and minimizes
the error probability. However, it needs the computa-
tion of all the set or the previously defined attributes.
Bayesian classification has been criticized arguing that
it needs frequently a lot of knowledge about the prob-
lem. It has also been pointed out that this approach
has a lot of faults when representing and manipulating
knowledge inside a complex inference system.

In order to deal with these drawbacks, the attribute
selection has to be done in a pre-processing step (by
using PCA and Fisher criteria) and inferences have
been added to the system by an independent process
using contextual information.

E. Contextual information inferences

By the use of some contextual characteristics of the
environment the model consistency can be tested, pos-
sible errors in the identification process could be de-
tected and corrected by using simple contextual rules.

The specific environment analyzed in this works con-
sists in terrestrial natural areas where ground is flat or
with a smooth slope. If there is sky it has to be in the
upper part of the image. It is not intended to cover all
the possible configurations, which are too many even
for a single and simple environment, but only to de-
tect the most evident errors of contextual consistency.
The main rules that have been derived from this con-
text are: (1) A region labeled as grass or rock cannot
be placed between trees and sky. (2) A region labeled
as rock cannot be surrounded with a tree region. (3)
A region labeled as grass cannot be surrounded with
a tree region. (4) A region labeled as tree cannot be
surrounded with a grass region.

Finding these inconsistencies depend only on the
knowledge of the over, below, around. This relations
can be derived from the minimal and maximal vertical
coordinates of the regions in an image.

The set of rules allow to find eventual errors intro-
duced by the identification step. If an error is detected
it can be corrected using contextual information. For
instance, if a region labeled by mistake as grass is sur-



rounded by other region labeled as tree the region can
be re-labeled as tree. The probability of belonging to a
given class is used to decide whether the region should
be re-labeled or not. If this probability is smaller than
a given threshold the region is re-labeled.

At this point of the process, each region in the image
has been associated to a class. These regions were ob-
tained from the color or the 3D segmentation phase.
The segmentation results in large regions. However,
these regions do not always correspond to real ob-
jects in the scene. Sometimes a real element is over-
segmented, consequently a fusion phase becomes nec-
essary. In this step, connected regions belonging to
the same class are merged.

Fig. 11. Original im-
age
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Fig. 12. Segmentation
and Identification

Fig. 13. Final model
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Fig. 14. classes

The construction of the semantic model of the scene
based on only 2D information, is illustrated hereafter
on the image shown on Figure 11. Figure 12 shows
the color image segmentation and the identification of
the regions. The defined classes depend on the envi-
ronment type. Here, we have chosen 4 classes which
correspond to the main elements in our environment:
grass, sky, tree and rock. Labels in the images indicate
the nature of the regions: (R) rock, (G) grass, (T) tree
and (S) sky.

The Region at the top right corner of the image
was identified as grass. However, this region has a
relatively low probability (less than a given threshold)
of belonging to this class, in this case the system can
correct the mistake by using contextual information;
this region is then relabeled as tree, figure 13 shows
the final model of this scene. Figure 14 shows the gray
levels used to label the classes.

F. Landmark selection

The landmark selection phase is composed by two
main steps. First, a local model is built from the first
robot position in the environment. Then, by using
this first local model, a landmark is chosen among the
objects detected in this first scene.

A landmark is defined as a remarkable object, which
should have some properties that will be exploited in
the robot localization or in visual navigation. The two
main properties which we use to define a landmark are:
Discrimination. A landmark should be easy to dif-
ferentiate from other surrounding objects. This prop-
erty concerns 2D as well as 3D attributes.
Accuracy. A landmark must be accurate enough so
that it can allow to reduce the uncertainty on the robot
situation, because it will be used to deal with the robot
localization. This property is only for the 3D charac-
teristics computed on the 3D regions.

Landmarks in indoor environments correspond to
structured scene components, such as walls, corners,
doors, etc. In outdoor natural scenes, landmarks are
less structured. We have proposed several solutions
like maxima of curvature on border lines [3], maxima
of elevation on the terrain or extracted objects [1].

In previous works we have defined a landmark as a
little bulge, typically a natural object emerging from
a rather flat ground (e.g. a rock). Only the elevation
peak of such an object has been considered as a nu-
merical attribute useful for the localization purpose. A
realistic uncertainty model has been proposed for these
peaks, so that the peak uncertainty is function of the
rock sharpness, of the sensor noise and of the distance
from the robot [1]. Based on these previous works
a landmark is defined as a remarkable object, which
should have some properties that will be exploited in
the robot localization or in visual navigation, but here
the landmark is associated to a semantic label.

In a segmented 3D image, a bulge is selected as can-
didate landmark if: (1) It is not occluded by another
object. If an object is occluded, it will be both dif-
ficult to find it in the following images and to have
a good estimate on its top. (2) Its topmost point is
accurate. This is function of the sensor noise, resolu-
tion and object top shape. (3) It must be in “ground
contact”.

Depending on the kind of navigation performed (sec-
tion II-B) the landmarks have different meaning. In
trajectory-based navigation landmarks are useful to
localize the robot and of course the bigger number of
landmarks in the environment the better. For topolog-
ical navigation the landmarks are seen as a sub-goal
which the robot has to reach.

Landmark selection based on only 2D is also use-
ful in robotic tasks. The 2D model of the scene can



Fig. 15. Original im-
age

Fig. 16. Landmark se-
lection

be used in order to give to the robot a goal (di-
rection) corresponding to a landmark of a re-
quested class and 2-D shape.
Figure 15 shows the original image, figure 16 shows

the automatic selection of a landmark based on its na-
ture and shape. In this case the portion of the rock
having the largest elongation is selected as the land-
mark.
Considering all the process our system takes approx-

imately 3 seconds to analyze a scene running on a
Linux Pentium III PC Workstation at 800 MHz. This
is not yet fast enough for the robot to process the scene
during motion however, no all these steps have to be
done at the same frequency, for instance environment
recognition has to be done with less frequency.

IV. Robot sensor based navigation using the

multi-level model

Trajectory based navigation which uses a geometri-
cal planner is done in a given landmark(s) influence
area. The landmarks in this type of navigation mode
are used to localize the robot [9]. Simultaneous local-
ization and modelling (SLAM) is based on landmark
extraction. The navigation mode can be simpler and
consisting just on the usage of landmarks as sub-goals
where the robot has to go. The landmark position is
used to give the robot a motion direction. In our ap-
proach the robot sub-goals can be landmarks having a
semantic meaning (see [8]). Our final aim is to com-
mand the robot with semantic orders instead of nu-
merical ones; for instance the command of going from
(x1, y1) to (x2, y2) can be replaced with “Go from the

tree to the rock”.
For this landmark-based navigation, the commuta-

tion of landmarks is an important issue. We are deal-
ing with this task, based on the position of the land-
mark in the image. In order to navigate during a long
robot motion, a sequence of different landmarks is used
as sub-goal the robot must successively reach. The
landmark change is automatic: it is based on the na-
ture of the landmark and the distance between the
robot and the landmark which represents the current
sub-goal. When the robot attains the current land-

mark (or, more precisely, when the current landmark
is close to the limit of the camera field of view), an-
other one is dynamically selected in order to control
the next motion.
We illustrate this with a experiment carried out with

the mobile robot LAMA. Figure 17 (a) shows the video
image, figure 17 (b) presents the 3-D image and figure
17 (c) shows the 3-D image segmentation, classification
and boundary box including the selected landmark.
The selection was done taking into account 3-D shape
and nature.
The second line of figure 17 represent the tracking

of a landmark through an image sequence. The land-
mark is marked on the picture with a little boundary
box. The tracking process is performed based on a
comparison between a model of the landmark and the
image. In [7] is described in detail the tracking tech-
nique used. When the landmark position is close to the
image edge, then it is necessary to select another land-
mark. So the figure 17 III presents the new landmark
selection based on image segmentation and classifica-
tion. The next sequence of tracking is shows on the
line IV of figure 17 and the next landmark commuta-
tion is presents on line V. Finally on the line VI the
robot continue navigation task.

V. Conclusion

The work presented in this paper deals with the en-
vironment representation applied to outdoor mobile
robotics. From range, color and texture information,
an environment model is constructed in several steps
(environment recognition, region extraction, charac-
terization and identification). The multi-level model of
the scene is employed in order to select automatically
landmarks. A sensor-based navigation mode exploits
these landmarks to execute motions.
In this paper, our contribution is the model enhance-

ment by the use of more semantic knowledges during
the modelling functions. In future works, we aim to
control the robot using mainly the topological and the
semantic level of the model.
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