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Abstract. In this paper a complete strategy for scene modeling from
sensory data acquired in a natural environment is defined. This strategy
is applied to outdoor mobile robotics and goes from environment recog-
nition to landmark extraction. In this work, environment is understood
as a specific kind of landscape, for instance, a prairie, a forest, a desert,
etc. A landmark is defined as a remarkable object in the environment.
In the context of outdoor mobile robotics a landmark has to be useful to
accomplish localization and navigation tasks.

1 Introduction

This paper deals with the perception functions required to accomplish the ex-
ploration of a natural environment with an autonomous robot. From a sequence
of range and video images acquired during the motion, the robot must incre-
mentally build a model, correct its situation estimate or execute some visual-
based motion. The main contribution of this paper concerns the enhancement
of our previous modeling methods [10,9,11,8,3,1,4] by including more semantic
information. This work has shown through intensive experimentation that scene
interpretation is a useful task in mobile robotics because it allows to have in-
formation of the environment nature and semantic. In this way, the robot will
have the needed information to perform complex tasks. With this approach it
becomes possible to command the robot with semantic instead of numerical vec-
tors. For instance the command of going from (x1, y1) to (x2, y2) can be replaced
with “Go from the tree to the rock”.

2 The General Approach

This work is related to the context of a Mars rover. The robot must first build
some representations of the environment based on sensory data before exploiting
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them. The proposed approach is suitable for environments in which (1) the ter-
rain is mostly flat, but can be made by several surfaces with different orientations
(i.e. different areas with a rather horizontal ground, and slopes to connect these
areas) and (2) objects (bulges or little depressions) can be distinguished from the
ground. Several experimentations on data acquired on such environments have
been done. Our approach has been tested partially or totally in the EDEN site
of the LAAS-CNRS [8,9], the GEROMS site of the CNES [11], and over data
acquired in the Antarctica [16]. These sites have the characteristics for which
this approach is suitable. The EDEN site is a prairie and the GEROMS site is
a simulation of a Mars terrain. The robot used to carry out these experiments
is the LAMA robot (figure 1).

Related work: The construction of a complete model of an outdoor natural en-
vironment, suitable for the navigation requirements of a mobile robot, is a quite
difficult task. The complexity resides on several factors such as (1) the great
variety of scenes that a robot could find in outdoor environments, (2) the fact
that the scenes are not structured, then difficult to represent with simple geo-
metric primitives, and (3) the variation of the current conditions in the analyzed
scenes, for instance, illumination and sensor motion. Moreover, another strong
constraint is the need of fast algorithm execution so that the robot can react
appropriately in the real world.

Several types of partial models have been proposed to represent natural envi-
ronments. Some of them are numerical dense models [5], other are probabilistic
and based on grids [7]. There exist also topological models [6]. In general, it is
possible to divide the type of information contained in an environment model
in three levels (one given model can contain one or several levels) [2]: (1) geo-
metric level: it contains the description of the geometry of the ground surface or
some of its parts. (2) topological level: it represents the topological relationships
among the areas in the environment. These areas have specific characteristics
and are called “places”. (3) semantic level: this is the most abstract represen-
tation, because it gives to every entity or object found in the scene, a label
corresponding to a class where it belongs (tree, rock, grass. . . ). The classifica-
tion is based on a priori knowledge learnt off-line and given to the system. This
knowledge consist on (1) a list of possible classes that the robot could identify
in the environment, (2) attributes learnt from some samples of each class, (3)
the kind of environment to be analyzed, etc.

2.1 The Navigation Modes

We propose here two navigation modes which can make profit of the same
landmark-based model: trajectory-based navigation and sensor-based naviga-
tion.

The sensor-based navigation mode needs only a topological model of the
environment. It is a graph, in which a node (a place) is defined both by the
influence area of a set of landmarks and by a rather flat ground surface. Two
landmarks are in the same area if the robot can execute a trajectory between
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Fig. 1. LAMA robot Fig. 2. Topological model

them, with landmarks of the same set always in the stereo-vision field of view
(max range = 8m). Two nodes are connected by an edge if their ground surfaces
have significantly different slopes, or if sensor-based motions can be executed to
reach one place from the other. The boundary between two ground surfaces is
included in the environment model by using B-Spline representing the area bor-
der [3]. These boundaries can be interpreted as “doors” towards other places.
These entrances are characterized by their slope. A tilted surface becomes an
entrance if the robot can navigate through it. An arc between two nodes corre-
sponds either to a border line, or to a 2D landmark that the robot must reach in
a sensor-based mode. In figure 2 a scheme representing the kind of environment
where this approach is suitable and its representation with a graph are shown.

The trajectory-based navigation mode has an input provided by a geometri-
cal planner which is selected inside a given landmark(s) influence area. The
landmarks in this navigation mode must be perceived by 3D sensors because
they are used to localize the robot (see figure 17). The sensor-based navigation
mode can be simpler because it exploits the landmarks as sub-goals where the
robot has to go. The landmark position in a 2D image is used to give the robot a
direction for the motion (see figure 16). Actually, both of the navigation modes
can be switched depending on (1) the environment condition, (2) whether there
is 3D or 2D information and (3) the availability of a path planner. In this paper
we present overall examples when 3D information is available.

3 Environment Modeling

In order to build this environment model, we developed an approach which
consists in steps executed in sequence using different attributes in each one and
profiting intensively by contextual information inferences. The steps are environ-
ment recognition, image segmentation, region characterization and classification,
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contextual information inferences and landmark selection. The steps are strongly
connected. A new step corrects the errors that might arise on the previous ones.
We take advantage from the cooperation between the segmentation and classi-
fication steps so that the result of the first step can be checked by the second
one and, if necessary, corrected. For example, over-segmentation is corrected by
classification and identification errors are corrected by contextual information
inferences.

For some applications, a robot must traverse different types of environment
(urban or natural), or must take into account changes in the environment ap-
pearance (season influence in natural scenes). All these variations could be given
as a priori knowledge to the robot. It is possible to solve this problem by a hi-
erarchical approach: a first step can identify the environment type (i.e., whether
the image shows a forest, a desert or an urban zone) and the second one the
elements in the scene. Global image classification is used as an environment
recognition step where a single type of environment is determined (i.e., forest,
desert or urban zones). In this way, an appropriate database is found making it
easier to label the extracted regions by a reduced number of classes and allowing
to make inferences from contextual information. Involving this information helps
controlling the complexity of the decision-making process required to correctly
identify natural objects and to describe natural scenes. Besides, some objects
(such as a river, a hole, or a bridge) cannot be defined or recognized in an image
without taking into account contextual information [15]. It also allows to detect
incoherences such as a grass surrounded with sky or rocks over trees on a flat
ground.

For several reasons, it is better to perform the interpretation of the scene in
different steps by using different attributes in each one taking into account the
system involved in the image acquisition. The attributes used to characterize
environments must be different because they have different discriminative power
according to the environment. For instance, in lunar-like environment color is
not useful given that the entire environment has almost the same colors, but
texture and 3D information are. In terrestrial natural areas the color is important
because it changes drastically according to the class the object belongs to.

Now, let us describe the sensors used in our experiments. Our robot is
equipped with a stereo-vision system composed by two black and white cam-
eras. Additionally to this stereo-vision system a single color camera has been
used to model scenes far away from the robot. We want to associate intensity
attributes to an object extracted from the 3D image. This object creates a 2D
region in the intensity image acquired at the same time than the 3D one. The 3D
image is provided by a stereo-vision algorithm [11]. Image regions corresponding
to areas which are closer to the sensors (max range 8m) are analyzed by using
3D and intensity attributes. In these areas, stereo-vision gives valid information.
Regions corresponding to areas further from the sensors reliable range will be
analyzed by using only color and texture attributes given that 3D information
is not available or too noisy. For these areas, since color is a point-wise property
of images and texture involves a notion of spatial extent (a single point has no
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texture), color segmentation gives a better compromise between precision of re-
gion borders and computation speed than texture segmentation, consequently,
color is used in the segmentation step.

Environment recognition: Our environment recognition method is based on the
metric known as the Earth Mover’s Distance [12]. This metric is based on opera-
tions research theory and translates the image identification problem into a trans-
portation problem to find the optimal work to move a set of ground piles to a set
of holes. The ground piles and holes are represented by clusters on the images
which map to a feature space and may be constructed by any attribute on the
images (i.e. color spaces, textures, ...). These approaches are not able to identify
the elements in the scene, but the whole image as an entity. We construct a
3-dimensional attribute space for the images comparison. Two axes map to I2I3,
the uncorrelated chrominance attributes obtained from the Principal Compo-
nents Analysis. The other axis correspond to texture entropy feature computed
from the sum and difference histograms.

For the environment recognition step we feed our system with six classes
of environments: forest (Fig 3), Mars (Fig. 4), Moon (Fig. 5), prairie (Fig. 6),
desert (Fig. 7) and a snowed forest (Fig. 8). Every class is constructed with a
set of images. Our system finds the environment class where the test image (Fig.
9) belongs. The test image shows a prairie. Even thought the classes prairie
and forest are similar the system assigns correctly the image test to the prairie
class. It is also capable to differentiate Moon images from the snowed forest
images although the colors are similar. In our tests the system was also capable
of differentiate Mars from the desert, but the similarity was greater (the work
to move a set of clusters to the other was smaller).

Segmentation: Image segmentation for region extraction: this segmentation is
based on clustering and unsupervised classification. The image is segmented to
obtain the main regions of the scene. This first step can be performed by the use
of the color attribute on the 2D image or by the use of geometrical attributes
on the 3D image [9,10].

Characterization: Each region of the scene is characterized by using several
attributes computed from the color, texture or geometrical informations [14,13].

Classification: Our identification step is based on a supervised learning pro-
cess, for this reason its good performance depends on the use of a database
representative enough of the environment. It is important to remark that proto-
typing is done to build the learning samples set in order to get a representative
enough database. Actually we are making two types of prototyping, one with
the images by using image comparison and the other with the learning sampling
set. Bayesian classification is used to associate every region in the image with
a semantic label. This classification method has some drawbacks. It needs the
computation of all the set or the previously defined attributes. Bayesian classi-
fication has been criticized arguing that it needs frequently a lot of knowledge
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Fig. 3. Forest Fig. 4. Mars Fig. 5. Moon

Fig. 6. Prairie Fig. 7. Desert Fig. 8. Snowed Forest

Fig. 9. Test image Fig. 10. Original image Fig. 11. 3D segmentation

about the problem. It has also been pointed out that this approach has a lot of
faults when representing and manipulating knowledge inside a complex inference
system. In order to deal with these drawbacks, attribute selection has to be done
in a pre-processing step (by using PCA and Fisher criteria) and inferences are
added to the system by an independent process such as environment recognition
and contextual information.

Contextual information inferences: The specific environment analyzed in this
work consist in natural areas where ground is flat or with a smooth slope. By the
use of some contextual characteristics of the environment the model consistency
can be tested. Possible errors in the identification process could be detected and
corrected by using simple contextual rules. A set of rules allow to find eventual
errors introduced by the identification step [10]. The probability of belonging to
a given class is used to decide whether the region should be re-labeled or not. If
this probability is smaller than a given threshold the region is re-labeled.
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To show the construction of the representation of the scene based on only
2D information, we present the process in a image. These regions were obtained
from the color segmentation phase. Sometimes a real element is over-segmented,
consequently a fusion phase becomes necessary. In this step, connected regions
belonging to the same class are merged. Figure 12 shows the original image. Fig-
ure 13 shows the color image segmentation and the identification of the regions.
The defined classes are a function of the environment type. Here, we have chosen
4 classes which correspond to the main elements in our environment: grass, sky,
tree and rock. Labels in the images indicate the nature of the regions: (R) rock,
(G) grass, (T) tree and (S) sky. The coherence of the model is tested by using
the topological characteristics of the environment. The Region at the top right
corner of the image was identified as grass, however this region has a relatively
low probability (less than a given threshold) of belonging to this class, in this
case the system can correct the mistake by using contextual information. This
region is then relabeled as tree. Figure 14 shows the final model of this scene.
Figure 15 shows the gray levels used to label the classes.

G

G

R

GS

T

SKY

TREE

ROCK

GRASS

Fig. 12. Original image Fig. 13. Segmentation
and Identification

Fig. 14. Final model Fig. 15.
Classes

3.1 Landmark Selection

Landmarks in indoor environments correspond to structured scene components,
such as walls, corners, doors, etc. In outdoor natural scenes, landmarks are less
structured. We have proposed several solutions like maxima of curvature on
border lines [3], maxima of elevation on the terrain [4] or on extracted objects [1].

Based on our previous works a landmark is defined as a remarkable object [1],
which should have some properties that will be exploited in the robot localization
or in visual navigation task, but in this work the landmark is associated to a
semantic label. The two main properties which we use to define a landmark
are: Discrimination: A landmark should be easy to differentiate from other
surrounding objects. Accuracy: A landmark must be accurate enough so that
it can allow to reduce the uncertainty on the robot’s situation, because it will
be used for robot localization.

Depending on the kind of navigation performed (section 2) the landmarks
have different meaning. In trajectory-based navigation landmarks are useful to
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localize the robot and of course the bigger number of landmarks in the environ-
ment the better. For topological navigation a sequence of different landmarks
(or targets) is used as sub-goal the robot must successively reach [9]. For this
last kind of navigation commutation of landmarks is an important issue. We
are dealing with this task, based on the position of the landmark in the image
(see section 4, image 16). The landmark change is automatic. It is based on
the nature of the landmark and the distance between the robot and the target
which represents the current sub-goal. When the robot attains the current target
(or, more precisely, when the current target is close to the limit of the camera
field of view), another one is dynamically selected in order to control the next
motion [9].

4 Robot Navigation
Based on the Landmark-Based Model

Robot visual navigation is done by using the proposed model. We illustrate this
task with a experiment carried out with the mobile robot LAMA. Figure 16 (a)
shows the video image, figure (b) presents the 3-D image and figure (c) shows the
3-D image segmentation, classification and boundary box including the selected
landmark. The selection was done taking into account 3-D shape and nature.
The second line of figure 16 represent the tracking of a landmark through an
image sequence. The landmark is marked on the picture with a little boundary
box. The tracking process is performed based on a comparison between a model
of the landmark and the image. In [8] the tracking technique used is described
in detail. When the landmark position is close to the image edge it becomes
necessary to select another landmark. So the figure 16 III presents the new
landmark selection based on image segmentation and classification. The next
sequence of tracking is shown on the line IV of figure 16 and the next landmark
commutation is presented on line V. Finally on the line VI the robot continue
navigation task.

4.1 Experiments of Simultaneous Localization
and Modeling (SLAM)

We illustrate this task with an experiment carried out in the EDEN site at LAAS-
CNRS. In this work SLAM task is based on landmark extraction. The strategy
to select the landmarks is the one presented on section 4. Left column of figure 17
shows 2-D images corresponding to left stereo-vision camera. On these images the
rocks selected as target and the zone where the target is looking for are shown.
The results obtained regarding environment modeling are shown on the second
column. The maps of the environment and the localization of the robot are
presented on the third column. On the row “I” the robot just takes one landmark
as reference in order to localize itself. On the last row the robot uses 3 landmarks
to perform localization task, the robot position estimation is shown by using
rectangles. The current robot’s situation and the numerical attributes of the
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Fig. 16. Visual robot navigation

I
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N

Fig. 17. Simultaneous localization and
modeling (SLAM)

landmark features are updated by using an Extended Kalman Filter (EKF). The
most important result here is that the robot position uncertainty does not grow
thanks to the usage of landmarks. The landmarks allow to stop the incremental
growing of the robot position uncertainty.

5 Conclusion

The work presented in this paper concerns the environment representation ap-
plied to outdoor mobile robotics. A model of the environment is constructed in
several steps: environment recognition, region extraction, object characteriza-
tion, object identification, landmarks selection. Robot navigation based on the
landmark-based model is presented.
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