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carlos.parra@javeriana.edu.co

MICHEL DEVY
Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS-CNRS), 7, Avenue du Colonel Roche,
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Abstract. This paper concerns the exploration of a natural environment by a mobile robot equipped with both
a video color camera and a stereo-vision system. We focus on the interest of such a multi-sensory system to deal
with the navigation of a robot in an a priori unknown environment, including (1) the incremental construction of a
landmark-based model, and the use of these landmarks for (2) the 3-D localization of the mobile robot and for (3)
a sensor-based navigation mode.

For robot localization, a slow process and a fast one are simultaneously executed during the robot motions. In
the modeling process (currently 0.1 Hz), the global landmark-based model is incrementally built and the robot
situation can be estimated from discriminant landmarks selected amongst the detected objects in the range data. In
the tracking process (currently 4 Hz), selected landmarks are tracked in the visual data; the tracking results are used
to simplify the matching between landmarks in the modeling process.

Finally, a sensor-based visual navigation mode, based on the same landmark selection and tracking, is also
presented; in order to navigate during a long robot motion, different landmarks (targets) can be selected as a
sequence of sub-goals that the robot must successively reach.

Keywords: vision, robotics, outdoor model building, target tracking, multi-sensory fusion, visual navigation

1. Introduction

This paper deals with perception functions required
on an autonomous robot which must explore a natural
environment without any a priori knowledge. From a
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COLCIENCIAS and France) and by the ECOS Nord project number
C00M01.

sequence of range and video images acquired during
the motion, the robot must incrementally build a model,
correct its estimate situation or execute some visual-
based motion.

This work is related to the context of a Mars rover.
The robot must at first build some representations
of the environment based on sensory data before
exploiting them in order to perform some tasks such
as picking up rock samples. A fundamental task in
this context is simultaneous localization and modeling
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(SLAM). This task will be described below in more
details. In this paper we do not take profit of any
external robot localization system provided by DGPS
(Dumaine et al., 2001) or by the cooperation between
aerial and terrestrial robots.

The proposed approach is suitable for environments
in which (1) the terrain is mostly flat, but can be
made by several surfaces with different orientations
(i.e. different areas with a rather horizontal ground,
and slopes to connect these areas) and (2) objects
(bulges or depressions) can be distinguished from the
ground. Several experimentations on data acquired on
such environments have been done. Our approach has
been tested partially or totally in the EDEN site of
the LAAS-CNRS (Murrieta-Cid, 1998; Murrieta-Cid
et al., 1998a, 1998b; Murrieta-Cid et al., 2001), the
GEROMS site of the CNES (Parra et al., 1999), or
even over data acquired in the Antarctica (Vandapel
et al., 1999). These sites have the characteristics for
which this approach is suitable. The EDEN site is a
prairie, and the GEROMS site is a simulation of a Mars
terrain.

For this topics, the classical lines of research in per-
ception for mobile robots are based on 3-D informa-
tion, obtained by a laser ranger finder or a stereoscopic
system (Krotkov et al., 1989; Kweon and Kanade,
1991; Betg-Brezetz et al., 1996). Our previous method
(Betgé-Brezetz et al., 1995; Betg-Brezetz et al., 1996)
dedicated to the exploration of such an environment,
aimed to build an object-based model, considering only
range data. An intensive evaluation of this method has
shown that the main difficulty comes from the match-
ing of objects perceived in multiple views acquired
along the robot paths. From numerical features ex-
tracted from the model of the matched objects, the
robot localization can be updated (correction of the
estimated robot situation provided by internal sensors:
odometry, compass, ...) and the local models extracted
from the different views can be consistently fused in
a global one. The global model was only a stochastic
map in which the robot situation, the object features
and the associated variance-covariance matrix were
represented in a same reference frame (typically, the
first robot situation during the exploration task). Robot
localization, fusion of matched objects and introduc-
tion of new perceived objects are executed each time a
local model is built from a new acquired image (Smith
et al., 1990). If any mistake occurs in the object match-
ings, numerical errors were introduced in the global
model and the robot situation could be lost.

The main reason of these failures, is that a 3D geo-
metric representation is not enough to get a complete
description of the environment. Other information such
as the nature of the objects detected in the scene need to
be taken into consideration. In this paper, we present an
improved modeling method, based on a multi-sensory
cooperation using both range and visual data in order
to make the matching step more reliable. Our main
contributions concern two main topics:

• The model building by using both 2D and 3D knowl-
edges. In our approach we add to the geometric rep-
resentations (intrinsic shape attributes, positions, ...),
other attributes based on texture and/or color infor-
mations. From all these attributes, using an a priori
learning step, a classifier can provide a semantic la-
belling of the detected objects or regions.

• The dynamic aspects of the visual processes both,
for the incremental environment modeling and for
the visual navigation towards landmarks selected as
targets. The matching between landmarks detected in
different perceptions is required for the global model
construction and is facilitated by using the result of a
tracking process. The semantic labelling is exploited
to select the landmarks and to check the tracking
consistency.

Our local modeling approach includes an interpre-
tation procedure suitable for outdoor natural scenes.
For every acquired image, it consists on several steps.
Firstly, a segmentation algorithm provides a descrip-
tion of the scene as a set of regions. Our segmentation
method is able to get a synthetic scene description even
for complex environments and can be applied to both
2D and 3D information either in sequential or parallel
manner. The segmentation technique will be presented
in detail in Section 3. Then, regions obtained by the
segmentation step, are characterized by using several
attributes, and finally their nature is identified by prob-
abilistic methods.

Our tracking method, has been presented in
Huttenlocher et al. (1993b), Dubuisson and Jain (1997),
Murrieta-Cid (1997), and Rucklidge (1997). The track-
ing is done using a comparison between an image and
a model. The Hausdorff distance is used to measure the
resemblance of the image with the model. The associ-
ation between the motion estimation in the image and
the scene interpretation has been used to select a land-
mark having the required nature and shape as a target
for the tracking.
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Finally, the global model is built from the succes-
sive fusion of the local models, using the tracking
results. With respect to our previous work, the same
localization and fusion procedures are used, but now,
our global model has several levels, like in Bulata and
Devy (1996): A topological level gives the relation-
ships between the different ground surfaces (connectiv-
ity graph). The model of each terrain area is a stochastic
map which gives information only for the objects de-
tected on this area. This map gives the position of these
objects with respect to a local frame linked to the area.

Let us describe the organization of this paper. In
Section 2, some related works and an overview of our
system are presented. In the Section 3, a general func-
tion which performs the construction of a local model
for the perceived scene, will be detailed. This function
is implemented as a slow loop (from 0.1 to 0.2 Hz ac-
cording to the scene complexity and the available com-
puter) from the acquisition of range and visual data to
the global model updating. The landmark selection pro-
cess is presented in Section 4, this one is executed only
at the beginning or after the detection of an inconsis-
tency by the modeling process. The tracking process is
described in Section 5. The tracking process is imple-
mented as a fast loop (from 2 to 4 Hz), which requires
only the acquisition of an intensity image.

The global model building and robot localization are
described in Section 6. Finally, experimental results of
SLAM and visual navigation obtained from a partial
integration of these processes will be presented and
analyzed in the Section 7. Our navigation method has
been evaluated either on a lunar-like environment or on
terrestrial natural areas. The experimental tested used to
carry out these experiments is the robot LAMA (Fig. 1).
It is equipped with a stereo-vision system composed

Figure 1. The robot LAMA.

by two black and white cameras. Additionally to this
stereo-vision system a single color camera has been
used to model scenes far away from the robot.

2. The General Approach

2.1. Related Work

The construction of a complete model of an outdoor
natural environment, suitable for the navigation re-
quirements of a mobile robot, is a quite difficult task.
The complexity resides on several factors such as (1)
the great variety of scenes that a robot could find in out-
door environments, (2) the fact that the scenes are not
structured, then difficult to represent with simple geo-
metric primitives, and (3) the variation of the current
conditions in the analyzed scenes, for instance, illu-
mination and sensor motion. Moreover, another strong
constraint is the need of fast algorithm execution so
that the robot can react appropriately in the real world.

Several types of partial models have been proposed
to represent natural environments. Some of them are
numerical dense models (Krotkov et al., 1989; Hebert
et al., 1989), other are probabilistic and based on grids
(Lacroix et al., 1994). There exist also topological mod-
els, for instance, Dedeoglu et al. (1999), for indoor en-
vironments. In general, it is possible to divide the types
of models in three categories (Chatila and Laumond,
1985):

1. geometric models: this model contains the descrip-
tion of the geometry of the ground surface or some
of its parts.

2. topological models: this model represents the topo-
logical relationships among the areas in the envi-
ronment. These areas have specific characteristics
and are called “places”.

3. semantic models: this is the most abstract repre-
sentation, because it gives to every entity or object
found in the scene, a label corresponding to a class
(tree, rock, grass. . . ). The classification is based on
a priori knowledge learnt off line and given to the
system. This knowledge could consist in (1) a list
of possible classes that the robot could identify in
the environment, (2) attributes learnt for some sam-
ples of each class, (3) the kind of environment to be
analyzed, . . .

A very large majority of methods proposed to model
a natural environment, have been focused on geometric



146 Murrieta-Cid, Parra and Devy

models. Nevertheless there are some works which build
a topological model of natural environments based
on:

• Grid representations. Grids, with sometimes differ-
ent hierarchical levels, are often selected for their
simplicity (Metea and Tsai, 1987).

• Graph representations. Some geometrical character-
istics of a geometrical model allow to define a graph
of objects (Kweon and Kanade, 1991); these char-
acteristics can be also used to split the environment
in homogeneous areas (Asada, 1988), using sensor
constraints (visibility of landmarks) or locomotion
constraints (nature of the terrain).

Some recent works propose landmark-based naviga-
tion methods. In McKerrow and Ratner (2001), the
landmarks are detected using only an ultrasonic sen-
sor, but the environment is very simple (typically a
golf course) and detected landmarks are only poles.
On the opposite side, the work presented in Rosenblum
and Gothard (2000) is based on very expensive FLIR
cameras; from the images, attributes are extracted, and
image regions are labelled Rock, Grass, Bush, Tree, ...
a reactive navigation mode is based on these labelled
images. Our approach is close to this previous one,
but (1) we use only color cameras, (2) the robot ex-
ecutes either a trajectory-based or a landmark-based
navigation process and (3) visual tracking is integrated
so that landmarks are dynamically tracked during the
robot motions.

2.2. The Navigation Modes

We have described on Fig. 2 the relationships between
the main representations built by our system, and
the different processes which provide or update these
representations.

We propose here two navigation modes which
can take profit of the same landmark-based
model: Trajectory-based navigation or sensor-based
navigation.

The sensor-based navigation mode needs only a
topological model of the environment. It is a graph,
in which a node (a place) is defined both by the in-
fluence area of a set of landmarks and by a rather flat
ground surface. Two landmarks are in the same area if
the robot can execute a trajectory between them having
always landmarks of the same set in the stereo-vision
field of view (max range = 8 m). Two nodes are con-
nected by an edge if their ground surfaces have signifi-

cantly different slopes, or if sensor-based motions can
be executed to reach one place from the other.

The boundary between two ground surfaces is in-
cluded in the environment model as a border line (Devy
and Parra, 1998). These lines can be interpreted as
“doors” towards other places. These entrances towards
other places are characterized by their slope. A tilted
surface becomes an entrance if the robot can navigate
through it. An arc between two nodes corresponds ei-
ther with a border line, or with a 2D landmark that the
robot must reach in a sensor-based mode. In Fig. 3 are
shown a scheme representing the kind of environment
where this approach is suitable and its representation
with a graph.

The trajectory-based navigation mode has an input
provided by a geometrical planner. It is selected inside
a given landmark(s) influence area. The landmarks in
this type of navigation mode must be perceived by 3D
sensors, because they are used to localize the robot (see
Figs. 23 and 25). The sensor-based navigation mode
can be simpler, because it exploits the landmarks as
sub-goals where the robot has to go. The landmark
position in a 2D image is used to give the robot a motion
direction (see Fig. 24).

Actually, both of the navigation modes can be
switched depending on (1) the environment condition,
(2) whether there is 3D or 2D information and (3) the
availability of a path planner. In this paper we present
overall examples when 3D information is available.
3D information allows the trajectory-based navigation
mode based on robot localization from the 3D landmark
positions.

2.3. Overview of Our System

In the model proposed the main entities are: (1) ground
areas defined by the surfaces (rather smooth, sloped or
not) and their nature (grass, sand, earth, . . . ). (2) objects
defined by their shape (if 3D data is available) or any
spatial area represented by a region (if only 2D data is
available) and their nature (rocks, tree, bushes, . . . ). (3)
boundaries between these entities which can be rather
approximative.

The landmark-based model proposed is built by
using several processes: A segmentation algorithm
provides a synthetic description of the scene. Entities
issued from the segmentation stage (ground areas or
objects) are then characterized and afterwards identi-
fied in order to obtain their nature (e.g., soil, rocks,
trees . . . ).
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Figure 2. The general approach.
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Figure 3. Topological model.

The nature of the elements in the scene is obtained
by comparing an attribute vector (computed from the
shape, color and texture informations extracted from
sensory data associated with this element) with a
database. This database is function of the type of the en-
vironment. In lunar-like environment we have chosen 3
classes (ground, rocks and sky). Terrestrial natural ar-
eas are richer regarding the type of classes that can be
found, for this reason we have chosen 4 classes, which
correspond to the principal elements in our scenes: Soil,
rock, trees and sky. In both cases new classes inclu-
sion as rocky soil and ground depressions (holes) are
currently going on. The attributes used to character-
ize these environments must be different because they
have different discriminative power according to the
environment. For instance, in lunar like environment
color in not useful given that the whole environment
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has almost the same colors, but texture and 3D infor-
mation are. In terrestrial natural areas the color is im-
portant because it changes drastically according to the
classes the object belongs to. Information to use depend
also on the sensor capabilities. Regions corresponding
to areas far away from the sensor cannot be analyzed
by using 3D information because this information is
not available or too noisy.

These phases allow us to obtain a local model of
the scene. From this model, discriminant features can
be extracted and pertinent objects for the localization
tasks are selected as landmarks, according to some cri-
teria which depend on higher decisional levels, one
of these landmark is chosen as a tracked target. This
same landmark could also be used as a goal for vi-
sual navigation. The tracking process exploits only a
2D image sequence in order to track the selected target
while the robot is going forward. When it is required,
the modeling process is executed. A local model of the
perceived scene is built. The robot localization is per-
formed from matchings between landmarks extracted
in this local model, and those previously merged in the
global model. If the robot situation can be updated, the
models of these matched landmarks are fused and new
ones are added to the global model.

The matching problem of landmark’s representation
between different perceptions is solved by using the
result of the tracking process. Moreover, some verifi-
cations between informations extracted from the 2D
and 3D images allow to check the coherence of the
whole modeling results; especially, a tracking checker
is based on the semantical labels added to the extracted
objects by the identification function.

3. Local Scene Modeling

Firstly, the local model of the perceived scene is re-
quired in order to deal with the incremental construc-
tion of a global model (Parra et al., 1999), or to select
a goal for the next motion.

The construction of this local model is performed
from the acquisition of a 3D image by the range sen-
sor, and of a 2D image from the video sensor. Several
processes are executed on sensory data.

The order and goal of each of these steps applied
on the 2D and/or 3D images (Murrieta-Cid, 1998) are
described below:

1. Image segmentation for region extraction: This seg-
mentation is based on clustering and unsupervised
classification. The image is segmented to obtain the

main regions of the scene. This first step can be per-
formed by the use of the color attribute on the 2D
image or by the use of geometrical attributes on the
3D image.

2. Region characterization: Each region of the scene is
characterized by using several attributes computed
from the color, texture or geometrical informations
(Unser, 1986; Tan and Kittler, 1994).

3. Region identification: It is based on knowledge-
based classification after a supervised learning, the
nature (class) of the elements (regions) in the scene
is obtained by comparing a vector of features with a
database composed of different classes, issued from
a learning process. The database is a function of the
environment type.

4. Edge-based segmentation used to split connected
3D objects belonging to the same class.

We want also to associate intensity attributes to an
object extracted from the 3D image, this object creates
a 2D region in the intensity image acquired at the same
time than the 3D one. Depending on their properties the
attributes are used to segment or characterize the im-
age or even for both tasks. For instance, since color is a
point-wise property of images and the texture involves
a notion of spatial extent (a single point has no texture),
the color segmentation usually gives a better compro-
mise between the precision of region borders and the
speed of computation than the texture segmentation;
consequently, we decided to use the color instead of
the texture to achieve the segmentation step on scenes
far away from the sensor.

On our LAMA robot, the 3D image is provided by
a stereo-vision algorithm (Haddad et al., 1998); for
the 2D image, two different sensor configurations have
been considered:

• Either we are only interested in the texture informa-
tion, and the stereo images have a sufficient resolu-
tion. The left stereo image provides the 2D image on
which the texture information will be computed; the
indexes between the 3D points and the 2D points are
the same, so that the object region extracted from the
3D image is directly mapped on the 2D image.

• Or we want to take advantage of a high-resolution
camera, of a color camera, or of an active camera
(controlled lens). In such a case, the 2D image is
provided by a specific camera, and a calibration pro-
cedure must be executed off line, in order to estimate
the relative position between the 2D and the 3D sen-
sors. The 2D region created by an object extracted
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Figure 4. The local model construction.

from the 3D image, is provided by the projection on
the 2D image of the 3D border line of the object.

Figure 4 shows the scene modeling process on the
case of the usage of 3D information for segmentation
and 2D/3D information for identification.

3.1. Scene Segmentation

The segmentation method here proposed is more ro-
bust and general than the methods that we have pre-
viously used (Betg-Brezetz et al., 1994; Murrieta-Cid
et al., 1998a). It is able to get a synthetic scene de-
scription even for complex environments and can be
applied to both 2D and 3D information. Scenes cor-
responding to areas far away from the sensor will be
segmented by using only visual attributes given that
3D information is not available or too noisy. Unlike a
video camera can give valid visual information (texture
and color) to build a 2-D model. This model can be
used in order to give to the robot a goal (direction)
corresponding to a landmark of a requested class and
2-D shape.

This segmentation algorithm is a combination of
two techniques: The characteristic feature, threshold-
ing or clustering, and region growing (Murrieta-Cid
et al., 2001). The method does the grouping in the spa-
tial domain of square cells. Those are associated with
the same label defined in an attribute space (i.e., color
space). The advantage of this hybrid method is that it al-
lows to achieve the process of growing independently
of the beginning point and the scanning order of the
adjacent square cells.

The division of the image into square cells provides
a first arbitrary partition (an attribute vector is com-
puted for each cell). Several classes are defined by the
analysis of the attribute histograms, which brings the
partition into the attribute space. Thus, each square cell
in the image is associated with a class. The fusion of
the square cells belonging to the same class is done by
using an adjacency graph (adjacency-4). Finally, the
regions which are smaller than a given threshold are
integrated into an adjacent region.

In previous works the classes were defined by de-
tecting the principal peaks and valleys in the histogram
(Murrieta-Cid et al., 1998a). Generally, it is possible to
assume that the bottom of a valley between two peaks
can define the separation between two classes. How-
ever, for complex pictures, it is often difficult to detect
the bottom of the valley precisely. Several problems
prevent us from determining the correct value of sep-
aration: The attribute histograms are noisy, the valley
is often flat and broad or the peaks are extremely un-
equal in height. Some methods have been proposed
in order to overcome these difficulties (Pal and Pal,
1993). However, these techniques require considerably
tedious and sometimes unstable calculations. We have
adapted the method suggested by Otsu (1979), which
determines an optimal criterion of class separation by
the use of statistical analysis. This approach maximizes
a measure of class separability. It is quite efficient when
the number of thresholds is small (3 or 4). But when
the number of classes increase the selected thresh-
old usually become less reliable. Since we use differ-
ent attributes to define a class, the above problem is
avoided.

In his method, Otsu deals only with a part of the class
determination problem. It determines only the thresh-
olds corresponding to the separation for a given number
of classes. Our contributions are:

• The partition of the attribute space which gives the
best number n∗ of classes, where n∗ ∈ [2, . . . , N ].

• The integration of this automatic class separation
method in a segmentation algorithm thanks to a com-
bination with the region growing technique.

For each attribute, λ∗ is the criterion determining
the best number n∗ of classes. λ∗ must maximize λ(k),

k ∈ [2, . . . , N ].

λ∗ = max
(
λ(k)

)
; λ(k) =

σ 2
B(k)

σ 2
W(k)
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where λ(k) is the maximal criterion for exactly k classes.
σ 2

B(k)
is the inter-classes variance defined by:

σ 2
B(k)

=
k−1∑
m=1

k∑
n=m+1

[ωn · ωm(µm − µn)2]

σ 2
W(k)

is the intraclass variance defined by:

σ 2
W(k)

=
k−1∑
m=1

k∑
n=m+1

[ ∑
i∈m

(i − µm)2 · p(i)

+
∑
i∈n

(i − µn)2 · p(i)

]

µm denote the mean of the level i of the class m, ωm the
class probability and p(i) the probability of the level i
of the histogram.

µm =
∑
i∈m

i · p(i)

ωm
ωm =

∑
i∈m

p(i) p(i) = ni

Np

The normalized histogram is considered to be a prob-
ability distribution. ni is the number of samples for
a given level and Np is the total number of samples.
A class m is delimited by two values (the inferior
and superior limits) corresponding to two levels in the
histogram.

The automatic class separation method was applied
to the two histograms shown in Fig. 5. In both cases
the class division was tested for two and three classes.
For the first histogram, the value λ∗ corresponds to a
division into two classes, the threshold is placed in the
valley bottom between the two peaks. In the second
histogram, the optimal λ∗ corresponds to a division
into three classes.

3.1.1. The 3D Segmentation. This segmentation al-
gorithm can be applied to images of range, by the use
of 3D attributes (height and normals). On our LAMA
robot, the 3D image is provided by a stereo-vision al-
gorithm (Haddad et al., 1998): Height and normals are
computed for each point in the 3D image. The normals
(θ and φ) are computed in a spherical coordinate sys-
tem (Betg-Brezetz et al., 1994), and are coded in 256
levels.

Once the ground regions have been extracted in the
image, it remains the obstacle regions which could re-
quire a specific segmentation in order to isolate each
obstacle. We make the assumption that an obstacle is a
connected portion of matter emerging from the ground.

Figure 5. Localization of threshold.

Different obstacles are separated by empty space which
could be identified as depth discontinuities in the 3D
image. These discontinuities are detected in a depth
image, in which for each 3D point of the 3D image, the
corresponding pixel value encodes the depth with re-
spect to the sensor. Thus a classical derivative filter can
be applied to obtain maxima of gradient correspond-
ing to the depth discontinuities. Classical problems of
edge closing are solved with a specific filter described
in Betg-Brezetz et al. (1994). Figure 6 shows a lunar-
like environment, Fig. 7 shows the 3D segmentation.
Figures 8 and 9 show other example. In this example a
ground depression in the scene has been successfully
segmented. White pixels in segmented images corre-
spond to non correlated points (too distant 3D points,
regions with low texture, shadows or occlusions).

Figure 6. Original image.
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Figure 7. 3D segmentation.

Figure 8. Original image.

Figure 9. 3D segmentation.

3.1.2. The Color Segmentation. Image regions cor-
responding to areas of the environment close to the
sensors (in our robot, up to 8 meters) can be analyzed
by using 3D and luminance attributes. Regions corre-
sponding to areas far away from the sensor (beyond
8 meters) will be analyzed by using only luminosity
attributes (the color and the texture) given that 3D in-
formation is not available or too noisy.

In terrestrial natural areas far away from the sensor
color is chosen to segment the scene.

A color image is usually described by the distribution
of the three color components R (red), G (green) and B
(blue), moreover many other attributes can also be cal-
culated from these components. Two goals are gener-
ally pursued: Firstly, the selection of uncorrelated color
features (Pal and Pal, 1993; Tan and Kittler, 1994),
and secondly the selection of attributes which are in-
dependent of intensity changes, especially in outdoor
environments where the light conditions are not con-
trolled (Saber et al., 1996; Ohta, 1985). Several color

representations have been tested: R.G.B., r.g.b. (nor-
malized components of R.G.B.), Y.E.S. defined by the
SMPTE (Society of Motion Pictures and Television
Engineers), H.S.I. (Hue, Saturation and Intensity) and
I1, I2, I3, color features derived from the Karhunen-
Loève (KL) transformation of RGB. The results of
segmentation obtained by using each color space have
been compared. Good results with only chrominance
attributes depend on the type of images. Chromimance
effects are reduced in images with low saturation. For
this reason, the intensity component is kept in the seg-
mentation step. Over-segmentation errors can occur
due to the presence of strong illumination variations
(i.e., shadows). However, over-segmentation is better
than the loss of a border between classes. The over-
segmentation errors will be easily detected and fixed
during the identification step.

Finally, the best color segmentation was obtained
by using the I1, I2, I3 space, defined as Ohta (1985)
and Tan and Kittler (1994): I1 = R+G+B

3 , I2 = (R− B),
I3 = 2G−R−B

2 . The components of this space are uncor-
related, so statistically it is the best way for detecting
color variations. The number of no homogeneous re-
gions (sub-segmentation problems) is very small (2%).
A good tradeoff between fewer regions and the ab-
sence of sub-segmentation has been obtained, even for
complex images.

3.2. Object Characterization

Each object of the scene is characterized by an at-
tribute vector: The object attributes correspond either
to 3D features extracted from the 3D image and/or to
its texture and its color extracted from the 2D image.
The 3D features correspond to the statistical mean and
the standard deviation of the distances from the 3-D
points of the object, with respect to the plane which
approximates the ground area from which this object
is emerging.

We want also to associate intensity attributes to an
object extracted from the 3D image. This object creates
a 2D region in the intensity image acquired at the same
time than the 3D one.

The texture operators are based on the sum and dif-
ference histograms, this type of texture measure is an
alternative to the usual co-occurrence matrices used
for texture analysis. The sum and difference histograms
used conjointly are nearly as powerful as co-occurrence
matrices for texture discrimination. This texture anal-
ysis method requires less computation time and less
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memory requirements than the conventional spatial
grey level dependence method.

For a given region of a video image I (x, y) ∈
[0, 255], the sum and difference histograms are defined
as Unser (1986):

hs(i) = Card(i = I (x, y) + I (x + δx, y + δy))

i ∈ [0, 510]

hd ( j) = Card( j = |I (x, y) − I (x + δx, y + δy)|)
j ∈ [0, 255]

The relative displacement (δx, δy) may be equivalently
characterized by a distance in radial units and an angle
θ with respect to the image line orientation: This dis-
placement must be chosen so that the computed texture
attributes allow to discriminate the interesting classes.
For our problem, we have chosen: δx = δy = 1. Sum
and difference images can be built so that, for all pixels
I (x, y) of the input image, we have:

Is(x, y) = I (x, y) + I (x + δx, y + δy)

Id (x, y) = |I (x, y) − I (x + δx, y + δy)|
Furthermore, normalized sum and difference his-
tograms can be computed for selected regions of the
image, so that:

Hs(i) = Card(i = Is(x, y))

m
Hs(i) ∈ [0, 1]

Hd ( j) = Card( j = Id (x, y))

m
Hd ( j) ∈ [0, 1]

where m is the number of points belonging to the con-
sidered region.

These normalized histograms can be interpreted as
a probability. P̂s(i) = Hs(i) is the estimated probabil-
ity that the sum of the pixels I (x, y) and I (x + δx,

y +δy) will have the value i . And P̂d( j) = Hd ( j) is the
estimated probability that the absolute difference of the
pixels I (x, y) and I (x + δx, y + δy) will have value j .

In this way we obtain a probabilistic characteriza-
tion of the spatial organization of the image, based on
neighborhood analysis. Statistical information can be
extracted from these histograms. We have used 6 tex-
ture features computed from the sum and difference
histograms, these features are defined in Table 1.

The histograms change gradually in function of the
view point, the distance from the sensor to the scene
and the occlusions (Tan and Kittler, 1994). This char-
acteristic is interesting in the field of mobile robotics
where such situations happen. Given that, if the acqui-
sition conditions are rather stable, the number of data

Table 1. Texture features computed from sum and difference
histograms.

Texture feature Equation

Mean µ = 1

2

∑
i

i · P̂s(i)

Variance
1

2

( ∑
i

(i − 2µ)2 · P̂s(i) + ∑
j

j2 · P̂d( j)

)

Energy
∑

i
P̂2

s(i) · ∑
j

P̂2
d( j)

Entropy − ∑
i

P̂s(i) · log P̂s(i)

− ∑
j

P̂d( j) · log P̂d( j)

Contrast
∑

j
j2 · P̂d( j)

Homogeneity 1
1+ j2

∑
j

· P̂d( j)

samples required to represent different elements that
we want to identify can be reduced.

When the color information is available and suitable
(i.e., terrestrial natural areas), in addition to these tex-
ture features the statistical means of I2 and I3 are used to
characterize the color in a region. In order to reduce the
dependency of intensity changes in the identification
step, the intensity component has been dropped out.

3.2.1. Supervised Learning. Bayesian classification
is used to identify region, this technique does not per-
form a feature selection, the whole vector of previously
defined attributes has to be computed for each sam-
ple. Nevertheless, in order to reduce the computational
running time of both classification and characterization
steps, a data analysis is performed off-line to decrease
the dimension of the attribute space. This data analysis
is composed of two steps: Analysis of capacity of dis-
crimination and analysis of correlation. The first one is
done by using the Fisher’s criterion and the second is
based on PCA.

The acknowledge of the discrimination power for
each feature (computed from the Fisher criterion), the
variance of the samples over the axis and the correlation
among them (computed from the PCA) allows us to se-
lect the ones having the greatest discrimination power
and uncorrelated. We decided to use the pertinent sub-
set of original features instead of their linear combina-
tion, given that these last ones force the computation of
several original features per factorial axis. Additionally
to employ linear combination of original features does
not have interest, since the k-nearest neighbor method
is used to estimate P(X | Ci ).
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3.3. Object Identification

The nature (class) of an object perceived in the scene is
obtained by comparing its attribute vector (computed
from the 3D features and from the texture or color) with
a database composed by different classes, issued from
a learning step executed off-line.

This identification phase allows us to get a proba-
bilistic estimation about the object nature. The label
associated to an object will be exploited in order to
detect possible incoherences at two levels:

• at first, in the modeling process, a 3D or 2D seg-
mentation error will be detected if the extracted
objects cannot be labelled by the identification
function.

• then, in the tracking process, the nature of the
landmark could be used in addition to the partial
Hausdorff distance to detect possible tracking errors
or drifts.

A Bayesian classification (Duda and Hart, 1973) is
used in order to estimate the class membership for each
object. The Bayesian rule is defined as

P(Ci | X ) = P(X | Ci )P(Ci )∑n
i=1 P(X | Ci )P(Ci )

where

• P(Ci ) is the a priori probability that an object belongs
to the class (Ci ).

• P(X | Ci ) is the class conditional probability that the
object attribute is X , given that it belongs to class Ci .

• P(Ci | X ) is the a posteriori conditional probability
that the object class membership is Ci , given that the
object attribute is X .

We have assumed equal a priori probability. In this
case the computation of the a posteriori probability
P(Ci | X ) can be simplified and its value just depend
on P(X | Ci ).

The value of P(X | Ci ) is estimated by using
k-nearest neighbor method. It consists in computing
for each class, the distance from the sample X (corre-
sponding to the object to identify, whose coordinates
are given by the vector of 3-D information and lu-
minosity features) to k-th nearest neighbor amongst
the learned samples. So we have to compute only this
distance (in common Euclidean distance) in order to
evaluate P(X | Ci ). Finally, the observation X will be

assigned to the class Ci whose k-th nearest neigh-
bor to X is closest to X than for any other training
class.

3.4. Experimental Results

To show the construction of the local model of the
scene based on only 2D information, we present the
process in a image. In the last phase of the local model,
each region in the image has a class associated (na-
ture). These regions were obtained from the color seg-
mentation phase. However, the segmentation results in
large regions, the regions do not always correspond to
real objects in the scene. Sometimes a real element is
over-segmented, consequently a fusion phase becomes
necessary. In this step connected regions belonging to
the same class are merged.

The coherence of the model is tested by using
the topological characteristics of the environment
(Murrieta-Cid, 1998). Possible errors in the identifi-
cation process could be detected and corrected by us-
ing contextual information (i.e., grass cannot be sur-
rounded by sky regions).

Figure 10 shows the original image. Figure 11 shows
the color image segmentation and the identification
of the regions. Labels in the images indicate the nature
of the regions: (R) rock, (G) grass, (T) tree and (S) sky.

The Region at the top right corner of the image was
identified as grass. However, this region has a relatively
low probability (less than a given threshold) of belong-
ing to this class, in this case the system can correct the
mistake by using contextual information; this region is
then relabeled as tree, Fig. 12 shows the final model of
this scene. Figure 13 shows the gray levels used to label
the classes. Figure 14 shows other scene and Fig. 15
shows the model.

Figure 10. Original image.
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Figure 11. Segmentation and identification.

Figure 12. Final model.

Figure 13. Classes.

Figure 14. Original image.

Figure 15. Local model.

4. Landmark Selection

The landmark selection phase is composed by two main
steps. First, a local model is built from the first robot
position in the environment. Then, by using this first
local model, a landmark is chosen among the objects
detected in this first scene.

A landmark is defined as a remarkable object, which
should have some properties that will be exploited in
the robot localization or in visual navigation. The two
main properties which we use to define a landmark are:

• Discrimination. A landmark should be easy to dif-
ferentiate from other surrounding objects.

• Accuracy. A landmark must be accurate enough so
that it can allow to reduce the uncertainty on the
robot situation, because it will be used to deal with
the robot localization.

Depending on the kind of navigation performed
(Section 2) the landmarks have different meaning. In
trajectory-based navigation landmarks are useful to lo-
calize the robot (Ayala and Devy, 2000) and of course
the bigger number of landmarks in the environment
the better. For topological navigation the landmarks
are seen as a sub-goal which the robot has to reach. For
this last kind of navigation commutation of landmarks
is an important issue. We are dealing with this task,
based on the position of the landmark in the image (see
Section 7, image 24).

Landmarks in indoor environments correspond to
structured scene components, such as walls, corners,
doors, etc. In outdoor natural scenes, landmarks are
less structured. We have proposed several solutions like
maxima of curvature on border lines (Devy and Parra,
1998), maxima of elevation on the terrain (Fillatreau
et al., 1993) or on extracted objects (Betg-Brezetz et al.,
1996).
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In previous works we have defined a landmark as a
bulge, typically a natural object emerging from a rather
flat ground (e.g., a rock), only the elevation peak of such
an object has been considered as a numerical attribute
useful for the localization purpose. A realistic uncer-
tainty model has been proposed for these peaks, so that
the peak uncertainty is function of the rock sharpness,
of the sensor noise and of the distance from the robot.

In a segmented 3D image, a bulge is selected as can-
didate landmark if:

• It is not occluded by another object. If an object is
occluded, it will be difficult to find in the following
images and will not have a good estimate on its top.

• Its topmost point is accurate. This is function of the
sensor noise, resolution and object top shape.

• It must be in “ground contact”.

These criteria are used so that only some objects
extracted from an image are selected as landmarks. The
most accurate one (or the more significant landmark
cluster in cluttered scenes) is then selected in order to
support the reference frame of the first explored area.
Moreover, a specific landmark must be defined as the
next tracked target for the tracking process. Different
criteria, coming from higher decisional levels, could be
used for this selection, for example:

• Track the sharper or the higher object: it will be easier
to detect and to match between successive images.

• Track the more distant object from the robot, towards
a given direction (visual navigation).

• Track the object which maximizes a utility func-
tion, taking into account several criteria (active
exploration).

• Or, in a teleprogrammed system, track the object
pointed on the 2D image by an operator.

In order to navigate during a long robot motion, a
sequence of different landmarks (or targets) is used as
sub-goal the robot must successively reach (Murrieta-
Cid et al., 2001). The landmark change is automatic. It
is based on the nature of the landmark and the distance
between the robot and the target which represents the
current sub-goal. When the robot attains the current
target (or, more precisely, when the current target is
close to the limit of the camera field of view), another
one is dynamically selected in order to control the next
motion (Murrieta-Cid et al., 1998b).

At this time due to integration constraints, only
one landmark can be tracked during the robot mo-

tion. We are currently developing a multi-tracking
method.

This landmark will be used for several functions:

• It will support the first reference frame linked to the
current area explored by the robot so that, the ini-
tial robot situation in the environment can be easily
computed.

• It will be the first tracked target in the 2D image se-
quence acquired during the next robot motion (track-
ing process fast-loop). If visual navigation is chosen
in the higher level decision system as a way to de-
fine the robot motions during the exploration task,
this same process will be also in charge of generat-
ing commands for the mobile robot and for the pan
and tilt platform on which the cameras are mounted.

• It will be detected again in the next 3D image ac-
quired in the modeling process, so that the robot
situation could be easily updated, as this landmark
supports the reference frame of the explored area.

Moreover, the first local model allows to initialize
the global model which will be upgraded by the incre-
mental fusion of the local models built from the next
3D acquisitions. Hereafter, the automatic procedure for
the landmark selection is presented.

The local model of the first scene (obtained from the
3-D segmentation and identification phases) is used to
select automatically an appropriated landmark, from
an utility estimation based on both its nature and shape
(Murrieta-Cid et al., 1998a). Landmarks can be used
to both, localization and navigation tasks. Localization
based on environment features improves the autonomy
of the robot.

Figure 16 shows the original image, Fig. 17 shows
the automatic selection of a landmark based on its na-
ture and shape.

When several elements having the same nature are
present in the scene, the local model of the scene can
be used to select one according to its two-dimensional
representation (i.e., the longest region belonging to the
class rock, present in the image). It is also possible to
track portions of landmark to decrease the computa-
tion running time of the tracking process. One criteria
is to select the element with the largest elongation when
there are several elements of the same nature. This cri-
teria is as follows: The first step is to select the longest
region in the image. The major vertical axis of the ob-
ject is found, and a window is constructed around it.
The window width is determined as a fraction of the
size of the major vertical axis, only the points belonging
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Figure 16. Original image.

Figure 17. Landmark selection.

to the region of the class chosen and falling within the
window are taken into consideration. In addition very
narrow elements are avoided.

5. The Tracking Process (Fast-Loop)

The target tracking problem has received a great deal
of attention in the computer vision community over the
last years. Several methods have been reported in the
literature, and a variety of features have been proposed
to perform the tracking (Delagnes et al., 1994; Jiansho
and Tomasi, 1994; Yue, 1995).

Our method is able to track an object in an image
sequence in the case of a sensor motion or of an object
motion. This method is based on the assumption that
the 3D motion of the sensor or the object can be char-
acterized by using only a 2D representation. This 2D
motion in the image can be decomposed into two parts:

• A 2D image motion (translation and rotation), cor-
responding to the change of the target’s position in
the image space.

• A 2D shape change, corresponding to a new aspect
of the target.

The target tracking results are used to perform robot
localization from matching between landmarks used
as targets and it is also used to keep the direction of
a landmark in order to send the robot there (visual
navigation).

Other works have used target tracking results to im-
prove robot localization (Mallet et al., 2001). In this
work the tracking is done by using a correlation func-
tion. The targets are small windows (typically 10 × 10
pixels) having some discrimination properties. The
robot position estimation is improved by merging 2D
information get from video image with 3D data. This
work is similar to our approach, however there is a im-
portant conceptual difference, in our approach the tar-
gets are landmarks having a semantic meaning, one of
ours final goals is to command the robot with semantic
instead of numerical vectors. For instance the command
of going from (x1, y1) to (x2, y2) can be replaced with
“Go from the tree to the rock”.

The tracking is done using a comparison between
an image and a model. The model and the image are
binary elements extracted from a sequence of gray lev-
els images using an edge detector similar to Canny
(1986).

This target tracking method is well adapted to nat-
ural environments because it does not need any kind
of structured models. The method tracks a configura-
tion of points. Besides, in natural environments there is
enough texture, therefore it is possible to get points of
maximal gradient. The method is based on the assump-
tion that between to consecutive images the appearance
of the configuration of points will not change dras-
tically. This happens in non-structures environments
contrarily to structured environments which are often
modeled with polyhedral objects which quickly change
their appearance when the sensor is in motion.

The target tracking method is well adapted for the
environment type we are dealing with. Nevertheless
when the tracking is performed over very complex im-
ages (too much texture) some errors can happen. The
error can also occur when the robot motion between two
consecutive scenes is large (see Fig. 23 VI.b) because
the aspect and position of the target changes a great
deal. In order to detect these errors the local model of
the scene is built with a lower frequency than the target
tracking process. The coherence of the both processes
is checked by using the class of the target.

A partial Hausdorff distance is used as a resem-
blance measurement between the target model and its
presumed position in an image.
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Given two sets of points P and Q, the Hausdorff
distance is defined as Serra (1982):

H (P, Q) = max(h(P, Q), h(Q, P))

where

h(P, Q) = max
p∈P

min
q∈Q

‖p − q‖

and ‖ · ‖ is a given distance between two points p and
q. The function h(P, Q) (distance from set P to Q) is
a measure of the degree in which each point in P is
near to some point in Q. The Hausdorff distance is the
maximum among h(P, Q) and h(Q, P).

By computing the Hausdorff distance in this way
we obtain the most mismatched point between the two
shapes compared consequently, it is very sensitive to
the presence of any outlying points. For that reason it
is often appropriate to use a more general rank order
measure, which replaces the maximization operation
with a rank operation. This measure (partial distance)
is defined as Huttenlocher et al. (1993a):

hk = K th
p∈P min

q∈Q
‖p − q‖

where K th
p∈P f (p) denotes the K −th ranked value of

f (p) over the set P .

5.1. Finding the Model Position

The first task to be accomplished is to define the po-
sition of the model Mt in the next image It+1 of
the sequence. The search for the model in the im-
age (or image’s region) is done in some selected
direction. We are using the unidirectional partial dis-
tance from the model to the image to achieve this first
step.

The minimum value of hk1(Mt , It+1) identifies the
best “position” of Mt in It+1, under the action of some
group of translations G. It is possible also to identify
the set of translations of Mt such that hk1(Mt , It+1) is
no larger than some value τ , in this case there may
be multiple translations that have essentially the same
quality (Huttenlocher et al., 1993b).

However, rather than computing the single transla-
tion giving the minimum distance or the set of transla-
tions, such that its correspond hk1 is no larger than τ ,
it is possible to find the first translation g, such that its
associated hk1 is no larger than τ , for a given search
direction.

Although the first translation which hk1(Mt , It+1)
associated is less than τ it is not necessarily the best
one, whether τ is small, the translation g should be
quite good. This is better than computing all the set
of valuable translation, whereas the computing time is
significantly smaller.

5.2. Building the New Model

Having found the position of the model Mt in the next
image It+1 of the sequence, we now have to build the
new model Mt+1 by determining which pixels of the
image It+1 are part of this new model.

The model is updated by using the unidirectional
partial distance from the image to the model as a crite-
rion for selecting the subset of images points It+1 that
belong to Mt+1. The new model is defined as:

Mt+1 = {q ∈ It+1 | hk2(It+1, g(Mt )) < δ}

where g(Mt ) is the model at the time t under the action
of the translation g, and δ controls the degree to which
the method is able to track objects that change shape.

In order to allow models that may be changing in
size, this size is increased whenever there is a signifi-
cant number of nonzero pixels near the boundary and is
decreased in the contrary case. The model’s position is
improved according to the position where the model’s
boundary was defined.

The initial model is obtained by using the local model
of the scene previously computed. With this initial
model the tracking begins, finding progressively the
new position of the target and updating the model. The
tracking of the model is successful if:

k1 > f M | hk1(Mt , It+1) < τ

and

k2 > f I | hk2(It+1, g(Mt )) < δ,

in which f M is a fraction of the number total of points
of the model Mt and f I is a fraction of image’s point
of It+1 superimposed on g(Mt ).

5.3. Our Contributions Over the General
Tracking Method

Several previous works have used the Hausdorff dis-
tance as a resemblance measure in order to track an
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object (Huttenlocher et al., 1993b; Dubuisson and Jain,
1997). This section enumerates some of the extensions
that we have made over the general method (Murrieta-
Cid, 1997).

• Firstly, we are using an automatic identification
method in order to select the initial model. This
method uses several attributes of the image such as
texture and 3-D shape.

• Only a small region of the image is examined to
obtain the new target position, as opposed to the en-
tire image. In this manner, the computation time is
decreased significantly. The idea behind a local ex-
ploration of the image is that if the execution of the
code is quick enough, the new target position will
then lie within a vicinity of the previous one. We are
trading the capability to find the target in the whole
image in order to increase the speed of computation
of the new position and shape of the model. In this
way, the robustness of the method is increased to
handle target deformations, since it is less likely that
the shape of the model will change significantly in a
small δt . In addition, this technique allows the pro-
gram to report the target’s location to any external
systems with a higher frequency (for an application
see Becker et al. (1995)).

• Instead of computing the set of translations of
Mt , such that hk1(Mt , It+1) is no larger than some
value τ , we are finding the first translation whose
hk1(Mt , It+1) is less than τ . This strategy signifi-
cantly decreases the computational time.

Recently other work (Ayala et al., 2000) has im-
proved the target tracking approach here presented, the
robustness has been increased by (1) a refinement of the
target model, (2) usage of a target search strategy that
sweeps space of possible translation following a spi-
ral trajectory (having as result an error mean of target
image localization equal to zero) and (3) an alternative
strategy to select the target by doing a motion detection
in the image, based on background model provided by
a Gaussian mixture.

5.4. Experimental Results: Tracking

The tracking method was implemented in C on a real-
time operating system (Power-PC), the computation
running time is dependent on the region size exam-
ined to obtain the new target position. For sequences
the code is capable of processing a frame in about
0.25 seconds. In this case only a small region of the
image is examined given that the new target position

will lie within a vicinity of the previous one. Processing
includes, edge detection, target localization, and model
updating for a video image of (256 × 256 pixels).

Figure 18 show the tracking process in a lunar-
like environment. Figure 18(a) shows initial target se-
lection, in this case the user specifies a rectangle in
the frame that contains the target. An automatic land-
mark (target) selection is possible by using the lo-
cal model of the scene. Figure 18(b)–(e) shows the
tracking of a rock through an image sequence. The
rock chosen as target is marked in the figure with a
boundary box. Another boundary box is used to de-
lineate the improved target position after the model
updating. In these images the region being examined
is the whole image, the objective is to show the capac-
ity of the method to identify a rock among the set of
objects.

Next example illustrates the target tracking process
in a terrestrial natural environment.

We underline that the local model of the scene is
used to select automatically an appropriated target
(see Figs. 16 and 17). This approach allows the se-
lection of a landmark as target based on its nature and
shape.

Figures 19–22 show the tracking of a rock, this rock
is marked in the figure with a boundary box. Another
larger boundary box is used to delineate the region of
examination.

Only a small region of the image is examined to
obtain the new target position, as opposed to the en-
tire image. Another larger boundary box is used to de-
lineate the region of examination. In this manner, the
computation time is decreased significantly. The local
exploration of the image is justified because if the ex-
ecution of the code is quick enough, the new target
position will then lie within a vicinity of the previous
one.

6. The Global Model Building and Robot
Localization (Slow-Loop)

The local models extracted from the acquired 3D im-
ages are fused in order to build a global model in an
incremental way. After each 3D acquisition, a local
model is firstly built from the 3D image, by the use
of the method described in Section 3. Then the global
model must be updated by merging it with the local one.
This fusion function allows to improve the robot esti-
mate position and attitude (Sutherland and Thompson,
1994; Smith et al., 1990).
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Figure 18. Visual tracking.

6.1. Robot Localization and Global Model Fusion

The modeling process has an estimate of the robot situ-
ation provided by internal sensors (on the LAMA robot:
Odometers and inclinometers). This estimate may be
quite inaccurate, and moreover systematically implies
cumulative errors. The robot situation is represented
by an uncertainty vector (x, y, z, θ, φ, ψ). The esti-
mated errors are described by a variance-covariance

matrix. When these errors become too large, the robot
must correct its situation estimate by using other per-
ceptual data; we do not take advantage of any a priori
knowledge, such as artificial beacons, nor of external
positioning systems, such as GPS. The self-localization
function requires the registration of local models built
at successive robot situations. Some works deal with
this problem by performing optical odometry (Mallet
et al., 2001).
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Figure 19. Visual target tracking.

Figure 20. Visual target tracking.

Figure 21. Visual target tracking.

Figure 22. Visual target tracking.

The global model here proposed has two main com-
ponents: The first one describes the topological rela-
tionships between the detected ground areas, the sec-
ond one contains the perceived informations for each
area. The topological model is a connectivity graph be-
tween the detected areas (a node for each area, an edge
between two connected areas). In this paper, we focus
only on the knowledge extracted for a given area. The
information related to a given area corresponds to the
list of objects detected on this area, the ground model,
and the list of the different robot positions when it has
explored this area.

The global model construction requires the match-
ing of several landmarks extracted in the local model
and already known in the current global model. This
problem has been solved using only the 3D images
(Betg-Brezetz et al., 1996), but the proposed method
was very unreliable in cluttered environment (too many
bad matchings between landmarks perceived on multi-
ple views). Now, the matching problem is solved by us-
ing the visual tracking process. The landmark selected
as the target at the previous iteration of the modeling
process, has been tracked in the sequence of 2D images
acquired since then. The result of the tracking process
is checked, so that two situations may occur:

• in the local model built from the current position, we
find an object extracted from the 3D image, which
can be mapped on the region of the tracked target
in the corresponding 2D image. If the label given
by the identification function to this region, is the
same than the label of the target, then the tracking
result is valid and the tracked landmark gives a first
good matching from which other ones can be easily
deduced.

• if some incoherences are detected (no mapping be-
tween an extracted 3D object and the 2D tracked re-
gion, no correspondence between the current label of
the tracked region and the previous one), then some
specific procedure must be executed. At this time,
as soon as no matchings can be found between the
current local and global models, a new area is open.
It means that the landmark selection procedure is ex-
ecuted again in order to select the best landmark in
the local model as the new reference for the further
iterations.

When matchings between landmarks can be found,
the fusion functions have been presented in Betg-
Brezetz et al. (1996). The main characteristics of our
method is the uncertainty representation; at instant k,
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a random vector Xk = [xT
r xT

1 . . . xT
N ]T

k and the associ-
ated variance-covariance matrix represent the current
state of the environment. It includes the current robot’s
situation and the numerical attributes of the landmark
features, expressed with respect to a global reference
frame. Robot situation and landmark feature updates
are done using an Extended Kalman Filter (EKF).

6.2. Experimental Results of Modeling Using 2D
and 3D Information

Figure 23 shows a partial result of the exploration task,
involving concurrently the modeling and the tracking
processes. Figure 23 I.a shows the video image, Fig. 23
I.b presents the 3-D image segmentation and classifica-
tion, two grey levels are used to label the classes (rocks
and soil). Figure 23 I.c shows the first estimation of the
robot position. A boundary box indicates the selected
landmark (see Fig. 23 I.a). This one was automatically
chosen by using the local model. The selection was
done by taking into account 3-D shape and nature of
the landmark.

Figure 23 II and 23 III shows the tracking of the land-
mark, which is marked in the figure with a boundary
box. Another larger boundary box is used to delineate
the region of examination.

Figure 23 IV.a presents the next image of the se-
quence, Fig. 23 IV.b shows the 3-D segmentation and
identification phases used to build the local model. The
visual tracking is employed here to solve the matching
problem of landmark’s representation between the dif-
ferent perceptions. Figure 23 IV.c presents the current
robot localization, the local model building at this time
is merged to the global one. In this simple example,
the global model contains only one ground area with a
list of three detected landmarks and a list of two robot
positions.

The target tracking process goes on in the next im-
ages of the sequence (see Fig. 23 V and 23 VI.a). The
robot motion between the image V and VI.a was too im-
portant, so the aspect and position of the target changes
a great deal; it occurs a tracking error (see the in Fig. 23
VI.b, the window around the presumed tracked target).
A new local model is built at this time (Fig. 23 VI.b).
The coherence of the both processes (local model con-
struction and target tracking) is checked by using the
nature of the landmark. As the system knows that the
target is a rock, this one is able to detect the tracking
process mistake given that the model of the landmark
(target) belongs to the class soil.

7. Integrated System

The complete system here proposed is shown in Fig. 2.
During robot motion a slow and a fast processes are
simultaneously executed. The slow process is used to
build a landmark-based model of the environment. The
fast process is used to track the landmarks. The coher-
ence of the results of the executed task is checked by
comparing the result of both processes. The testing is
done to the frequency of the slowest processes. Cur-
rently the fast process is running to approximately 4 Hz
and the slow is running to 0.1 Hz.

Robot visual navigation is done by using the pro-
posed system. In order to navigate during a long robot
motion, a sequence of different landmarks (or targets)
is used as sub-goal that the robot must successively
reach.

We illustrate this task with a experiment carried out
with the mobile robot LAMA. Figure 24(a) shows the
video image, (b) presents the 3-D image and (c) shows
the 3-D image segmentation, classification and bound-
ary box including the selected landmark. The selection
was done taking into account 3-D shape and nature.

The second line of Fig. 24 represent the tracking of a
landmark through an image sequence. The landmark is
marked on the picture with a little boundary box. The
tracking process is performed based on a comparison
between a model of the landmark and the image. In
Murrieta-Cid et al. (1998a) is described in detail the
tracking technique used. When the landmark position
is close to the image edge, then it is necessary to select
another landmark. So the Fig. 24 III presents the new
landmark selection based on image segmentation and
classification. The next sequence of tracking is shows
on the line IV of Fig. 24 and the next landmark com-
mutation is presents on line V. Finally on the line VI
the robot continue navigation task.

7.1. Experiments of Simultaneous Localization
and Modeling (SLAM)

We illustrate this task with an experiment carried out
in the EDEN site at LAAS-CNRS. In this work SLAM
task is based on landmark extraction. The strategy to
select the landmarks is the one presented on Section 7.
Left column of Fig. 25 shows 2-D images correspond-
ing to left stereo-vision camera. On these images the
rocks selected as target and the zone where the target
is looking for are shown. The results obtained regard-
ing environment modeling are shown on the second
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Figure 23. 3-D robot localization.
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Figure 24. Visual robot navigation based on landmarks.
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Figure 25. Simultaneous localization and modeling (SLAM) based on landmarks.
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column. The maps of the environment and the local-
ization of the robot are presented on the third column.
On the row “I” the robot just takes one landmark as
reference in order to localize itself. On the last row the
robot uses 3 landmarks to perform localization task, the
robot position estimation is shown by using rectangles.
The most important result here is that the robot position
uncertainty does not grow thanks to the usage of land-
marks. The landmarks allow to stop the incremental
growing of the robot position uncertainty.

8. Conclusion and Future Work

The work presented in this paper concerns the environ-
ment representation and the localization of a mobile
robot which navigates in a planetary environment or
terrestrial natural areas.

A local model of the environment is constructed in
several phases:

• region extraction: firstly, the segmentation gives a
synthetic representation of the environment.

• object characterization: each object of the scene is
characterized by using 3-D features and its texture
or/and its color. Having done the segmentation tex-
ture color and 3-D features can be used to character-
ize and to identify the objects. In this phase, visual
attributes are taken into account to profit from its
power of discrimination. The texture and color at-
tributes are computed from regions issued from the
segmentation, which commonly give more discrimi-
nant informations than the features obtained from an
arbitrary division of the image.

• object identification: the nature of the elements (ob-
jects and ground) in the scene is obtained by com-
paring an attribute vector with a database composed
by different classes, issued from a learning process.

The local model of the first scene is employed in
order to select automatically an appropriate landmark.
The matching problem of landmark’s is solved by using
a visual tracking process. The global model of the envi-
ronment is updated at each perception and merged with
the current local model. The current robot’s situation
and the numerical attributes of the landmark features
are updated by using an Extended Kalman Filter (EKF).

Comparing the approach here proposed with our pre-
vious work, one important improvement is the current
segmentation algorithm. Here we are using an unsuper-
vised classification method in order to automatically

generate classes in the attribute space. Thanks to this
method our segmentation is more robust. In our system,
the most difficult task to accomplish is segmentation,
so if this step is robust, the whole system will be too.

Comparing our approach with other outdoor map
building methods, the main contributions are: (1) The
use of semantic labeling of objects and regions which
allows to command the robot using semantic instead of
numeric vectors. (2) The use of tracking of landmarks
to aid matching perceived the local scene model with
a global world model.

Based on intensive evaluation of our previous
method we found out that the main problem to fuse
local models into a global one is the matching of ob-
jects perceived in multiple views acquired during the
robot motion. The tracking method allows to keep the
correspondence between some of the landmarks during
an image sequence simplifying the match among the
remaining landmarks.

Some possible extensions to this system are going
on: firstly, we plan to study image preprocessors that
would enhance the extraction of those image features
that are appropriate to the tracking method. Secondly,
we plan to include new classes (e.g., rocky soil and
ground depressions) to improve the semantic descrip-
tion of the environment.

Given that the identification step is based on super-
vised learning process, its good performance depends
on the utilization of a database representative enough
of the environment. However if the robot navigates just
in a single type of environment (i.e., terrestrial natural
areas or planetary terrains), this limit is not a big deal
because a specific environment can be represented by
a reduced number of classes. If different types of en-
vironment are considered, it can be possible to solve
the problem by a hierarchical approach: A first step
could identify the environment type (i.e., whether the
image shows a forest, a desert or an urban zone) and
the second one the elements in the scene. The first step
has been considered in recent papers (Rubner et al.,
1998). These approaches are not able to identify the el-
ements in the scene but the whole image like an entity.
After having obtained the scene type, our identification
method could be used to realize the second step. In this
case a database organized in function of the types of en-
vironment is suitable. It allows to reduce the number of
classes, then decreasing the complexity of the problem
(i.e., in lunar environment the tree class is not looked
for, but the depression class “holes” is). Additionally
it is easier to profit from contextual information when
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the environment type is known. We propose this strat-
egy as enhancement of our method (Murrieta-Cid et al.,
2002).

We are also working in a more complete topological
representation of the environment in order to move the
robot along very large paths where the environment
can change significantly. Finally, this approach is being
modified to detect new specific entities such as country
roads. We also have the intention to apply this work in
agricultural tasks.
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