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Abstract— This paper addresses the problem of computing the control capabilities. The approach has also been exteraled t
motions of a robot observer in order to maintain visibility of maintain visibility of two targets using two mobile obserse
a moving target at a fixed surveillance distance. In this pape The problem of planning observer's motions to maintain

we deal specifically with the situation in which the observethas . ibility of . i t h ved d deal of
bounded velocity. We give necessary conditions for the exence V'SIPIIty OF @ moving target has received a good deal o

of a surveillance strategy and give an algorithm that geners ~attention in the motion planning community over the lastrgea
surveillance strategies. However, speeds of the observer and evader have never been

considered to establish a motion strategy. This is one of the
goals of this paper.

In this paper, we consider the surveillance problem of
maintaining visibility at a fixed distance of a mobile evader
(the target) using a mobile robot equipped with sensors (theThe target and the observer are represented as points.
observer), in a workspace containing obstacles. The environment where they are moving is modeled as a

A great deal of previous research exists in the area of purspolygon. The visibility between the target and the observer
and evasion, particularly in the area of dynamics and cantris represented as a line segment and it is called the rod. This
This past work typically does not take into account constgi rod is emulating the visual sensor capabilities of the oleser
imposed on observer motion due to the existence of obstacle#t is assumed that the delay between the target's motion and
in the workspace, nor visibility constraints that arise dae the observer’s is zero. This means that the observer cah reac
occlusion. In this paper, we focus on these often neglectimdmediately to a target motion.
geometric aspects of the problem. The target moves continuously, its global trajectory is un-

In this paper we consider the case for which the obserdarown but its maximal speed is known and bounded. We
has bounded velocity, but can react instantaneously toegvadre assuming a feedback control scheme where the target
motion (i.e., there is no delay in either the sensing or thelocity is measured (or reported) without delay. The obeer
control system). In our previous research, we have cormiders limited to move with bounded speed. Other than this, no
variations in which there is neither delay nor velocity bdsin kinematic nor dynamic constraints are imposed on the observ
for the observer [11], and in which there is delay, but ther the target motions.
observer velocity is not bounded [12]. In those cases, ak wel The target can defeat the observer by hiding behind an
as in the case we consider here, we are able to expressdhstacle (breaking the rod with a vertex), by making the
constraints on the observer dynamics (i.e., delay and iglocmbserver collide with and obstacle (a segment or a vertex)
bounds) geometrically, as a function of the geometry of th@ by preventing the observer from being at the required fixed
workspace and the surveillance distance. distance.

, This paper focus on computing the motions of a robot
A. Previous Work observer in order to maintain visibility at a fixed distandeio

Previous works have studied the motion planning problemoving target. This problem is analogous to the path plannin
for target tracking. Game theory [3] is proposed in [6] as groblem of a moving rod in the plane [15]. The end points of
framework to formulate the tracking problem and an onlingne rod represent the observer and evader. The rod repsesent
algorithm is presented. the visibility constraints. Violation of the visibility ewstraint

In [4], a tracking algorithm is presented that operates lmorresponds to collision of the rod with an obstacle in the
maximizing the probability of future visibility of the tae. environment. The target controls the rod origin y) and the
This algorithm is also studied with more formalism in [6]observer controls the rod’s orientati@rand must compensate
The approach presented in [10] computes a motion strateé@ymaintain a fixed rod lengtfss.
by maximizing theshortest distance to escape —the shortest
distance the target needs to move in order to escape the
observer’s visibility region. This planner has been indétgd We represent the observer and evader as points in the plane.
and tested in a robot system that includes perceptual dndorder to maintain surveillance at a fixed distance, it is

I. INTRODUCTION

Il. PROBLEM DEFINITION

IIl. PROBLEM MODELING



necessary that the line segment connecting the pursuer &ndposition 1: If 3 R such that all its corresponding cells;
evader be maintained at a fixed length, and that this liaee escapable, then there does not exist a surveillanteggtra
segment not intersect any obstacle in the environment (tiitss the given environment.

would result in occlusion of the evader). In this form, th@he proof for this proposition is given in [11].

surveillance problem shares many features with the tamdti ~ The second condition for the existence of a solution is
robot motion planning problem of of moving a rod in theelated to the bounded observer velocity. We first define an
plane. To solve this problem, Schwartz and Sharir represegtape point:

t_he robot's configuration spac€, by a cellular dec0mPOSI- Definition 2: An escape point is a point on a critical curve
representation of the workspace [15]. Here, we extend thi§rve bounding an obstacle region (see figure 5).

representation to solve our surveillance problem. An interesting, especial case of escape points correspond t
For a rod moving in the plane, the configuration space cagfiex vertices (those with interior angle larger thanof the

be represented a& = R? x S, and the workspace can benolygonal workspace.

represented b§R?. The representation introduced in [15] and Merely reaching an escape point does not guarantee that the

further d_e_veloped in [2] is defm_ed implicitly, in te_rms of 8gyader can escape the surveillance. An escape point is & poin
set of critical curves. These critical curves comprise &€ S50 which the evader may escape fmme set of observer
of points at .which the structure of the configuration Spa(if'ositions (i.e., for some set of configuratios, y, 8) of the
obstacle region above the xy-plane undergoes a qualitatiiey Thys, when the evader nears an escape point, the ebserv

change. Indeed, when such a curve is crossed, either thé st 0 ke action to ensure future visibility of the evadércs
configuration space obstacle faces that are intersectediiy a o opserver has bounded velocity, it must react before the

perpendicular to the xy-plane at the current position Cbangescape point is reached by the evader

or the number of intersection points changes [7]. We denote byL*(z,y,0) the minimal distance from an
The critical curves partition the plane into a set of nor-1crit'escaloe point such tha’t if the evader is further thafe, y, 6)

ical regions, and this partition induces a cylindrical d®€o ., the escape point, the observer will have sufficient time
position onC. In particular, above any noncritical region in, .ot and prevent escape. Thus, it is only when the evader
the plane, there will be a set of simply connected cells, eafg"nearer tharL*(z, y,8) to an escape point that the observer
of which lies either entirely in the free configuration space must take special ’ca’lre.

entirely within the configuration space obstacle regionisTh

. . Proposition 2: If there exists an escape point, such that
cellular decomposition can be represented by a connectivj P pe point,

i the distance from evader tp is less thanlL*(x,y,0), the
graph, G, whose vertices correspond to free cells, such tha d the surveillance. The proposition fellow
two vertices are connected by an edge when the correspon(ﬁxa er can escape L y brop
. |mﬁwed|ately from the definition ofL*(x,y, 6). If the target
cells are adjacent. : . : .
is exactly atL*(z,y,6) distance from the an escape point,
it signals the observer to start the rotation around theetarg
before it is too late.
The distancel*(x, y,0) has to be computed based on: the
In this section, we describe three necessary conditions figometry of the environment, the initial location of the éena
the existence of a surveillance strategy. x,y, and on the relative configurations of the observer and
Central to our approach is the notion of estapable cell evadert, the final rod configuration that avoid the evader to
in the decomposition of the free configuration space desdribescape and, the maximal observer and evader speeds. An upper
above. bound of L*(x,y, #), that we callL(x,y,0), is explained in
Definition 1: For cell K C C above regionR c ®2, if 3 detail in section V-B.
R’ adjacent toR such that there is not &’ adjacent tok’  Corollary: Because of the bounded velocity the existence of
projecting ontoR’ then cell K is an escapable cell. a solution will always depend on the initial rod configuratio
If the configuration of the rod lies in an escapable cel{Position and orientation), even in an environment without
then the evader can escape by merely moving into the regRtfapable cells.
R’ in the definition above. Since there is no free cell that Because of the bounded velocity, there are situations when
projects ontoR’, there is no admissible position from whichthe observer is not able to determine a motion that guarantee
the observer can view the evader at the desired surveillai@ehave the target in sight, this is another condition for the
distance. existence of a solution. We call this condition no deterrbiaa
To determine the existence of a surveillance strategy, Weotion for a single pursuer.
recursively eliminate escapable cells from the connegtiviProposition 3: If there are two or more escape points at
graph,G, until either no cellK is eliminated (the condition is L*(x, y, #) distance from the evader a solution does not exist.
satisfied) or all the celld(; corresponding to a single regionProof of proposition 3: The evader can move to any of the
R are eliminated (the condition is not satisfied). This is thescapable points d*(x,y,#) distance from it. The observer
first condition to the existence of a solution. however can only choose one of them, therefore planning a

IV. CONDITIONS FOR SOLVING THE ESTABLISHED
PROBLEM



motion that ensures target visibility is not possitse. @ Target
An example of this situation is shown in figure 1. ® Observer
Rod
e  Target
L] Observer
Rod Hound curve
Needed bar configuration Needed bar configuration
for target motion 2 for target motion 1 ®--0--9----- ®-----° @----—--—-—---=-
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R o Fig. 2. The Tractrix curve
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Fig. 1. No determinable motion for a single pursuer L\

In these situations more than a single observer is required . Target V!
to guarantee target visibility. Note, that this conditi@nalso '
happen because of escape points that are on critical curves
associated to escapable cells.

V. THE MOTION STRATEGY

The target controls the rod origifx, y) and the observer
controls the rod’s orientatio® and must compensate to
maintain a fixed rod lengtliss. fixed distance, 2) the observer must travel with boundeddspee
There are 3 types of motion strategies: (1) the reactive matall times, 3) it also must move with saturated speed and 4)
tion »m used when the target is farther away frdifw, y,6) the observer motion must minimize the time to complete the
distance of an escape point, (2) the observer rotationabmotbar configuration change. Our proposed strategy has piepert
used when the evader is &{x,y, §) distance or closer from 1 through 3 but not necessarly 4. This means that it defines
any escape point, (3) the compliant motion, used when the rad upper bound on the computationiof(z, y, §) that we call
is in contact with an obstacle. L(z,y,0).
The motion strategy in this case consists in applying the
same velocity vector to the observer as the one that thettarge

At all times the observer must move to a position thgyplies and an additional vector to get a observer rotation
respects the fixed sensor range. In the free space, thereenay@und the target.

many positions that sgtisfy such a constraint. Fpr instattce  This motion can be expressed inug, uy basis.
move the observer with exactly the same velocity vector that

the target is using. We call this movement the reactive motio V. =Vu, + (wLss)up

rm.

Other motion strategy consists in moving the observer in The vector applied to the observer can be expressed also
the direction of the target. This moves the observer ae kit in the x-y basis by defining the x axes as the one where the
possible. If the evader is moving in straight line the observtarget is moving along (see figure 3).
motion can be expressed by the Tractrix curve [9], [8] (also - ~ o
called hound curve, see figure 2). Its parametric equations, Vo = (Vi + Lssw cos )X + wLss sin 0y
which determine the observer position, are:

Fig. 3. Observer rotational motion around the target

A. Observer reactive motion

If the target is atL(x,y,0) distance from the any escape

o) = t — tanh t: yo(t) = 1 point. and the target is antagonist then an observer motion
e cosht requires to saturate the observer speed. The observeris con
strained to be at a constant distance from the tarhet (hust
B. Observer rotational motion to avoid evader escaping be constant), therefore to saturate the total observedspee

When the target is aL*(z,y,0) distance or closer to anangular speed must vary.
escape point the observer must do a rotational motion around his observer motion is tracing a curve similar to a cycloid.
the target in order to reach a position that satisfies vigibil The cycloid is the locus of a point on the rim of a circle
constraints. of constant radius rolling along a straight line. Howevag t
The computation ofL*(z,y,6) requieres an optimal ob- cycloid is traced by a wheel (or rod) that is turning to unifor
server motion. This observer motion strategy needs to haaegular speed. In our case the angular speed of the turnihg ro
some properties: 1) it must maintain the target at the regdie varies.



The magnitude of/, is obtained by usind., norm. Ly =
VXE4+ X2+ + X2

IVoll = v/ (Vi + wLss cos0)2 + (wLss sin #)2
Squaring in both sizes:
Vo? = Vi 4+ 2VwLss cos @ + Lss*w? (sin? § + cos? 6)
Rearranging the equation:
Lss?w? + 2VywLsscosf + V2 —V,2 =0

Solution to an algebraic equation of second ordef +
br + ¢ =0 is given by:z = =bEvP"—dac thys;

—2V,Lsscosf + \/4Vt2L552 cos? @ — 4Lss*(V,2 — V,%)

w =

2Lss?
Rearranging the equation:

B +/Vy?2 — V;%sin? 0 — V, cos b

Lss

w

is used to defined a form solution denoted BYy|m] [1].
Where m = k? is called the parameter [1]. This solution
E[¢|m] is implemented in Mathematica [9].

Thus, the time required by the observer to make the rota-
tional motion is defined by:

LssVp LssVy . o,
2 2 p) 5 sin b
Vo' =V, Vo' = Vi 0
In order to maintain target visibility, the time taken foreth

target to reach the escape point cannot be smaller than
t = Lz9) therefore.

Vi
_ LssV;

This type of motion will be finished either when the
observer brings the rod to a configuration that avoids an
escapable cell (see figure 8), when the observer reaches
and aspect graph line [14] (also curve type 3 of the cell
decomposition for ladder motion planning [15]) associdted
a reflex vertex (see figure 7) or, when the observer is able to

E[glm] +

¢
tly’ =

L(z,,0) VoE[8lm) + Visino]y/ |

The variation of the observer angular speed (angular acc@l?Ve the rod in contact with an obstacle.

eration) can be expressed using the chain rule.
dw  dwdf do

dw  dw do

Note that the observer can perform a rotational motion
around the target and maintain the fixed distance form ity onl
if its speed is strictly greater that the target speed.

C. Observer compliant motion

If a reactive motionrm would cause the rod to collide,
the observer must rotate the minimum angle that makes the

It is necessary to solve the next integral to obtain the timied be in a collision free configuration (while keeping the ro

required to make the observer rotational motion.

configuration in a non escapable cell).

This time is function of the given target and observer speeds There are two general cases for the previous condition

the initial and final rod configuratio,, ¢, and the constant

length of the rodLss.
de

ty O
/ dt = Lss
to 0 VVo? — Vi%sin% 0 — V, cos 6

Multiplying by the conjugate:

ty 05
/ dt = Lss/ df C
to 0o V' Vo?—Vi%sin?0 — V; cos 0

Where
- v/ Vo? — Vi?sin? 0 + V; cos 6
v/ Vo? — Vi?%sin? 0 + Vi cos 0

Rearranging the equation:

4 Lss
/ =5z
to O t

0

of second kind, withk = &

vol

k is the elliptic module.

¢ [
{Vo / V1 — k2sin? 0d6 + V; / cos 9d9}
0 )

Wheref“b V1 — k2sin? #d# is the incomplete elliptic integral
corresponding to a sector of the
arc length of an ellipse. Wherg is called the amplitude and

« The observer is forced onto an obstacle. In this case it
must move along the boundary of the obstacle region (this
is the minimal rotation that keeps the rod lats). The
velocity vector that the observer must applied to stay in
contact with the line segment is (see figure 4):

Vo =V tang + Vi

where
Vie = Vi cosO; Vi = Visinf

e Observer
e Target

,,,,, &
2] Line parallel to the obstacle

Vo=Vty Tang+Viy

Vix = Vt Cos
Viy = \; Sin®
Obstacle

A solution to the incomplete elliptic integral of the second

kind cannot be expressed by elementary funcfipastually it

1There is a controversy about whether or not a function espisis an

integral is a closed form solution.

Fig. 4. Motion in contact with a segment

« Therod is in contact with a vertex. Note that if the evader
is farther away fromL*(x, y, ) distance of the escapable



point then this motion is possible, the strategy to achieve T =
this motion is as follows. The observer must rotate away o |
form the vertex to keep sight of the target. To get a Pl e o
minimal observer motion the rod must stay in contact R [ R | Rw
with the vertex. The velocity vectors that the target must =
P \(W‘ESH) H’W (RrELEs \221:2:‘1; (R15,E4,E3)
R8,E3,E1) R8,E1,E3) ,E3, ,E4,|
' Observer ((EEE; :R&El,ES; ‘((RQ‘EZ‘El)j [(ROE3E2] (R16E3E3)
o Target (R3.ELE2) (R3E2EL)] :Eii,:,g\(Rlo,Ea,Ed) [R17,E2,E3] (R17.E3,E2)
(R4ELE2) 2E1, (R18,E2,E3)
Vo | = (R12,E3,E1) [(R12,ELES)
o@\ ((:Zt?:)) (R13E1E3)[(R13,E2E1)
It
obsacte Vis‘/wﬁ\viwss (RO‘E4‘E‘1)* (R1,E4,E1) (R2,E1,E1) (R3,E1,E2)— (R4,ELE2)
’ vta (R6,E3,E1) I ' r(RlD,ELE3)j
(RS,EI’:E]) ‘(!{7,53,51) (R9,E1,E3) (R11,E1,E3)
L(Rlz,Ez,El)J ' L(R13.E1,E3) J

(R14,E3 E4)——(R15,E3,E4) —— (R16,E3,E3)

(R17,E2,E3)— (R18,E2,E3)

Fig. 5. Motion in contact with a reflex vertex

applied to stay in contact with the vertex are: Fig. 6. Rectangle

Vo ||= VicosO; V, L= V;sin6
The first example consists in a polygon (rectangle) having
two parallel segments smaller than the rod length, as show in

T 1.2 figure 6.
_ 2 2. _ bo 202
IVell = \/ Vo Il + Vo L5 Vo]l = Vt\/l + <zt2 1> A T rectangle has two parallel segments smaller that 2 times

the rod length. There are 18 regions in the xy-plane and 32
In these two cases the rod will show a compliant motion. cells in the configuration space. The rule used to detect non
escapable cells is recursively applied to all the cells| ki
the cells corresponding to a single region are eliminatedl R
The solution is based on two sets of critical curves, the firggctangles indicate the escapable cells. The graph in theefig
one atLss distance (the fixed distance) is used to determirly contains the cells after elimination of escapablescell
the escapable cells. The region 8 is not in the graph. If the target is in region 8,
The second set of curves must be definedLatz,y,6) it can leave the region and bring the rod toward an adjacent
distance from the escape point which corresponds to thetwdgion (i.e region 9) that does not have a cell adjacent to the
case and determines the last moment when the observer nfi@gtconfiguration in region 8. Therefore, a solution does not
start the rotational motion to avoid that the target escapesist.
through the escape point. Remember that, from definition 2,The second example shows a convex corner (see figure 7).
an escape point can be either a point on a critical curiidis example is used to illustrate a pursuit when the target
that bounds an escapable cell or a point on a critical curtrées to escape around convex corners and how the observer
bounding a obstacle region. Sindé€ (z,y,0) is a function avoids loosing sight in these cases. It is assumed thatiiet ta
of the rod configuration, this second set of curves will beill be antagonist, therefore, it will move along the bounda
dynamic, that is, it will get closer or farther form the defigi of the obstacle region. There are 6 regions on the xy-plane
first set of critical curves or obstacles as the rod configumat and also 6 cells in the configuration space. In this case, the
changes. Note that target escaping means that it is abougtaph representing the polygon contains all the regions on
hide behind an obstacle or about to confine the observer ottie xy-plane. Therefore, a solution exists for some inital
the obstacle region (brining the rod in an escapable cell) configuration.
breaking the rod with an obstacle region. Let us assume that the target is antagonist and is moving
The existence of a solution depends on the initial rooh the boundary of the obstacle. Let us also assume that the
configuration. Given this configuration, a firdt*(z,y,0) target and observer start moving Rb.
can be computed and it can be determined if the target iswhen the target is af*(xz,y, 0) distance from the reflex
closer or farther thail*(z, y, §) from the escape point which vertex (escape point) the observer must do a rotation @dste

Where

VI. A WORST CASE SOLUTION

corresponds to the worst case. of just a simple reactive motion). The observer could choose
to go to anywhere ink3. The shorter rotation in this case is
VII. EXAMPLES moving to just to the border aR3.

In all the examples, the edges are denotedEhyand the  Figure 8 shows the example of a non-convex corner. This
vertices byV;. The red rectangle indicates the escapable celggample illustrates a compliant motion and how the observer
The set of critical curves defined dtss distance from the keeps the rod configuration outside an escapable cell.
obstacles are in red. The second set of critical curves are imAfter elimination of the escapable cell, there are 5 regions
purple. on the xy-plane and 6 cells in the configuration space. The
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graph representing the polygon contains all the region$en t o ) .
xy-plane, then a solution exists for certain initial configu ~ AS future work, we plan on finding the optimal motion

tions. to define L*(x,y,0). In this work, it is assumed that the
Let us assume that the target moves along the followif§lay between the target and the observer motions is zero.
path: The target starts iR0 while the observer is ifR1; then This assumption was done to simplify the analysis, and bette

the target moves towardg1 and finally, when it is close to Understand the problem. However, in order to get a more
E1 it changes direction and moves towar8€. Obviously, realistic model, considerable delay must be taken intowmtco

our algorithm does not know this information in advanceg(thive would also like to find a solution for the case of both delay
is for illustration purposes only). and bounded observer speed.
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