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Abstract. We propose a framework for reactive motion and sensing
planning based on critical events. A critical event amounts to crossing a
critical curve, which divides the environment. We have applied our ap-
proach to two different problems: i) object finding and ii) pursuit-evasion.
We claim that the proposed framework is in general useful for reactive
motion planning based on information provided by sensors. We generalize
and formalize the approach and suggest other possible applications.

1 Introduction

We propose a framework for reactive motion and sensing planning based on
critical events. A critical event amounts to crossing a critical curve, which divides
the environment. We work at the frontiers of computational geometry algorithms
and control algorithms. The originality and the strength of this project is to bring
both issues together.

We divide the environment in finitely many parts, using a discretization func-
tion which takes as input sensor information. Thus, in our approach, planning
corresponds to switching among a finite number of control actions considering
sensor input. This approach naturally allows us to deal with obstacles.

We have applied our approach to several different problems, here for lack
of space we only present two: i) object finding and ii) pursuit-evasion. In ob-
ject finding, our approach produces a continuous path, which is optimal in that
it minimizes the expected time taken to find the object. In pursuit-evasion,
we have dealt with computing the motions of a mobile robot pursuer in or-
der to maintain visibility of a moving evader in an environment with
obstacles.

Our solutions to these two problems have been published elsewhere. In this
paper we show that these solutions actually rely on the same general framework.
We claim that the proposed framework is in general useful for reactive motion
planning based on information provided by sensors. We generalize and formalize
the approach and suggest other possible applications.
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2 A General Framework

The crux of our approach consists of relating critical events with both the con-
trols to be applied on the robot and the robot environment representation. A
critical event signals that the robot has crossed a critical curve drawn on the
robot workspace, W. It corresponds to changes in the sensors information read-
ings, driving our algorithms.

We use C and U to respectively denote the robot configuration space and the
robot control space (velocity vectors applied to the robot). P C Cx U, the robot
phase space, is the cross product of C and U. Critical curves are projections on
the workspace of P. This means that even if a configuration is valid to accomplish
a task, it may not be valid due to the velocity related with that configuration.
Hence, the critical curves may change their location according to a given robot
velocity.

Let Y denote the observation space, which corresponds to all possible sen-
sor readings. The robot state space is X C C x E, in which F is the set of
all possible environments where the robot might be [12]. Evidently, there is a
relation between the robot state x(t) and the robot observation state y(¢) which
is a function of time. Thus, y(t) = h(z(t)), where y € Y and z € X. The robot
information state is defined as i: = (ug,...,Ut—1,Yo,---,Yt). i+ is the history
of all sensor readings up to time ¢ and all controls that have been applied to
the robot up to time ¢ — 1 [2]. The information space I is defined as the set of
all possibles information states [I2]. We underline that the critical events and
the robot objective lie over I. That is, a robot objective amounts to achieving
a specific task defined on the information state. Two example robot objectives
are maintaining visibility of a moving evader and reaching a robot configuration
given in terms of a specific robot sensor reading.

Critical events may be of several types. A type of critical event is systemati-
cally associated to a type of control. Mainly, to accomplish a robotic task means
to answer the following question: what control should be applied on the robot
given some i;7. Thus, planning corresponds to a discrete mapping ce : iy — u
between ¢; and wu, triggered by the critical event ce. The output controls cor-
respond to at the very worst case locally optimal polices that solve the robotic
task.

Note that instead of using the robot state space, X, we use the critical events
to make a decision on control should be applied. ce actually encodes the most
relevant information on X. In addition, it relates observations with the best
control that can be applied. ce is built using local information but, if necessary,
it may involve global one.

We want to use our framework to generate, whenever possible, optimal con-
trols to accomplish a robotic task. As mentioned earlier, planning corresponds
to relate a critical events with a control. However, some problems may be his-
tory dependent. That means that the performance of a control to be applied not
only depends on the current action and a sensor reading, but it also depends on
all previous sensor readings and their associated controls. In history dependent
problems, the concatenation of locally optimal controls triggered by independent
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critical events does not necessarily generate a globally optimal solution. For in-
stance, we have shown that object finding is history dependent and moreover
NP-hard.

To deal with history dependent problems, we have proposed a two layer
approach. The high level, combinatoric layer attempts to find a “suitable” order
of reaching critical events. The low level, continuous layer takes an ordering input
by the upper one and finds how to best visit the regions defined by critical curves.
This decoupling approach makes the problem tractable, but at the expense of
missing global optimality. For the combinatorial level, we have proposed to use
a wutility function based heuristic, given as the ratio of a gain over a cost. This
utility function is used to drive a greedy algorithm in a reduced search space
that is able to explore several steps ahead but without evaluating all possibles
combinations.

In no history dependent problems, such as finding a minimal length path in
an environment without holes [I1], the Bellman’s principle of optimality holds
and thus the concatenation of locally optimal paths will result in a globally
optimal one. The navigation approach presented in [I1] is also based on critical
events. But, differently to the ones presented in this paper, it is based on closed
loop sensor feed-back.

3 Object Finding

We have used critical events to finding time optimal search paths in known
environments. In particular, we have searched a known environment for an object
whose unknown location is characterized by a known probability density function
(pdf).

In this problem, we deal with continuous sensing in a continuous space. We
assume that the robot is sensing the environment as it moves. A continuous
trajectory is said to cover [9] a polygon P if each point p € P is visible from
some point along the trajectory. Any trajectory that covers a simple (without
holes) polygon must visit each subset of the polygon that is bounded by the
aspect graph lines associated to non-convex vertices of the polygon.

We call the area bounded by these aspect graph lines the corner guard regions.
A continuous trajectory that covers a simple polygon needs to have at least one
point inside the region associated to “outlying” non-convex vertices (non-convex
vertices in polygon ears), like A and C in Fig.[Ila). Since these points need to be
connected with a continuous path, a covering trajectory will cross all the other
corner guard regions, like the one associated to vertex B.

Since a continuous trajectory needs to visit all the corner guard regions, it is
important to decide in which order they are to be visited. The problem can be
abstracted to finding an specific order of visiting nodes in a graph that minimizes
the expected value of time to find an object. [6] shows that the discrete version
of this problem is NP-hard. For this reason, to generate continuous trajectories
we propose an approach with two layers that solve specific parts of the problem.
This one is described below (see B.4).
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3.1 Continuous Sensing in the Base Case

The simplest case for a continuous sensing robot is that shown in Fig. [ b).
Then, the robot has to move around a non-convex vertex (corner) to explore the
unseen area A’. For now, we assume that this is the only unseen portion of the
environment.

As the robot follows any given trajectory S, it will sense new portions of
the environment. The rate at which new environment is seen determines the ex-
pected value of the time required to find the object along that route. In partic-
ular, consider the following definition of expectation for a non-negative random
variable [5]:

E[T|S] = /Ooo P(T > 1) dt. (1)

3.2 Expected Value of Time Along any Trajectory

In the simple environment shown in Fig.[Ilb) the robot’s trajectory is expressed
as a function in polar coordinates with the origin on the non-convex vertex. We
assume that the robot will have a starting position such that its line of sight will
only sweep the horizontal edge F;. As mentioned before, the expected value of
the time to find an object depends on the area A’ not yet seen by the robot.
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Fig. 1. a) convex corners b) base case

Assuming that the probability density function of the object’s location over
the environment is constant, the probability of not having seen the object at

time ¢ is
A't) Q,”°
A 24 tan(0(t))’

where A is the area of the whole environment (for more details, see [7]) . Note
that the reference frame used to define the equation [2is local. It is defined with

P(T >t) = (2)
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respect to the reflex vertex (this with interior angle larger than x). From ()

and (@),

Qy2 ty dt
EITIS) = ﬂ/o tan (0(¢)) 3)

Equation (@) is useful for calculating the expected value of the time to find an
object given a robot trajectory S expressed as a parametric function 6(t).

3.3 Minimization Using Calculus of Variations

The Calculus of Variations [3] is a mathematical tool employed to find stationary
values (usually a minimum or a maximum) of integrals of the form

b
I :/ F(x,y,y) dx, (4)

where z and y are the independent and dependent variables respectively.
The integral in (@) has a stationary value if and only if the Euler-Lagrange

equation is satisfied,
Fd F
oF _d (ory ®
oy dx \ 0y

It is possible to express the differential of time as a function of a differential
of #. This will allow us to rewrite the parametric equation as a function in which
# and r are the independent and dependent variables respectively, The resulting
equation is as follows:

_Q_y2 o 1 2 2%
E[T|S) = 2% N (r +r) dé. (6)

To find stationary values of (@), we use {l) with x = 6, y = r and F =
1

1
tan 6

linear differential equation,

2r'? 2 3
1 /
= - — . 7
mer r + sin(26) (T + 7‘2> @

This equation describes the route to move around a non-convex vertex (corner)
to search the area on the other side optimally (according to the expected value
of time). We have solved equation ({l) numerically using an adaptive step-size
Runge-Kutta method. The Runge-Kutta algorithm has been coupled with a
globally convergent Newton-Raphson method [7].

(r’ 24 r2) ® . After simplification, this yields the following second order non-
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3.4 Choosing an Ordering of Regions

To cover a simple polygon, it is sufficient that a trajectory visits at least one
point inside each corner guard region (as defined in section Bl associated to
reflex vertices of the polygon. The high level, combinatoric layer attempts to
find an ordering for the robot to visit these corner guard regions such that the
expected value of the time to find an object in the environment is reduced. Note
that the discretization defined with critical events is needed because the form
of the integral that define the expected value of the time may change according
to the shape of the region. To find a suitable ordering, we have defined a point
guard inside each corner guard region and used the approach of [6] for sensing
at specific locations. The algorithm yields an ordering for visiting corner guard
regions (associated to non-convex vertices) that attempts to reduce the expected
value of the time to find an object.

a) Expected time 136.9 b) Expected time 115.3

Fig. 2. a) concatenation of straight line paths b) concatenation of locally optimal paths

Once an ordering has been established, the lower level, continuous layer uses
the sequence of non-convex vertices to perform locally optimal motions around
each of them, thus generating a complete trajectory that covers the polygonal
environment. We know that any trajectory generated in this fashion will not be
globally optimal in the general case. The main reason of lacking global optimal-
ity is that any partition of the problem into locally optimal portions does not
guarantee global optimality (Bellman’s principle of optimality does not apply).
However, through simulation experiments, we have found that the quality of the
routes generated by our algorithm is close to the optimal solutions (more details
can be found in [6] and [7]).

Figure [2 shows two routes for exploring the environment. The first one, 2 a),
is composed by straight lines. The second one, 2Ib), is based on the concatenation
of locally optimal path generated through an appropriate ordering of reaching
critical events defined with our approach. The path generated with our approach
produces a smaller average time to find the object. Note that a zig-zag motion is
not necessarily bad because a good trajectory must find a compromise between
advancing to the next guard and sensing a larger portion of the environment as
soon as possible.
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4 Pursuit-Evasion

In this section, we consider the surveillance problem of maintaining visibility at
a fixed distance of a mobile evader (the target) using a mobile robot equipped
with sensors (the observer).

We address the problem of maintaining visibility of the target in the pres-
ence of obstacles. We assume that obstacles produce both motion and visibility
constraints. We consider that both the observer and the target have bounded
velocity. We assume that the pursuer can react instantaneously to evader mo-
tion. The wvisibility between the target and the observer is represented as a line
segment and it is called the rod (or bar). This rod is emulating the visual sensor
capabilities of the observer. The constant rod length is modeling a fixed sensor
range.

This problem has at least two important aspects. The first one is to find
an optimal motion for the target to escape and symmetrically to determine the
optimal strategy for the observer to always maintain visibility of the evader.
The second aspect is to determine the necessary and sufficient conditions for
the existence of a solution. In this section, we address the first aspect of the
problem. That is, to determine the optimal motion strategy, which corresponds
to define how the evader and pursuer should move. We have numerically found
which are the optimal controls (velocity vectors) that the target has to apply to
escape observer surveillance. We have also found which are the optimal controls
that the observer must apply to prevent the escape of the target.

4.1 Geometric Modeling

We have expressed the constraints on the observer dynamics (velocity bounds
and kinematics constraints) geometrically, as a function of the geometry of the
workspace and the surveillance distance. Our approach consists in partitioning
the phase space P and the workspace in non-critical regions separated by critical
curves. These critical curves define all possible types of contacts of the rod
with the obstacles [§]. These curves bound forbidden rod configurations. These
rod configurations are forbidden either because they generate a violation of the
visibility constraint (corresponding to a collision of the rod with an obstacle
in the environment) or because they require the observer to move with speed
greater than its maximum.

In order to avoid a forbidden rod configuration, the pursuer must change the
rod configuration to prevent the target to escape. We call this pursuer motion
the rotational motion. If the observer has bounded speed then the rotational
motion has to be started far enough for any forbidden rod configuration. The
pursuer must have enough time to change the rod configuration before the evader
brings the rod to a forbidden one. There are critical events that tell the pursuer
to start changing the rod configuration before it is too late. We have defined an
escape point as a point on a critical curve bounding forbidden rod configuration
sets (escapable cells), or a point in a region bounding an obstacle. This region
is bounding either a reflex vertex or a segment of the polygonal workspace. We
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use D* to denote the distance from an escape point such that, if the evader is
further than D* from the escape point, the observer will have sufficient time to
react and prevent escape. Thus, it is only when the evader is nearer than D*
to an escape point that the observer must take special care. Thus, the critical
events are to D* distance from the escape points.

4.2 Optimal Target and Observer Motions

Thus, the optimal control problem is to determine D*. We solve it using the
Pontryagin’s minimum principle with free terminal time [I].

Take the global Cartesian axis to be defined such that the origin is the target’s
initial position, and the x-axis is the line connecting the target’s initial position
and the escape point. Note that the reference frame is local. It is defined with
respect to the escape point. The target and observer velocities are saturated at
Vi and V,, respectively, and because the rod length must be fixed at all times, the
relative velocity V,; must be perpendicular to the rod. This information yields
the following velocity vector diagram (see figure [ a) ). € is the angle between
the rod and x axis, a represents the direction of the evader velocity vector used
to escape. The rate of change of 6 can be found to be [4]:

o Vot —Visin(a+0) £ \/Vo2 — Vi® cos?(a + )
dt — L L (8)

Because the boundary conditions of the geometry are defined in terms of x, a
more useful derivative would be:

dd  df,dz._, —Rsin(a+0)+/1— R?cos?(a+0)
dt

Vi
= h =—x<1
) LRcos(«) Where R Vs <

9)

o= ar

Observer Path

Theta Minimizing Cuva (Perodic)

a) Velocity vector diagram b) Optimal pursuer and evader paths

Fig. 3. Pursuit-evasion
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Fig. 4. The evader tries to confine the pursuer in a corner

The optimal path for the target can be defined as follows: Find for a given
initial rod angle 6y, the distance D* to an escape point x; such that the final
rod configuration is at a specified final angle #; and the corresponding target
motion a(x), z € [0, z1].

The natural representation would be:

dd  —Rsin(a+60) £ /1 — R?cos?(a+6) dy B
@7 LRCOS(Oé) *fl %*‘/ttana*fé (10)
0(0) = 0o, 0(w1) = 61,y(0) = y(1) =0 (11)

To maximize 1, the appropriate cost function is:

V/Ozldx (12)

The minimum principle establishes:
u(x) = argmin H(x*(t),p(t),u,t)

H=1+p"f, p=-V.H

Where p is the co-state vector, H the system Hamiltonian, [ the cost function,
f the function state and wu(*) the optimal control. The optimal control problem
can be stated using 4 conditions:

1. There exists two functions of z,p; and ps such that o* = argmin[pi f1 +
p2fa — 1] is satisfied pointwise for all .

2. The state vector satisfies the state equations and 4 boundary conditions
above.

3. The final value x; satisfies p1(z1)f1(x1) + p2(z1) f2(z1) — 1 =0.

4. The state equations for are given by:



Reactive Motion and Sensing Planning 999

Rcos(a+0) + R? cos(a+0) sin(at0)

dp1 of1 V/1—RZ cos? (a+0)
dx 00 b1 LR cos b1 (13)
d 0
% = —%;p =0 — pa(x) =p2 (constant) (14)
If we set ps to zero, the minimization condition 1 simplifies to
. 0 of1
(z) = -1 — —1]=0 — =0 15
a*(x) = argminlpifi + paf2 — 1] — 9 [p1f1—1] ~ 3 (15)

In the case when the escape condition (critical event) is defined by a straight
line (such as when the evader tries to run the pursuer into a wall, see figure
M), a strategy to generate the solution to the boundary value problem is as
follows. Generate the §-Minimizing Curve by integrating the observer and target
positions forward in z, choosing the minimizer a* at every step Ax. Select two
points on the curve and let the line through them represent the new x-axis.
The two points can be chosen so that the initial and final angle conditions are
satisfied (as measured with respect to the new z-axis), and the optimal path
is then the section of the #-Minimizing Curve connecting the two points. The
distance between the two points is z1, the critical distance D* to the escape
point.

Note that the optimal path for the evader to escape is not a straight line (see
figure B b). This happens because of the kinematic constraints (bounded speeds
and fixed surveillance distance), there is a trade-off between minimizing the time
taken for the target to reach the escape point and maximizing the time taken
for the observer to change the rod configuration. Therefore, the optimal target
path is the one that minimizes the amount of angle that the observer can make
in its rotation up until the target reaches the escape point. Figure [ shows a
case when the evader tries to escape pursuer surveillance by confining it against
a wall in a concave corner. The critical curves are the dashed lines.

5 Discussion and Future Work

We proposed a framework for reactive motion and sensing planning based on
critical events. In this approach planning corresponds to associate critical events
with controls. The resulting controls correspond to locally optimal polices for his-
tory dependent problems and globally optimal polices for no history dependent
ones.

The techniques used to compute optimal paths are open loop methods. How-
ever, because of the manner we are using them, a global reference frame is not
required. The reference frames are local. For object finding the local reference
frame is fixed with respect to the reflex vertices. For pursuit evasion the local
reference frame is defined respect to escape points. Therefore, we can compute
the controls and resulting paths based on information obtained online directly
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from the sensors. The required information to compute the controls lies on the
information space 1.

We underline that there is a similarity between our approach and techniques
that have been reported in the literature to compute optimal paths to accomplish
robotic tasks. For instance in [10], an approach to compute minimal length paths
in the absence of obstacles for non-holonomic robots is presented. The optimal
paths correspond to the concatenation of locally optimal ones delimited by crit-
ical curves. Those critical curves correspond to the saturation on the admissible
robot controls. One important difference is that our robotic tasks are focused on
sensing the environment (sensing planning) and we can base our approach on
the critical events detected by the sensors.

For future work we want to consider uncertainty in both sensing and control.
We believe the use of local reference frames and robot motion planning based on
information obtained directly from sensors will result in a robust manner of deal-
ing with uncertainty. We also want to extent our approach to 3D environments.
A first effort in the research topic has been already published.
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