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This paper addresses a differential pursuit/evasion game. The players are an omnidirectional agent (OA)
and a differential drive robot (DDR). They move in an obstacle free environment, the DDR is faster than
the OA but it can only change its motion direction up to a bounded rate. First, we analyze the scenario
in which, the OA has as objective to capture a differential drive robot (DDR) in minimum time and the
DDR wants to retard the capture as long as possible. We present the time optimal motion primitives of
the players to achieve their goals. Later, combining the results obtained in this paper and the ones in
Ruiz et al. (2013), we allow the agents to change the roles, namely, the DDR is allowed to play as the
pursuer and the OA is allowed to play as the evader. This later analysis allows one to establish which
is the winner role for each agent, based only on the initial position of the players and their maximum
speed.
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1. Introduction

In previous work Jacobo et al. (2015); Ruiz et al. (2013), the authors have addressed, the problem
of capturing an omnidirectional agent (OA) using a differential drive robot (DDR) in an obstacle-
free environment. At the beginning of this game, the OA is at a distance L > l (the capture
distance) from the DDR pursuer. The goal of the OA evader was to keep the DDR pursuer farther
than this capture distance for as long as possible. The goal of the DDR pursuer was to capture
the OA as soon as possible. In Ruiz et al. (2013), the authors have proposed a partition of the
playing space into mutually disjoint regions where time optimal strategies of the players are well
established. The time-optimal strategies obtained in Ruiz et al. (2013) are in Nash equilibrium
and the proposed strategies are in open loop. Later, in Jacobo et al. (2015), the authors provided
a time-optimal control synthesis (state feedback optimal policy) for a DDR pursuer chasing the
OA. This later result was achieved by estimating the state of the evader based on images using the
1D trifocal tensor.

In this paper, we addressed first the symmetric problem, in which the agents exchange roles. Now
the OA is the pursuer and has as objective to capture the DDR in minimum time and the DDR
is the evader and wants to retard the capture as long as possible. Second, combining the results
obtained in this paper and the ones in Ruiz et al. (2013), we allow the agents to change the roles,
namely, the DDR is allowed to play as the pursuer and the OA is allowed to play as the evader.
This later analysis allows one to establish which is the winner role for each agent, based only on
the initial position of the players and their maximum speed. The time-optimal motion policies for
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both agents playing each one of the two possible roles are also provided.
The main differences between the work presented in reference Ruiz et al. (2013) and this work

are the following:

(1) The DDR and the OA switch their roles compared to Isaacs’s (Isaacs (1965)) and Ruiz’s
(Ruiz et al. (2013)) work. That is, the player that has higher speed and turning constraint
(DDR) becomes the evader, and the player that has lower speed but can have an abrupt
change on its travel direction (OA) becomes the pursuer.

(2) In this work, the winner role for each agent is found. That is, before the game starts we
can establish whether the DDR shall win or loss playing as pursuer (w.r.t. an OA playing as
evader) or as evader (w.r.t an OA playing as pursuer). An analogous result is established for
the OA. This is achieved based only on the maximum speed of each player and their initial
positions over the reduced space. To solve the decision problem of obtaining the winning role
for each agent, the results obtained in this paper are combined with the ones obtained in
Ruiz et al. (2013). Note that the solution to the decision problem of finding the winner role
for each agent has not been presented in Ruiz et al. (2013), since in that work, the case of
a DDR playing as evader and an OA playing as pursuer was not considered.

2. Related work

The problem addressed in this paper is related to pursuit/evasion games. A pursuit-evasion game
can be defined in several ways. One variant considers one or more pursuers, which are given the
task of finding an evader in an environment with obstacles Guibas et al. (1999); Hollinger et al.
(2009); Isler et al. (2005); Tovar & LaValle (2008); Vidal et al. (2002). A recent survey of this kind
of problem is presented in Chung et al. (2011). Other variant consists in maintaining visibility
of a moving evader also in an environment with obstacles Bhattacharya & Hutchinson (2010);
Bandyopadhyay et al. (2007); Jung & Sukhatme (2002); Murrieta et al. (2007); LaValle et al.
(1997); O’Kane (2008).

A third variant of pursuit-evasion problem consists in giving to the pursuer the goal to capture
the evader Isaacs (1965), that is, move to a contact configuration, or closer than a given distance.
The work presented in this paper corresponds to this third variant. There is a great deal of work
related to this variant, particularly in the dynamics and control area Başar & Olsder (1999); Isaacs
(1965), where optimal control is a recurrent used approach address this kind of problems, most
of the work takes place in the free space (without obstacles). A classic example of this kind of
problems is the homicidal Chauffeur problem Isaacs (1965); Merz (1971). Other related problems
are the lady in the lake Başar & Olsder (1999) and the lion and the man Flynn (1974); Karnad
et al . (2009).

In the homicidal chauffeur problem Isaacs (1965); Merz (1971), a faster pursuer (w.r.t. the
evader) has as its goal to get closer than a given constant distance (the capture condition) from
a slower but more agile evader. The evader aims to avoid the capture condition. The pursuer is
a nonholonomic system with a minimal turning radius, while the evader is a holonomic (omnidi-
rectional) agent. The game takes place in the Euclidean plane without obstacles. In the lady in
the lake problem Başar & Olsder (1999), there is a circular lake where a lady is swimming with
a maximum speed vl, and there is a man that is in the side of the lake and runs along the shore
with a maximum speed vm; the man cannot enter the lake and the lady wants to leave the lake.
The man runs with a larger speed than the one of the lady in the lake (vl < vm). The man needs
to capture the lady as soon as she reaches the shore, since on land she runs faster than him. In
the lion and the man problem Flynn (1974); Karnad et al . (2009), the players move in a circular
arena, both players have the same motion capabilities, the lion wants to capture the man and the
man wants to avoid the capture.
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The problem of a mobile intruder jamming the communication network in a vehicular formation
is addressed in Bhattacharya & Başar (2011). A multi-stage two-player game in which one player
represents an attacker with superior dynamic capabilities, and the other player represents a team
consisting of a mobile, high-value target and N protective agents is studied in Fuchs & Khargonekar
(2011). The problem of steering a team of agents from their initial positions to a predefined end-
configuration while avoiding collisions was addressed as a differential game in Mylvaganam et al.
(2014). In Bhattacharya et al. (2014), the authors addressed the vision-based target tracking
problem between a mobile observer and a target in the presence of a circular obstacle.

3. Problem formulation

A Differential Drive Robot (DDR) and an Omnidirectional Agent (OA) move on a plane without
obstacles. The OA tries to capture the DDR while the DDR tries to avoid it. The game is over
when the distance between the DDR and the OA is smaller than a critical value lc. The players
have maximum bounded speeds V max

R (DDR) and V max
A (OA), respectively. The DDR is faster

than the OA, i.e., V max
R > V max

A , but it can only change its motion direction at a rate that is
inversely proportional to its translational speed Balkcom & Mason (2002). We consider here a
purely kinematic problem, and neglect any effects due to dynamic constraints (e.g., acceleration
bounds). The OA wants to minimize the time it takes to capture the DDR, while the DDR wants to
maximize it. The objective is to find the optimal strategies that are in Nash Equilibrium and may
be used by the players to achieve their goals.

3.1 Model

3.1.1 Realistic space

The game can be described in a global coordinate system (refer to Fig. 1(a)). (xR, yR, θR) represents
the pose of the DDR and (xA, yA) the position of the OA, both at time t. The state of the system
can be expressed as (xR, yR, θR, xA, yA) ∈ R2×S1×R2. The kinematics of the system are described
by the following equations of motion

ẋR =

(
u1 + u2

2

)
cos θR, ẏR =

(
u1 + u2

2

)
sin θR, θ̇R =

(
u2 − u1

2b

)
ẋA = vA cosψA, ẏA = vA sinψA

(1)

where u1, u2 ∈ [−V max
R /r, V max

R /r] are the controls of the DDR, and they correspond to the angular
velocities of its wheels. r is the radius of the wheels, in this problem we assume r = 1. u1 and u2

are the angular velocities of the left and right wheels respectively. If both controls have the same
magnitude and are either positive or negative, respectively, the robot moves forward or backward
in a straight line. Using a suitable choice of units Balkcom & Mason (2002), the translational
speed is equal to VR = 1

2(u1 + u2). If u1 and u2 have the same magnitude but opposite signs the
robot rotates in place either clockwise or counter-clockwise Balkcom & Mason (2002). The OA’s
controls are its speed vA ∈ [0, V max

A ] and its motion direction ψA ∈ [0, 2π). We introduce some
useful definitions for the rest of the paper, ρv = V max

A /V max
R is the ratio between the maximum

translational speed of the OA and the DDR, and ρd = b/lc is the ratio of the distance between the
center of the robot and the wheel location b and the capture distance lc. We assume that lc ≥ b,
i.e., the capture distance is bigger than the robot’s radius.
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Figure 1. System models

3.1.2 Reduced space

To simplify the analysis we formulate the problem in a coordinate system that is fixed to the DDR’s
body (see Fig. 1(b)). The state of the system is expressed as x(t) = (x, y) ∈ R2. All the orientations
in this coordinate system are measured with respect to the positive y-axis, in particular, the OA’s
motion direction v2. Using the coordinate transformation given by

x = (xA − xR) sin θR − (yA − yR) cos θR

y = (xA − xR) cos θR + (yA − yR) sin θR

v2 = θR − ψA
(2)

the kinematics in the DDR-fixed coordinate system are described by

ẋ =

(
u2 − u1

2b

)
y + v1 sin v2

ẏ = −
(
u2 − u1

2b

)
x−

(
u1 + u2

2

)
+ v1 cos v2

(3)

where u1, u2 ∈ [−V max
R , V max

R ] are again the controls of the DDR. For the agent, v1 ∈ [0, V max
A ] is

the control associated to its speed and v2 ∈ [0, 2π) the control associated to its motion direction.

This set of equations can be expressed in the form ẋ = f(x, u, v), where u = (u1, u2) ∈ Û =

[−V max
R , V max

R ]× [−V max
R , V max

R ], and v = (v1, v2) ∈ V̂ = [0, V max
A ]× [0, 2π).

4. Time Optimal Motion Strategies

4.1 Hamiltonian

Following the Isaacs’ approach Başar & Olsder (1999); Isaacs (1965); Ruiz et al. (2013), we
construct the Hamiltonian of our system. Recalling that

H(x, λ,u,v) = λT · f(x, u, v) + L (4)
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for our problem we have that

H(x, λ, u1, u2, v1, v2) = λx

(
u2 − u1

2b

)
y + λxv1 sin v2 − λy

(
u2 − u1

2b

)
x− λy

(
u1 + u2

2

)
+ λyv1 cos v2 + 1

(5)

4.2 Optimal Controls

From Başar & Olsder (1999); Isaacs (1965), we know that along the optimal trajectories,

min
v

max
u

H(x, λ,u,v) = 0

u∗ = arg max
u

H(x, λ,u,v)

v∗ = arg min
v
H(x, λ,u,v)

(6)

where u∗ and v∗ denote the optimal controls for the players. Recall that the OA’s goal is minimize
the capture time while the DDR’s goal is to maximize it. From Eq. (5), Eq. (6), and the separability
of the Hamiltonian Başar & Olsder (1999); Isaacs (1965); Ruiz et al. (2013), we obtain the
expressions for the players’ optimal controls. The controls for the DDR are given by

u∗1 = sgn

(
−yλx
b

+
xλy
b
− λy

)
V max
R

u∗2 = sgn

(
yλx
b
− xλy

b
− λy

)
V max
R

(7)

The controls for the OA are given by

v∗1 = V max
A , sin v∗2 = −λx

γ
, cos v∗2 = −λy

γ
(8)

where γ =
√
λ2
x + λy2.

4.3 Adjoint Equation

The adjoint equation is found by taking the partial derivative of the Hamiltonian with respect
to the state variables. If tf is the time of termination of the game, we define the retro-time as
τ = tf − t. In this work, we denote the retro-time derivative of a variable x as x̊. The adjoint
equation in its retro-time form is

λ̊ =
∂

∂x
H(x, λ, u∗1, u

∗
2, v
∗
1, v
∗
2) (9)

In our problem, we have that

λ̊x = −
(
u∗2 − u∗1

2b

)
λy, λ̊y =

(
u∗2 − u∗1

2b

)
λx (10)
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4.4 Terminal conditions

We need to compute the portions of the playing space where the OA guarantees termination
(captures the DDR) regardless of the choice of controls made by the DDR. For this game, the OA
captures the DDR when the distance between both players is smaller than the capture distance lc
despite any opposition of the DDR. In the reduced space, ζ is a circle of radius lc centered at the
origin, hence it can be parametrized by the angle s (see Fig. 2), which is the angle between the
OA’s position and the DDR’s heading at the end of the game (recall that all orientations in the
reduced space are measured with respect to the positive y-axis). At the end of the game

x = lc sin s, y = lc cos s (11)

From Başar & Olsder (1999); Isaacs (1965), the portion of the terminal surface where the OA
guarantees termination is known as the usable part, and for this game it is represented by

UP =
{
x ∈ ζ : min

v
max
u

n · f(x, u, v) < 0
}

(12)

where n is the normal vector to ζ from point x on ζ and extending into the playing space. From
Eq. (11), the outward normal n to ζ is given by

n = [sin s cos s] (13)

Substituting Eq. (13) and Eq. (3) into Eq. (12) we obtain

UP =

{
max
u1,u2

[
V max
A −

(
u1 + u2

2

)
cos s < 0

]}
(14)

We have two cases, (1) cos s > 0 and (2) cos s < 0. Note that u1 and u2 must be equal and
saturated to maximize the inequality in (14), therefore the DDR moves following a straight line
when it is captured by the OA. If cos s > 0 then

(
u1+u2

2

)
= −V max

R , the DDR is moving backward.

If cos s < 0 then
(
u1+u2

2

)
= V max

R , the DDR is moving forward. From the definition of the cosine
function we have that the DDR’s controls take the following values at the end of the game

Interval Controls
s ∈ [arccos(ρv),

π
2 ) u1 = −V max

R , u2 = −V max
R

s ∈ (π2 , π − arccos(ρv)] u1 = V max
R , u2 = V max

R

s ∈ [π + arccos(ρv),
3π
2 ) u1 = V max

R , u2 = V max
R

s ∈ (3π
2 , 2π − arccos(ρv)] u1 = −V max

R , u2 = −V max
R

We must note that when s = π
2 or s = 3π

2 the motion strategy for the DDR is undefined. As it
will be show later in the paper, all configurations having any of those orientations are part of a
dispersal surface (DS).

4.5 Computing the trajectories

In this section, we will obtain the equilibrium strategies for the players. All the analysis in the
following paragraphs is based on the methodology presented in Isaacs (1965). In Ruiz et al.
(2013), it has been applied to a similar problem to the one presented in this paper. For more
details, we refer the reader to Başar & Olsder (1999); Isaacs (1965).
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Figure 2. Representation of the terminal surface, usable part and its boundary in the reduced space.

4.5.1 Primary solution

From the UP, we have the values of x and y at the terminal condition. We also need to establish
the values of λx and λy on the UP of ζ. From Eq. (11) we have that

dx

ds
= lc cos s,

dy

ds
= −lc sin s (15)

Since λ(x) = 0 on the UP of ζ it follows that

λs =
dλ

ds
=
∂λ

∂x

dx

ds
+
∂λ

∂y

dy

ds
= 0 (16)

Substituting Eq. (15) into Eq. (16)

λx cos s = λy sin s (17)

From Eq. (17) we have that on the UP

λx = η sin s, λy = η cos s (18)

where η is a constant value.
From the analysis in subsection 4.4, we know that at the end of the game the DDR follows a

translation. Therefore Eq. (10) takes the form

λ̊x = 0, λ̊y = 0 (19)

One can directly verify that

λx = η sin s, λy = η cos s (20)

satisfies Eq. (19). This solution for the adjoint equation will be valid at the UP and as long as the
DDR controls do not change, which corresponds to a DDR motion following a straight line in the
realistic space. Later, we compute the retro-time instant when the DDR switches controls.

Lemma 1: At the end of game, the time-optimal motion primitives in the realistic space are, for
the DDR, moving following a straight line and, for the OA, moving also following a straight line.
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Proof. Since λx and λy have constant values, the OA’s motion direction direction v∗2 = s in the
reduced space is also constant. We know that the DDR’s is moving following a straight line at
the end of the game (subsection 4.4) thus its motion direction θR is constant. From Eq. (2), it is
straightforward to see that ψA, the OA’s motion direction in the realistic space is constant.

From Eq. (3), the retro-time version of the motion equations in the reduced space are

x̊ = −
(
u2 − u1

2b

)
y − v1 sin v2

ẙ =

(
u2 − u1

2b

)
x+

(
u1 + u2

2

)
− v1 cos v2

(21)

Substituting Eq. (20) into the controls expressions in Eq. (7) and Eq. (8), and the resulting ex-
pressions into Eq. (21) we obtain

x̊ = V max
A sin s, ẙ = V max

A cos s+ V max
R (22)

when the DDR is translating forward, and

x̊ = V max
A sin s, ẙ = V max

A cos s− V max
R (23)

when the DDR is translating backward. Integrating Eq. (22) and Eq. (23) with the initial conditions
x = lc sin s and y = lc cos s leads to

x(τ) = τV max
A sin s+ lc sin s

y(τ) = τ(V max
A cos s± V max

R ) + lc cos s
(24)

the sign + is taken if the DDR moves forward in the realistic space when it is captured by the
OA and the sign − if it moves backward. Note that Eq. (24) gives the motion of the system in the
reduced space, in order to find the corresponding motion in the realistic space we need to apply
the transformation given by Eq. (2). Recall that if s ∈ (π2 , π − arccos(ρv)] ∪ [π + arccos(ρv),

3π
2 ])

then the DDR is moving forward at the end of the game otherwise it is moving backward.

4.5.2 Transition surface

The solutions in Eq. (20), and Eq. (24) are valid as long as the DDR does not switch controls. The
place where a control variable abruptly changes in value, is known as a transition surface. In this
game, after a retro-time interval the DDR switches controls and it starts rotating in place in the
realistic space.

Lemma 2: The DDR switches controls and it starts a rotation in place in the realistic space at

τs =
∣∣∣ b cos s
V max
p sin s

∣∣∣. If s ∈ [0, π], u∗1 switches first, otherwise u∗2 does.

Proof. We can compute the time τs when the DDR switches controls, substituting Eq. (20) and
Eq. (24) into Eq. (7), and verifying which one of the resulting expressions is the first in changing
signs. Doing that we find that for s ∈ [arccos(ρv),

π
2 ] , u∗1 switches first from −V max

R to V max
R (i.e.,

the DDR’s controls after the switch are u∗1 = V max
R and u∗2 = −V max

R ) and it does it at

τs =
b cos s

V max
R sin s

(25)
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The other cases can be proved using an analogous reasoning.

We found that for all cases

τs =

∣∣∣∣ b cos s

V max
R sin s

∣∣∣∣ (26)

The following table indicates the control switching first based on the initial orientation of the
retro-time trajectory

Interval Switching control
s ∈ [arccos(ρv),

π
2 ) ∪ (π2 , π − arccos(ρv)] u∗1

s ∈ [π + arccos(ρv),
3π
2 ) ∪ (3π

2 , 2π − arccos(ρv)] u∗2

At τs, we need to start a new integration of the retro-time version of the adjoint equation (10)
and the motion equations (21). This integration takes as initial conditions the values of λx, λy, x,
and y at τs. We will denote those values as λx(τs), λy(τs), x(τs) and y(τs).

Computing the retro-time derivative of Eq. (10), we obtain two ordinary linear differential equa-
tions of second order with constant coefficients

d2λx
dτ2

= −
(
u∗2 − u∗1

2b

)2

λx,
d2λy
dτ2

= −
(
u∗2 − u∗1

2b

)2

λy (27)

Solving these equations with λx(τs) and λy(τs) as initial conditions we obtain the following expres-
sions

λx = η sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
λy = η cos

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

] (28)

for τ ≥ τs.

Lemma 3: For τ ≥ τs, the time-optimal motion primitives are, for the DDR, rotating in place,
and for the OA, continuing following a straight line.

Proof. Substituting Eq. (28) into Eq. (8) we have that

sin v∗2 = sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
cos v∗2 = cos

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

] (29)

therefore

v∗2 = s−
(
u∗2 − u∗1

2b

)
(τ − τs) (30)

From Lemma 2, we have that for τ ≥ τs the DDR is rotating in place, its motion direction is given
by

θ′R = θsR −
(
u∗2 − u∗1

2b

)
(τ − τs) (31)
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where θsR is the initial motion direction of the DDR in the realistic space. Substituting Eq. (30)
and Eq. (31) into Eq. (2) we obtain ψA = θsR − s, the OA’s motion direction in the realistic space.
Note that ψA is a constant value thus the OA is following a straight line in the realistic space.

To compute the corresponding retro-time trajectories in the reduced space we substitute Eq. (28)
into Eq. (8), and the resulting expressions into Eq. (21)

x̊ = −
(
u∗2 − u∗1

2b

)
y + V max

A sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
ẙ =

(
u∗2 − u∗1

2b

)
x+ V max

A cos

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

] (32)

Computing the retro-time derivative of Eq. (32) and solving the resulting expressions with the
initial conditions x(τs) and y(τs), we obtain

x(τ) =− y(τs) sin

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+ x(τs) cos

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+ (τ − τs)V max

A sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
y(τ) =x(τs) sin

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+ y(τs) cos

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+ (τ − τs)V max

A cos

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
(33)

for τ ≥ τs.
From Eq. (33), we have that for s ∈ [arccos(ρv),

π
2 ) ∪ [π + arccos(ρv),

3π
2 ),

x(τ) =− y(τs) sin

[(
−V max

R

b

)
(τ − τs)

]
+ x(τs) cos

[(
−V max

R

b

)
(τ − τs)

]
+ (τ − τs)V max

A sin

[
s−

(
−V max

R

b

)
(τ − τs)

]
y(τ) =x(τs) sin

[(
−V max

R

b

)
(τ − τs)

]
+ y(τs) cos

[(
−V max

R

b

)
(τ − τs)

]
+ (τ − τs)V max

A cos

[
s−

(
−V max

R

b

)
(τ − τs)

]
(34)

and for s ∈ (π2 , π − arccos(ρv)] ∪ (3π
2 , 2π − arccos(ρv)] we obtain that

x(τ) =− y(τs) sin

[(
V max
R

b

)
(τ − τs)

]
+ x(τs) cos

[(
V max
R

b

)
(τ − τs)

]
+ (τ − τs)V max

A sin

[
s−

(
V max
R

b

)
(τ − τs)

]
y(τ) =x(τs) sin

[(
V max
R

b

)
(τ − τs)

]
+ y(τs) cos

[(
V max
R

b

)
(τ − τs)

]
+ (τ − τs)V max

A cos

[
s−

(
V max
R

b

)
(τ − τs)

]
(35)

Note that Eq. (34) and Eq. (35) give the motion of the system in the reduced space, as it was
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previously mentioned, to find the corresponding motion in the realistic space we need to apply the
transformation given by Eq. (2).

5. Decision problem

We are interested in the conditions that make capture possible for the OA or escape for the DDR.
From Isaacs (1965), we have that the barrier separates the set of starting positions in those that
result in capture and those that result in escape for the DDR. From starting points on the barrier,
optimal behavior leads to a contact of the terminal surface without crossing it. The techniques we
have used in the calculation of the optimal strategies and their corresponding trajectories, are also
applied in the construction of the barrier, which can be interpreted as a neutral trajectory of the
system. The answer to the capture-escape question relies on whether or not the barrier divides the
playing space into two parts.

5.1 Construction of the barrier

As we previously mentioned, the usable part (UP) is the portion of the terminal surface where the
OA can guarantee termination regardless of the choice of controls of the DDR, its boundary (BUP)
is characterized by

BUP =
{
x ∈ ζ : min

v
max
u

n · f(x, u, v) = 0
}

(36)

where n is the normal vector to ζ from point x on ζ and extending into the playing space.
For such points, when each player applies its optimal strategies x moves tangentially to ζ. As the

BUP separates the points on ζ where immediate capture occurs from those where it does not, it is
used as initial condition for the barrier. The barrier is constructed integrating the adjoint equation
(10) and the equations of motion (21), starting at the BUP.

5.2 Solution to the decision problem

In the following paragraphs, we show that for this game the barrier always divides the playing
space.

First, we prove a useful result that states that the DDR can always reach any desired heading
orientation with respect to the segment joining the the OA’s position and the DDR’s center. A
similar result was presented in Jacobo et al. (2015) for a feedback-based policy.

Lemma 4: If the DDR rotates in place at maximal rotational speed then it can always reach any
desired heading orientation with respect to the segment joining the OA’s position and the DDR’s
center regardless of the OA’s motion strategy.

Proof. The Cartesian coordinates of the OA in the reduced space are given by

x = r sinφ y = r cosφ (37)

Recall that r > b otherwise the OA will be located inside the robot. Assuming that the DDR does
not move, the OA’s velocities are given by

ẋ = v1 sin v2 ẏ = v1 cos v2 (38)
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Using Eqs. (37) and (38), we obtain an expression for tanφ which we differentiate to obtain an
expression for φ̇. The resulting expression represents the rate of change of φ when the DDR does
not move

d

dt
tanφ =

x

y

φ̇ sec2 φ =
yẋ− xẏ
y2

φ̇ =
cosφẋ− sinφẏ

r

(39)

Substituting Eq. (38) into Eq. (39), we obtain

φ̇ =
v1 sin(v2 − φ)

r
(40)

The OA’s controls that maximize Eq. (40) are v1 = V max
A and v2 = φ+ π

2 thus

φ̇max =
V max
A

r
(41)

From the DDR control model, one has that if the DDR does not translate and it rotates at maximal
angular velocity in the direction that makes φ decrease as much as possible, then

θ̇max
R =

V max
R

b
(42)

Subtracting the DDR’s maximal angular velocity from φ̇max, we have that φ̇ in the reduced space
is given by

φ̇ ≤ φ̇max − θ̇max
R (43)

Thus, one will have that φ̇ < 0 if φ̇max − θ̇max
R < 0, i.e.,

V max
R

b
>
V max
A

r
(44)

but this inequality always holds, since by the definition of this pursuit-evasion game V max
R > V max

A
and r > b.

Next we prove that the barrier’s trajectories in quadrants I and II (see Fig. 2) share the same
x coordinate and have opposite y coordinates. A similar result can be obtained for the barrier’s
trajectories in quadrants III and IV.

Lemma 5: Let x1(τ) and y1(τ) be the coordinates of the barrier starting with angle S = arctan(ρv)
at the BUP. Similarly, let x2(τ) and y2(τ) be the coordinates of the barrier starting with angle π−S
at the BUP. We have that x1(τ) = x2(τ) and y1(τ) = −y2(τ) when the DDR moves following a
straight line in the realistic space.

Proof. From Eq. (24), we have that

x1(τ) = τV max
A sinS + lc sinS

y1(τ) = τ(V max
A cosS − V max

R ) + lc cosS
(45)
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and

x2(τ) = τV max
A sin(π − S) + lc sin(π − S)

y2(τ) = τ(V max
A cos(π − S) + V max

R ) + lc cos(π − S)
(46)

From basic trigonometry, we have that sinS = sin(π − S) and cosS = − cos(π − S). Substituting
the previous identities into Eq. (45) and Eq. (46) we found that x1(τ) = x2(τ) and y1(τ) = −y2(τ)
when the DDR moves following a straight line in the realistic space.

Lemma 6: Let x′1(τ) and y′1(τ) be the coordinates of the barrier after the DDR switches controls
and it was following the trajectory given by x1(τ) and y1(τ). Similarly, x′2(τ) and y′2(τ) be the
coordinates of the barrier after the DDR switches controls and it was previously following x2(τ)
and y2(τ). We have that x′1(τ) = x′2(τ) and y′1(τ) = −y′2(τ) when the DDR rotates in place in the
realistic space.

Proof. Let α1 = −V max
R

b (τ − τs) and τn = (τ − τs), substituting into Eq. (35), we have that x′1(τ)
and y′1(τ) are given by

x′1(τ) =− y1(τs) sinα1 + x1(τs) cosα1 + τnV
max
A sin [S − α1]

y′1(τ) =x1(τs) sinα1 + y1(τs) cosα1 + τnV
max
A cos [S − α1]

(47)

Doing some algebra we have

x′1(τ) = sinα1 (−y1(τs)− τnV max
A cosS) + cosα1 (x1(τs) + τnV

max
A sinS)

y′1(τ) = sinα1 (x1(τs) + τnV
max
A sinS) + cosα1 (y1(τs) + τnV

max
A cosS)

(48)

Using the trigonometric identity

a sinx+ b cosx =
√
a2 + b2 sin(x+ arctan

b

a
) (49)

we can rewrite Eq. (48) as

x′1(τ) = −B1 sinα1 +A1 cosα1 =
√
A2

1 +B2
1 sin

(
α1 + arctan

A1

−B1

)
y′1(τ) = A1 sinα1 +B1 cosα1 =

√
A2

1 +B2
1 sin

(
α1 + arctan

B1

A1

) (50)

where A1 = x1(τs) + τnV
max
A sinS and B1 = y1(τs) + τnV

max
A cosS. Using a similar approach and

recalling that sinx = sin(π − x) and cosx = − cos(π − x), from Eq. (34), we have that x′2(τ) and
y′2(τ) are given by

x′2(τ) =− y2(τs) sin(−α1) + x1(τs) cos(−α1) + τnV
max
A sin [S + (−α1)]

y′2(τ) =x2(τs) sin(−α1) + y2(τs) cos(−α1)− τnV max
A cos [S + (−α1)]

(51)

Doing some algebra we have

x′2(τ) = sin(−α1) (−y2(τs) + τnV
max
A cosS) + cos(−α1) (x2(τs) + τnV

max
A sinS)

y′2(τ) = sin(−α1) (x2(τs) + τnV
max
A sinS) + cos(−α1) (y2(τs)− τnV max

A cosS)
(52)
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From Lemma 5, we know that x1(τs) = x2(τs) and y1(τs) = −y2(τs) thus

x′2(τ) = sin(−α1) (y1(τs) + τnV
max
A cosS) + cos(−α1) (x1(τs) + τnV

max
A sinS)

y′2(τ) = sin(−α1) (x1(τs) + τnV
max
A sinS) + cos(−α1) (−y1(τs)− τnV max

A cosS)
(53)

Substituting A1 = x1(τs) + τnV
max
A sinS and B1 = y1(τs) + τnV

max
A cosS into Eq. (53) we obtain

x′2(τ) = −B1 sinα1 +A1 cosα1 =
√
A2

1 +B2
1 sin

(
α1 + arctan

A1

−B1

)
y′2(τ) = −A1 sinα1 −B1 cosα1 = −

√
A2

1 +B2
1 sin

(
α1 + arctan

B1

A1

) (54)

thus x′1(τ) = x′2(τ) and y′1(τ) = −y′2(τ).

In the following lemma we prove that the barrier’s trajectories in quadrants I and II (see Fig. 2)
intersect in a point located at the x-axis.

Lemma 7: The retro-time trajectories (barrier) starting with angle S and S − π at the BUP
intersect at y′1(τ) = y′2(τ) = 0.

Proof. From Lemma 6, we know that

y′1(τ) =
√
A2

1 +B2
1 sin

(
α1 + arctan

B1

A1

)
y′2(τ) = −

√
A2

1 +B2
1 sin

(
α1 + arctan

B1

A1

) (55)

From Eq. (55), we have that y′1(τ) = y′2(τ) only when both are equal to zero thus we need to show
that

sin

(
α1 + arctan

B1

A1

)
= 0 (56)

at some τn. Recall that α1 = −V max
R

b τn and arctan B1

A1
= arctan

y1(τs)+τnV max
A cosS

x1(τs)+τnV max
A sinS . We have that

S = arccos(
V max
A

V max
R

) ∈ (0, π2 ] thus cosS ≥ 0 and sinS > 0. From the last expressions, arctan B1

A1
>

0,∀τn > 0. We also have that α1 < 0,∀τn > 0. From Lemma 4, we have that the DDR can always
reach any desired heading orientation with respect to the segment joining the OA’s position and
the DDR’s center regardless of the OA’s motion strategy, thus α1 + arctan B1

A1
= 0 for some τn > 0.

From Lemma 6, we know that x′1(τ) = x′2(τ) thus the trajectories intersect at y′1(τ) = y′2(τ) for
some τn > 0.

The case when the barrier’s trajectories start at π+S and 2π−S can be proved in an analogous
way.

Theorem 1: For this game the barrier partitions the space into two regions, one where the OA
captures the DDR and one where the DDR avoids capture.

Proof. From Lemma 7, we have that the barrier’s trajectories coming from the upper and bottom
parts of the UP intersect at the x-axis. From the definition of the barrier Isaacs (1965) we know
that when the players play optimally they cannot cross from one side of the barrier to the other,
therefore the OA can only capture the DDR in the region closer to the UP.
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Remark 1: Note that the DDR wants to restrict the configurations where it can be captured by
the OA, for that reason the DDR’s retro-time strategy tries to intersect the barrier’s trajectories.
Since the DDR is faster than the OA it will be able to do it at some time τn.

We conclude this section with the following theorem.

Theorem 2: The player’s optimal motion primitives in the realistic space correspond, for the
DDR, to rotations in place and straight lines, and for the OA, to straight lines.

Proof. By Lemma 1 at the end of the game the time-optimal motion primitives in the realistic
space are, for the Differential Drive Robot (DDR), moving following a straight line and, for the
Omnidirectional Agent (OA), moving also following a straight line. By Lemma 3, for τ ≥ τs, the
time-optimal motion primitives are, for the DDR, rotating in place, and for the OA, continuing
following a straight line. By Theorem 1 the barrier partitions the space into two type of regions,
one where the OA captures the DDR and one where the DDR avoids capture. For each quadrant, in
the reduced space where capture is possible for the OA, there is only a transition surface, which is
reached by the OA pursuer at time τs. This exhaustively enumerates the motion primitives of both
players where capture is possible. They are for the OA, straight lines and for the DDR straight lines
and rotations in place. By the definition of the barrier (Isaacs, R. (1965)), when the OA (pursuer)
is located in regions where capture is not possible, this holds regardless of the motion primitives
used by the OA (pursuer) provided that at the moment where the OA (pursuer) reaches the barrier
the DDR follows its time optimal motion primitives. That is either rotating in place or moving in
straight line. The result follows.

6. Partition of the space

In this section, we present a partition of the playing space into two regions. The construction is
shown in Figure 3.

• Region I. We denote as region I to the set of points that can reach the UP with a single
straight line trajectory in the reduced space which corresponds to a straight line motion of
both, the DDR and the OA, in the realistic space. Examples of trajectories in Region I are
shown in Fig. 3.

• Region II. We denote as Region II to the set of points that reach the TS by following a
trajectory given in Eq. (33) in the reduced space, which corresponds to a rotation in place
for the DDR and a straight line trajectory for the OA, both in the realistic space.

Figure 3 shows that the trajectories coming from the upper and bottom parts of the UP intersect
the x-axis defining a dispersal surface (DS). Over the DS both players have two choices for their
controls. It is important to note that at the DS, the choice of the control of one player must
correspond to the choice of the control of the other player. If one player selects the wrong control,
the other player will benefit from that decision. In this game, the DS corresponds to configurations
where the pursuer’s heading (orientation of the wheels) is perpendicular to the pursuer’s location,
and the DDR has the option to rotate either clockwise or counterclockwise to try to delay the
capture. If the DDR fails to initially choose the correct sense of rotation against the OA’s decision
then feedback will be necessary to correct the decision and it’s possible that the OA can capture
the DDR in suboptimal time. To avoid the selection problem, the instantaneous velocity vector of
both players should be known, but in general (and in particular for this problem) it is assumed
that this information is not available. A solution would be to employ an instantaneous mixed
strategy (IMS) Isaacs (1965) which means the randomizing of a player’s decision in accordance
to some probabilistic law until the system is not longer on the DS. The trajectories generated by
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Figure 3. Partition of the reduced space. The OA plays as a pursuer and the OA as an evader. Capture is only possible for

initial configurations inside Region I and II. Region I corresponds to configurations where the OA captures the DDR and both

players move following a straight line in the realistic space. Region II corresponds to configurations where the OA captures the
DDR but in this case the DDR performs a rotation in place and the OA moves following a straight line in the realistic space.

the correct pair of controls will lead to the same optimal time-to-go. In this game, the difference
will be that at the end the capture condition will be attained when the DDR is moving forward
or backward following a straight line in the realistic space. It is important to remark that this
particular situation only occurs when the wheels of the DDR are exactly perpendicular to the line
that joins the DDR and the OA, a situation that in practice occurs with probability 0.

7. Finding the winning roles

In this section, we combine the results obtained in this paper and the ones in Ruiz et al. (2013).
Using the partitions of the playing space of both works, we found the winning roles for the DDR
and the OA. Each player can play either as a pursuer or evader; however, once a role has been
assigned for one player then the other can only choose an antagonistic role. Note that each player
must remain playing the initial role during the game otherwise he will be cooperating with his
adversary. It is also important to mention that the state of the system is given by the relative
position of the OA with respect to the DDR regardless of the roles of the players. From Ruiz et
al. (2013), we have that when the DDR plays as a pursuer and the OA as an evader, the DDR

captures the OA from any initial configuration if ρ2
vρd−

√
1− ρ2

v < 0 (see Fig. 4(a)) otherwise the
barrier’s trajectories intersect at y = lc/ρv and the DDR can only capture the OA in the closed
region close to the UP (see Fig. 4(b)). From Theorem 1, we know that when the OA plays as a
pursuer and the DDR as an evader, the OA can only capture the DDR in the closed region close
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to the UP (see Fig. 3). Considering the behavior of the partitions of the playing space for both
games, we identify the following two general cases:

• Case I: The barrier’s trajectories intersect in both partitions and define the closed regions
A and B (see Fig. 5(a)). A DDR pursuer captures an OA evader in Region A and an OA
pursuer captures a DDR evader in Region B. Note that A and B are disjoint regions. By the
definition of the barrier, one player cannot cross the barrier without help of the other player
which means that if the DDR plays as a pursuer in Region A the OA cannot avoid capture
unless the DDR applies a suboptimal strategy.
• Case II: The barrier’s trajectories intersect only for the game when the OA plays as a pursuer

and the DDR as an evader (see Fig. 5(b)). In this case, Region A is open and Region B is
closed. Note that Region A contains all configurations in the playing space (reduced space)
except for those inside Region B or the capture radius (see Fig. 5(b)).

For Case I, we have the following winning roles for the players.

(1) Assume that the initial configuration of the system in the reduced space is located on Region
A (see Fig. 5(a)). We have that if the DDR plays as a pursuer then it captures the OA. Suppose
the DDR plays as an evader and the OA plays as a pursuer, the DDR avoids capture since
the initial configuration is located outside B (recall that A and B are disjoint regions for case
I). Therefore, the DDR wins in Region A either playing as a pursuer or evader.

(2) Analogous, suppose the initial configuration of the system is located on Region B (see Fig.
5(a)). If the DDR plays as a pursuer and the OA plays as an evader then the OA avoids
capture (again, A and B are disjoint regions). We have that if the DDR plays as an evader
and the OA as a pursuer then the OA captures the DDR. Thus, the OA wins in Region B
either playing as a pursuer or evader.

(3) If the initial configuration is located in Region C (see Fig. 5(a)) then capture is not possible
for both players, the player playing the evader role wins.

Table 1 summarizes the winning roles described above (see Fig. 5(a)).

Region (OA’s location) OA’s role DDR’s role Winner player Winner role
A Pursuer Evader DDR Evader
A Evader Pursuer DDR Pursuer
B Pursuer Evader OA Pursuer
B Evader Pursuer OA Evader
C Pursuer Evader DDR Evader
C Evader Pursuer OA Evader

Table 1. Winning roles for both players in Case I: The barrier’s trajectories intersect in both partitions and define the closed

regions A and B (see Fig. 5(a))

For Case II, we have the following winning roles for the players

(1) Suppose the initial configuration is located outside B (see Fig. 5(b)). If the DDR plays as a
pursuer and the OA as an evader then the DDR captures the OA. Assume the DDR plays
as an evader and the OA as a pursuer then the DDR avoids capture since the OA cannot
force the system to cross to Region B without help of the DDR. Therefore, the DDR wins in
Region A either playing as a pursuer or evader.

(2) Assume the initial configuration is located on B (see Fig. 5(b)). If the DDR plays as a pursuer
and the OA as an evader then the DDR captures the OA. Note that, in this case, the DDR
can cross the barrier of Region B since the OA is playing the opposite role for which it was
defined. Suppose the DDR plays as an evader and the OA as a pursuer then the OA captures
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the DDR. Note that the DDR cannot force the system to cross to Region A without help of
the OA. We have that for Region B the winning role for the DDR is play as a pursuer and
the winning role for the OA is also play as a pursuer.

Table 2 summarizes the winning roles described above (see Fig. 5(b)).

Region (OA’s location) OA’s role DDR’s role Winner player Winner role
A Pursuer Evader DDR Evader
A Evader Pursuer DDR Pursuer
B Pursuer Evader OA Pursuer
B Evader Pursuer DDR Pursuer

Table 2. Winning roles for both players in Case II: The barrier’s trajectories intersect only for the game when the OA plays

as a pursuer and the DDR as an evader (see Fig. 5(b))
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Figure 4. Partition of the reduced space. The DDR plays as a pursuer and the OA as an evader. For more details, we refer
the reader to Ruiz et al. (2013).

8. Simulations

In this section, we present some simulations of the pursuit-evasion game where the OA tries to
capture the DDR in minimum time. We use m/sec as units for velocities, meters for distance and
seconds for time.

8.1 Capturing the DDR

First, we present the case where the OA captures the DDR, i.e., the initial configuration is inside
the region defined by the barrier trajectory. The parameters of this simulation were V max

R = 1,
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Figure 5. Partitions of the reduced space given by the two games.

V max
A = 0.9, b = 1 and lc = 1. Fig. 6(a) shows the trajectory of the system in the reduced space

when the OA captures the DDR. The circle centered at the origin represents the capture distance
lc and the bold arcs the UP. The OA’s initial position is denoted by AI and its final position by
AF . The OA starts in a configuration where the segment joining its position and the DDR’s center
is perpendicular to the DDR’s heading. Figure 6(b) shows the trajectories of the players in the
realistic space. The OA’s initial and final positions are denoted by AI and AF , the DDR’s initial
and final positions are RI and RF . In Fig. 6(b), we can observe that the DDR’s was captured while
it was moving backwards following a straight line. In this figure, we can also note that the OA
follows a straight line trajectory to capture the DDR.
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Figure 6. Trajectories of the players when the OA captures the DDR.

Fig. 7 shows the evolution of the Region B, where the OA can capture the DDR, as we change
the value of V max

A . We can observe that as we decrease V max
A so does the size of the Region B.

This behavior also occurs if we decrease the ratio ρv. Note that as Region B decreases its size also
implies that the initial position of the OA is closer to the DDR, and the angle between the DDR’s
heading and the segment joining the OA’s position is closer to π

2 . The parameters of this simulation
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were V max
R = 1, b = 1 and lc = 1.
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Figure 7. Evolution of the region B where the OA captures the DDR as a function of V max
A .

8.2 The DDR avoids capture

In the following simulation, we show a case where the DDR avoids capture since the initial con-
figuration is located outside the region defined by the barrier trajectory. The parameters of the
simulation where V max

R = 1, V max
A = 0.9, b = 1 and lc = 1. Figure 8(a) shows the trajectory of the

system in the reduced space. The OA’s initial position is denoted by AI and its final position by
AF . The OA starts in a configuration where the segment joining its position and the DDR’s center
is perpendicular to the DDR’s heading. Figure 8(b) shows the trajectories of the players in the
realistic space. The OA’s initial and final positions are denoted by AI and AF , the DDR’s initial
and final positions are RI and RF . We construct a motion strategy for the players that despite of
being initially favorable to the OA shows that the DDR can avoid capture. In the first part of the
strategy, the DDR remains in the same position while the OA decreases the distance between both
players. This corresponds in the reduced space to the trajectory over the x-axis (see Fig. 8(a)). In
realistic space, this strategy is represented by the straight line starting at AI . Once the position of
the OA in the reduced space reaches the beginning of barrier’s trajectory (arc trajectory), the DDR
starts to rotate in place and the OA starts to follow a new straight line trajectory in the realistic
space, as it is described by the time-optimal motion strategies of both players. After some time, the
DDR starts to follow a straight line trajectory while the OA remains following its previous motion



November 11, 2015 International Journal of Control paperIJC

strategy. At some point, the OA reaches the distance lc (see Fig. 8(b)) to the DDR but since the
system is pointing tangentially to the terminal surface (see Fig. 8(a)), the OA is not able to get
closer to DDR than lc and capture cannot be attained. For this simulation, over the target set the
system continues following a straight line in the reduced space which corresponds to straight line
trajectories for both players in the realistic space.
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(a) Trajectory in the reduced space. The system is initially following

a straight line trajectory starting from AI . After some time, the
system follows the barrier’s trajectory reaching the capture distance

lc. Since the system reaches that point tangentially to the terminal

surface the DDR can avoid capture.
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(b) Trajectory in the realistic space. First, the DDR re-

mains at position RI while the OA moves toward the
DDR following a straight line trajectory starting at AI .

At some point, the players begin to follow their time-

optimal motion strategies given by the barrier’s trajec-
tory, i.e., the DDR rotates in place at RI while the OA

follows a new straight line trajectory. After some time,

the DDR also starts to follow a straight line trajectory.
The OA is able to reach the distance lc (green circle) to

the DDR but it cannot reduce it thus the DDR can avoid
capture. The black circle shows that the DDR is farther

than the capture distance lc after a few time.

Figure 8. Trajectories of the players when the OA captures the DDR.

In Ruiz et al. (2013), the authors have presented simulations for the symmetric game where the
DDR plays as a pursuer and the OA as an evader.

9. Conclusions and Future Work

In this paper, we considered the problem of capturing a DDR using an OA in an obstacle free
environment. We presented closed-form representations of the motion primitives and time-optimal
strategies for each player. In the realistic space, the motion primitives for the OA are straight lines
and for the DDR straight lines and rotations in place. We proposed a partition of the playing space
into mutually disjoint regions and we showed that the OA only captures the DDR in a closed region
of the space. Combining the results obtained in this paper and the ones in Ruiz et al. (2013), we
allow the agents to change the roles, namely, the DDR is allowed to play as the pursuer and the
OA is allowed to play as the evader. This later analysis permitted to establish which is the winner
role for each agent, based only on the initial position of the players and their maximum speed. As
future work, we will include acceleration bounds in the solution of this problem. We would also like
to consider multiple pursuers and/or multiple evaders and find feedback-based motion policies.
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