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Abstract. In this paper, we address the problem of searching for an
object in a 3-D environment. We consider a mobile manipulator with
an “eye-in-hand” sensor moving in the 3-D environment. In particular,
we consider a static object whose location is modeled with a probability
density function (pdf). We generate routes that minimize the expected
value of the time until the object is first seen when following the route.
We use a sample-based convex cover to estimate the size and shape of
visibility regions in 3-D. The resulting convex regions are exploited to
generate trajectories that compromise between moving the manipulator
base and moving the robotic arm.

1 Introduction

This work addresses the problem of finding a static object. In this paper, our
goal is for the robot to find the object as quickly as possible on average. We claim
that our work presents a new paradigm for search tasks, where it is important
to gain as much new information in the shortest time as possible. This can be
very useful in applications where the time assigned to the task is limited or
not completely known. We present a discrete formulation, in which we use a
visibility-based decomposition of the environment to convert the problem into a
combinatoric one.

The possible applications have a wide range, from finding a specific piece of
art in a museum to search and detection of injured people inside a building.
This problem is closely related to the coverage problem [4] in the sense that any
complete strategy to find an object must sense the whole environment.

In [I] we have investigated the problem of finding an object in a 3D en-
vironment for the case of a point robot. In that work, we have introduced a
probabilistic sampling method to decompose the workspace into convex regions.
In this paper we use that convex region partition. The research reported in this
paper differs from our previous efforts in the following main points:
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1. We consider a mobile manipulator with an “eye-in-hand” sensor.
2. We investigate the use of different metrics to quantify the paths cost.
3. We use complete regions as sensing locations as opposed to a single location

(point).

Note that current technology make feasible the assumption of equipping a
mobile manipulator with an “eye-in-hand” sensor. For instance, using the very
small omnidirectional camera described in [3]. Below, we present the definition
of our problem.

2 Problem Definition

This work addresses the problem of minimizing the expected value of the time
to find an object in a known 3-D workspace.

In general terms, we define the problem of searching for an object as fol-
lows: Given one mobile manipulator robot with sensing capabilities, a completely
known 3D environment and an object somewhere in the world, develop a motion
strategy for the robots to find the object in the least amount of time on average.

The environment W is known, and modeled as a set of polyhedrons. The ob-
stacles generate both motion and visibility constraints. Furthermore, we assume
that the probability of the object being in any specific point is uniformly dis-
tributed. Therefore, the probability of the object being in any subset C; C W is
proportional to the volume of C;. Where C; is a convex region in a 3-D workspace.

The robot senses the environment at a set of locations L; (also known as
guards, from the art gallery problem [I1]). The visibility region of location L; is
considered to be the volume of the convex region denoted C;. Note that all points
inside C; can be connected by a clear line of sight from any location (point) L;
inside C;. Note also that, it gives flexibility as to where to place the sensor, any
point L; inside Cj is a valid candidate.

The set {C'} is chosen so that the union of all C; covers the whole environment,
that is, | J; C; = W. We do not require nor assume the set {C'} to be minimal.

Our exploration protocol is as follows: the robot always starts at a particular
region in {C} (associated to the starting point) and visits the other regions as
time progresses. It follows the shortest paths for some given metric between
them. We also investigate the use of different metrics to quantify the paths
cost. We generate, metric-dependent trajectories, that is, trajectories that find
a compromise between moving the base or moving the robotic arm.

The robot only gathers information about the environment (sensing) when it
reaches one different convex region — it does not sense while moving. We describe
the route followed by the robot as a series of convex regions Cj, that starts with
the robot’s initial region and includes every other region at least once. Note that
while C; refers to region in the environment, C;, refers to the order in which
those regions are visited. That is, the robot always starts at C;,, and the k-th
region it visits is referred to as Cj, .

For any route R, we define the time to find the object T as the time it takes
to go through the regions — in order — until the object is first seen.
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Our goal is to find the route that minimizes the expected value of the time it
takes to find the object

E[T|R] =) ;P (T =t;) (1)

where

Volume (Cij \ U< Cik)

P(T=1t)= Volume(W)

(2)

Here, t; is the time it takes the robot to go from its initial position — through
all regions along the route — until it reaches the j-th wisited region C;;, and
P (T =t;) is the probability of seeing the object for the first time from region
C;, . Since the robot only senses at specific regions, we also denote this probability
of seeing the object for the first time from region C;; as P (CZ- )

J

2.1 Expected Value vs. Worst Case

It is important to note the difference between minimizing the expected value of
the time to find an object and minimizing the time it would take in the worst
case.

To minimize the worst case time, the robot must find the shortest path (for in-
stance, in euclidean sense) that completely covers the environment (the shortest
watchman tour problem [5]). This usually means that no portions of the envi-
ronment are given any priority over others and the rate at which new portions
of the environment are seen is not important.

On the other hand, to minimize the expected value of the time, the robot must
gain probability mass of seeing the object as quickly as possible. For a uniform
probability density function (pdf), this translates into sensing large portions of
the environment as soon as possible, even if this means spending more time later
to complete covering the whole environment. We believe this represents another
paradigm for search tasks, where it is important to gain as much new information
in the shortest time possible.

The trajectories that satisfy the previous two criteria are not the same. In
fact, for a given environment, the route that minimizes the distance traveled
may not minimize the expected value of the time to find an object along it.

Consider the example in Fig.[Il The robot starts in the corridor at location L.
Assume that the object will always be in one of two rooms, and the probability
of it being in either is related to the size of the room. These rooms have a narrow
door and the entire room is visible from the threshold. The room to the right —
seen from location L — is smaller but lies closer to the initial location, while the
room to the left — seen from Lo —is larger but farther from initial position. There
are only two routes the robot might take to solve this problem: Go to the smaller
room first (Lo, — L1, — Lo, ), or go to the larger room first (Lo, — L2, — L1,).
For the following analysis, we assume that the robot moves at a constant speed
of 1 unit per second.
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Fig. 1. Example with a simple environment

Route 1 — If the robot goes to the smaller room first and then moves on to the
larger room, it reaches L, at time 1 and Lo at time 7. The expected value of the
time it takes to find the object following this route is

E[T|(Lo, L1, L2)] = (0.1)(1) + (0.9)(7) = 6.4.
The robot always completes its search after 7 seconds.

Route 2 — If the robot moves to the larger room first and then goes to the smaller
room, it reaches Ly at time 5 and L; at time 11. The expected time in this
case is

E[T| (Lo, Lz, L1)] = (0.9)(5) + (0.1)(11) = 5.6.

In the worst case, it will take the robot 11 seconds to find the object.

A robot following route 1 always finishes searching after 7 seconds, while a
robot following route 2 takes 11 seconds. Route 1 minimizes the distance traveled.
However, the average time it takes for a robot following route 1 to find the object
is 6.4 seconds whereas for route 2 it is only 5.6 seconds. Route 2 minimizes the
expected value of the time to find an object.

Thus, a trajectory that is optimal in the distance traveled does not necessarily
minimize the expected value of the time to find an object along it.

3 Approach Overview

This work builds on our previous research on expected value search with mobile
robots. In [2] we proposed an approach to solve this problem in a 2-D polyg-
onal environment. The basic idea was to define a set of sensing locations from
which the whole environment is covered. We then defined a graph over these lo-
cations. We shown that even the problem of finding an object in a 2-D polygonal
workspace with a point robot is NP-hard. Therefore, we propose the heuristic of
a utility function defined as the ratio of a gain over a cost. We use this utility
function to drive a greedy algorithm in a reduced search space that is able to
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explore several steps ahead without incurring too high a computational cost. The
present work builds on the same problem but in a three dimensional workspace
with a mobile manipulator robot.

The expected value of the time depends on two factors: 1) The distance trav-
eled (equivalent to the time if the robot moves to constant saturated speed),
quantified in some given metric, which represents the cost and 2) the probability
mass of seeing the object, which is equivalent to the gain.

We provide algorithms to compute the shortest paths (for a given metric) for a
7 degrees of freedom mobile manipulator to move between configurations, —cost.
We also provide visibility-based decompositions of the environment to compute
the probability mass of seeing the object, —gain. We use a set of sensing locations.
Then we link them in a graph and perform a graph search to generate the global
trajectory.

We propose a sample-based convex cover algorithm that allows us to partition
the environment into convex pieces and also to estimate the volume of each piece.
Using our convex cover decomposition, we propose an approach to our search
problem, for the mobile manipulator with an “eye-in-hand” sensor like the one
shown in Fig. Bl moving in a 3-D environment.

We use the complete regions as sensing locations, that is, as long as the end
effector (which is equipped with a sensor) is inside one of them, we know that
the vast majority of the whole region will be visible to the robot. This gives
flexibility as to where to place the sensor, and is also helpful in the generation
of what we call “metric-dependent trajectories.” These trajectories take into
account weights assigned to the different degrees of freedom and therefore, can
be good compromises between moving the base or moving the robotic arm.

Finally, we use our previously proposed greedy approach [2] to search the
resulting graph and generate trajectories that minimize the expected value of
the time to find an object in the environment. Unlike our previous work, the
proposed algorithms are no longer complete nor deterministic, but we do provide
probabilistic bounds on how good the coverage is.

Fig. 2. a) 3-D workspace b)A mobile manipulator with an “eye-in-hand” sensor
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4 Sample-Based Sensing Strategy in 3-D

Our convex cover and subsequent graph abstraction capture the connectivity of
the workspace. There have been many related approaches that connect samples
to capture connectivity of high dimensional spaces, for example, [RI7IT0/12] just
to name a few. Our work is different in several aspects. First, we are interested
in representing the workspace for searching an object, not in abstracting the
configuration space for path planning purposes. Second, most techniques throw
away “useless” samples, we keep all of them since we need to estimate the size of
volumes. Finally, we can determine a clear-cut threshold of when it is no longer
useful to continue sampling.

Due to the high computational complexity of visibility computation in 3-D
[11], we decided to use sampling to decompose the environment into convex
regions and to estimate the size of those regions. In particular, we implemented
the sampling strategy in [12] originally proposed to construct a probabilistic
roadmap in the configuration space. The difference in our case is that we will
sample the workspace (not the configuration space) and keep all samples, as
opposed to throwing away those that do not join important configurations.

In order to capture the size and shape of the workspace W, we generate a
set of independent, uniformly distributed collision free samples S in W. Among
these samples, we choose a hidden guard set G. A set is called a hidden guard
set if it covers the environment and individual member of the set are not visible
to each other. Since we are approximating W with sample points, for the set
G to cover the environment, every sample in .S must be visible to at least one
guard in G. That is,

U Vis(g:) =5, (3)

g:€G

where Vis (g;) is the set of points in S whose line segment to g; does not
intersect the workspace W. Also, since guards must not be mutually visible,
9i & Vis (gr) Yk #1i.

To determine how well the workspace has been covered, consider an environ-
ment of unit volume like the one shown in Fig.[Bl Suppose that the portion of the
environment that is visible from the guard set is A and has measure pu(A4) = 1—e,
while B is another portion with measure u(B) = e that is not yet visible and
does not contain a single sample point.

If samples are drawn independently, the probability of m consecutive points
not falling into the uncovered region B is P (A4,,) = (1—¢)™. After m consecutive
samples, it is still possible that the actual size of B is greater than e, but with
a large m, we can bound this probability with a small value a. For this, we
determine m as follows,

(1 —€)" <a; mlog(l—e¢) <log(a); m> % . 4)

Therefore, choosing a large enough m we can expect with certainty (1 — «) that
the size of the unseen region B is at most e.
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Fig. 3. An environment of unit volume and the sizes of covered (A) and uncovered (B)
regions

4.1 Convex Cover Algorithm

Given our strategy of stochastically choosing a hidden guard set, there will be a
neighborhood around each guard that only that particular guard can see (since
a small perturbation on a guard is not likely to make it visible to the others).
Likewise, provided an adequate number of samples, there will be a set of sample
points that only one particular guard can see. We call this set of points, the
kernel of the guard, and denote it as

Ker (g:) = Vis (9:)\ | Viis (gx) - (5)
kti

In any minimum convex cover {C'}, each convex region C; has a set of points
only contained in that particular region. Otherwise, region C; could simply be
removed and the cover would not have been minimal. Although we know there
is not an exact equivalence, we use guard kernels as an approximation to these
unique subsets. Thus, the main idea behind our convex cover algorithm, is that
by “growing” convex regions around the guard kernels, we can generate a low
cardinality convex cover. More details about our algorithm to generate a convex
cover environment partition can be found in [1].

5 Application to a Mobile Manipulator

We have applied our search strategy to a mobile manipulator with an “eye-in-
hand” sensor, like the one shown in Fig. @ b). This robot is made of an arm
with four degrees of freedom (DOFs) mounted on a mobile base with three
DOFs (translation and rotation in the plane). Since the first rotation of the arm
(around a vertical axis) and center of rotation for the mobile base are off-center,
they are not the same axis. Thus, the entire system has a total of seven internal
DOFs — two translations and five rotations, see figure [ (b). The figure also
shows the coordinate frame for the end effector, where our sensor resides.

The decomposition into regions provides flexibility on exactly where to place
the end effector to sense each region — any point inside is a valid candidate. On
one hand, this simplifies the path planning problem, since we have a set of goal
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configurations, as opposed to a single one. But on the other, it invites a more
challenging problem: given that we have more options, what is the best way to
reach one of these regions? We are not only interested in finding a way to reach
a region, but also the best way to do it.

We want to find the path, which minimizes the expected value of the time
to find an object. But, recall that the computation of the expected value of the
time depends on two main factors 1) the distance traveled (cost) and 2) the
probability mass of seeing the object (gain). Thus, we also need to find shortest
paths for a given metric (cost) between configurations for a 7 degrees of freedom
mobile manipulator. The choice of metric is interesting because it can generate
different “behaviors” for the robot, as we will explain in the next subsection.

5.1 Metric-Dependent Trajectories

We would like to find shortest paths between configurations. The actual paths
depend on the metric used to measure distance. One way to define the distance
between two configurations X and Y in a D-dimensional configuration space is

X - Yla=(X-Y)"AX -Y), (6)

where A is a diagonal matrix with positive weights A1, Ao, ... Ap assigned to the
different DOF's. In general, the matrix A is needed because not all joints might
be equivalent (e.g., large links vs. small links), and also because different DOF's
might not even be measuring the same movement (translation vs. rotation).

In our case, by weighting each DOF differently we can assign different priori-
ties to the two main components of our system: the mobile base and the robotic
arm. We divided the DOFs of the mobile manipulator into two groups, the two
DOFs that translate the robot on the plane and the five rotations that further
place the end effector at a specific position.

If we assign larger weights to one group and smaller weights to the other, it
will be reflected in the shortest paths for that metric. It is evident that these
paths will have lower length when the DOFs that move the most are the ones
with the low cost. Since we can select which DOFs we would like to move the
most (or the least), we can find trajectories that find a compromise between, for
example, moving the base and moving the arm.

The problem is, of course, to find the shortest path to a set of configurations
(the convex region). To find that shortest path, we implemented a wavefront
expansion [J]. This algorithm restricted to a particular robot has polynomial
complexity .

The wavefront expansion algorithm uses the weights A1, Aa,...Ap assigned
to the DOFs to expand the wave in the different dimensions, so that all con-
figurations at the growing boundary are at the same distance from the start
configuration.

5.2 Simulation Results

To make the results more evident, we divided the DOFs of the robot into two
groups, two translations and five rotations. First we assigned a larger weight
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(d) (e) ()

Fig. 4. Visiting one region: Low-Cost Translation vs Low-Cost Rotation

to one group and then to the other. Figure @ Parts (a) and (d) show the initial
position and one region that need to be visited. Parts (b) and (e) show the initial
(dark) and final (light) configurations. Finally, parts (¢) and (f) show the actual
path followed by the robot.

In the example shown in figure [4 the robot only visits one region, but we
assign different weights to the rotation and translation DOFs. Parts (a) to (c)
show the case when the rotation’s DOFs have a small weight, in contrast, parts
(d) to (f) show the case when the translation’s DOF's have a small weight. Note
that, the resulting trajectories are very different. When rotations are better
(Fig. @ (c)), the robot goes straight to the obstacle and places its sensor over it.
Note that the robot must rotate the base (and compensate with the “shoulder”)
and also rotate the middle link (and compensate with the end effector) to be
able to reach beyond the obstacle, so there are a total of four rotations in this
movement. In contrast, when it is better to translate (Fig. [ (f)), the robot does
not rotate any link and simply moves around the obstacle to reach the region
behind.

Figure [l shows an example where the robot must visit several regions to
see the whole environment. Here, the global plan corresponds to the order of
visiting the regions, such order minimizes the expected value of the time to find
an object, and is computed using our algorithm proposed in [2]. Figure Bl parts
(a), (b) and (c) show the case of low-cost rotation. Figures [ (a) and (b) show
snapshots of the robot path and the regions covered through the path. Figure
(c) shows the whole path. In this case, the robot chooses to see first the region
associated to the hole in the wall. It requires several arm’s rotations, then the
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(d)

Fig. 5. Visiting several regions: Low-Cost Translation vs Low-Cost Rotation

robot translates as few as possible (because the translation is expensive) to cover
the remaining regions. Note that the robot goes, just around the corner to cover
the whole environment.

Figure[] parts (d), (e) and (f) show the case of low-cost translation, the whole
path is shown in figure [ (f). Now, the robot chooses a path which requires a
long translation around the wall, the robot see the region associated to the hole
in the wall up to the end. In this second case, the robot avoids to stick its arm
through a hole in the wall, because it requires several expensive rotations. The
expected value of the time depends on both: 1) the volume of the regions and 2)
the distance traveled (and hence the metric used to quantify it). Therefore, the
order for visiting regions may change according to the metric used to quantified
the path cost, thus generating robot’s behaviors.

6 Conclusions and Future Work

We addressed the problem of searching for an object in a known 3-D environment.
Due to the high computational complexity of visibility queries in 3-D, we decided
to use a sample-based approach to approximate the size and shape of visibility
regions. The decomposition into regions gives us flexibility on exactly where to
place the sensor, and their convexity guarantees that the entire cell will be visible
from every point inside.

Based on this covering, we presented approaches for a mobile manipulator with
an “eye-in-hand” sensor. We have also presented an approach to generate metric-
dependent trajectories, that is, trajectories that compromise between moving the
base and moving the robotic arm.

There are several extensions to the proposed problems that we think would
be interesting to research. In this work, we assumed that the pdf modeling the
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object location was uniform, i.e. the probability of finding the object in a given
region was directly proportional to the size of the region. We believe that is
a good general a priori, given that to consider other types of pdfs, the type
of object should be taken into account. However, in a scenario where one or
more objects are searched several times, it should be possible to start the search
assuming an uniform pdf and modify it according to the places where the objects
are found. We leave this problem for future work.
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