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Abstract

In this paper we address the problem of finding time optimal search paths in known environments.
In particular, we address the problem of searching a known environment for an object whose unknown
location is characterized by a known probability density function (pdf). With this formulation, the time
required to find the object is a random variable induced by the choice of search path together with
the pdf for the object’s location. The optimization problem we consider is that of finding the path
that minimizes the expected value of the time required to find the object. Because the complexity of
the problem precludes finding an exact optimal solution, we propose a two-level, heuristic approach to
finding the optimal search path. At the top level, we use a decomposition of the workspace based on
critical curves to impose a qualitative structure on the solution trajectory. At the lower level, individual
segments of this trajectory are refined using local numerical optimization methods. We have implemented
the algorithm and present simulation results for the particular case when the object’s location is specified
by the uniform pdf.

keywords: Search, pursuit-evasion, path planning.

1 Introduction

In this paper, we address the problem of minimizing the expected value of the time required to find an object
in a known 2D environment modeled by polygons. This corresponds to finding a search trajectory that will
minimize the average time to find an object if the search is performed many times. We assume that the
search is performed by a mobile robot that is capable of recognizing the object, and that all prior knowledge
of the object’s position is encoded in a probability density function (pdf) defined on the environment. We
believe that the potential applications are many, from finding a specific piece of art in a museum to search
and detection of injured people inside a building.

In this paper, we deal mainly with the theoretical development of the planning algorithms to deal with this
problem. The implementation of our algorithms in a real robot would need significantly more development,
in particular, computer vision algorithms able to robustly detect the search object.

The work we report here represents a combination and an extension of our previous work. In [1],
we presented an approach to the problem of searching an object by sensing at discrete locations in a 2D
environment. In that case, we used a visibility-based decomposition of the polygon to convert the problem
into a combinatoric one. In [2] we extended our work to 3D environments. In [2], we again assumed that
the robot only senses at discrete locations.
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However, searching for an object with a robot that senses the environment continuously has advantages
over sensing only at discrete locations. A robot that senses at discrete locations can only find the object
when it reaches one of the locations, even if the object had entered its field of view long before. A robot
that senses the environment continuously can find the object as soon as the object is within its field of view.
Besides, in a continuous sensing scheme the robot may perform temporal integration of data, which allows
robustness in the sensing data processing needed to detect the object. In our formulation, we assume that
the robot is equipped with an omnidirectional sensor. Current technology provides these type of sensors, for
instance omnidirectional cameras [4, 5]. These are some of our motivations to propose a motion strategy,
where the robot senses the environment continuously as it moves.

In [3], we presented methods to find locally optimal continuous trajectories between adjacent regions in
a polygonal decomposition of the workspace. In the present paper, we present a two-level planner that gives
a full, heuristic solution to the problem of minimizing the expected time to find an object with a robot that
senses continuously the environment. Our main contributions are:

1. We claim that our work presents a new paradigm for search tasks. This corresponds to minimizing the
expected value of the time to find an object. It can be specially useful in applications where the time
assigned to the task is limited or not completely known.

2. We provide a two-level algorithm that determines an efficient ordering of visiting regions and then
generates locally optimal sub-paths to construct a complete efficient trajectory.

3. We provide an efficient procedure based on the calculus of variations to compute locally optimal paths.

1.1 Related work

The present work is placed in the area of path planning for mobile robots. In this area, a primary task
called navigation is to find a collision free-path for the robot to move from an initial to a final configuration.
Several works have addressed this problem [6, 8]. Some of them use road maps [6] to guide the robot from
an initial to a final configuration, others use potential functions to accomplish the task [7, 8]. Other works
attempt to optimize a criterion such as distance and/or robot turns [9] or clearance from the robot path to
the obstacles [14].

For the navigation problem, there are characteristics that can be added to make them more general, for
example, kinematic constraints on movement [12], sensing and control uncertainty [13], limited sensors [14],
moving obstacles [11], etc.

Similar to the work presented in [9], in this work we also propose semi-optimal paths (in our case locally
optimal), and as in [10] we carry out our optimization procedure in a reduced search space.

Nevertheless, we need to find collision-free paths to the move the robot as in [14, 6, 9, 13, 8]. Our main
interest is to address the problem of finding a static object in a known environment. Our goal is to make
the robot find an object as quickly as possible on average. This adds a new aspect to our planning problem.

Our search problem is related to art gallery problems, exploration, coverage and pursuit-evasion. The
traditional art gallery problem is to find a minimal placement of guards such that their respective fields of
view completely cover a polygon [15]. As we will see below in Section 4, guard placements could be used
in a partial solution to our search problem. A variation of the art gallery problem in which the task is to
find the minimal length path that covers the polygon is known as the shortest watchman tour problem [16].
This is not exactly our problem since, as we will see in Section 2.1, a trajectory that minimizes the distance
traveled may not minimize the expected value of the time to find an object along it.

In coverage problems (e.g., [17, 18]), the goal is usually to sweep a known environment with the robot or
with the viewing region of a sensor. In this problem, it is often desirable to minimize sensing overlap so as
not to cover the same region more than once. Our problem is related to the coverage problem in the sense
that any complete strategy to find an object must sense the whole environment.

Exploration problems usually involve the generation of a motion strategy to efficiently move a robot to
sense and discover its environment and construct a representation (model) of the environment [19, 20, 21, 22].
In exploration problems for the robot to move to an unexplored area, a local navigation problem must be
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solved. For instance, in [14] the authors propose algorithms for local path planning and map building
based on the Generalized Voronoi Graph (GVG). The authors also deal with robot kinematic constraints by
replacing the GVG’s arcs with smooth local paths that a car like robot is able to travel.

In exploration problems, unlike ours, the environment is not known a priori, and the objective is to
construct a complete representation rather than to find a specific target.

Finally, our research is somewhat related to the pursuit-evasion problem, where one robot or a team of
robots – the pursuers – are interested in finding other mobile robots – the evaders [23, 24, 25, 26, 27, 28, 29, 30].
In our problem the searched object is static. In some sense, this simplifies the problem (since once an area
has been seen, there is no worry that the object could move into that area), which allows us to consider the
more difficult optimization problem of minimizing the expected value of the time required to find the object.

In [31] a dynamic data structure (called the gap navigation tree GNT) is proposed. This data structure
corresponds to a minimal representation of the environment and allows the search of static targets. In the
present paper, the problem of finding a static object is also addressed, but unlike the work presented in [31],
instead of minimizing the distance traveled to find the object, in this paper, our goal is for the robot to
find the object as quickly as possible on average. Our new formulation of optimality can be very useful in
applications where the time assigned to the task is limited or not completely known.

The remainder of the paper is organized as follows. In Section 2 we give the mathematical definition
of our problem. In Section 3 we give an overview of our two-level solution approach. We then describe
the two levels of planning; in Section 4 we describe the top level, in which constraints on the qualitative
structure on the solution path are derived, and in Section 5 we describe the lower level, in which locally
optimal continuous trajectories are derived given these qualitative constraints. Finally, in Section 6 we
present simulation results.

2 Problem Definition

In this section we give the mathematical definition of the problem of minimizing the expected value of the
time required to find the object. We assume the robot is equipped with an omnidirectional sensor. We also
assume that the environment is 2D polygonal and known (i.e., the robot has a complete map) and that the
robot will recognize the object when it is visible. In our formulation, we assume that the environment is
know, but that we do not have any information about the search object location. Since there is no reason to
believe that one object location is more likely than another, we assign equal values to every location. This
is equivalent to defining an uniform probability density function (pdf) modeling the object location. In fact
this assumption is already known in the literature and called the principle of insufficient reason [32]. We
believe this reasoning is very general given that we do not need to assume a relation between a particular
type of object and its possible location, which will reduce the scope of the applications.

While, we believe that the formulation we develop in this section holds for arbitrary pdf’s, in the sequel
we will develop specific solutions for the case of a uniform pdf, since it is clear that additional work would
be required to do so.

If the robot follows a path S starting from initial position (x0, y0) at time t = 0 (see Fig. 1), we define the
random variable T to be the time at which the robot first sees the target object. The probability that the
robot will see the object before time t is given by P (T ≤ t) = FT (t), the cumulative distribution function
(CDF) of the random variable T ,

FT (t) =

∫ t

0

fT dt = P (T ≤ t).

Of course the probability of having seen the object prior to time t depends on the route S followed by the
robot. We therefore define the CDF along any given path as

FT (t|S) =

∫

V (S,t)

fXY (x, y) dx dy

in which fXY (x, y) is the pdf for the object’s location, and V (S, t) is the subset of the environment that has
been seen by the robot as it moves along S until time t. We say that at time t the path S has covered the
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Figure 1: A simple example of a point robot following a route S

region V (S, t), and in general we will use the term cover to denote that the robot has sensed, not necessarily
physically covered, a certain region.

In the particular case of a uniform fXY , the probability of seeing the object before time t is proportional
to the area of the environment that has already been seen,

V (S, t)

Total Area
= P (T ≤ t) = FT (t).

From the CDF FT we can obtain the pdf fT and calculate the expected value of the time to find the
object T following route S,

E[T |S] =

∫ ∞

0

t · fT |S(t|S) dt.

We are interested in finding the trajectory S that minimizes E[T |S], in other words, obtaining the path that,
on average, makes the robot find the object as quickly as possible. This amounts to the optimization

S∗ = arg inf
S

{E[T |S]} = inf
S

{
∫ ∞

0

t · fT |S(t|S) dt

}

. (1)

This is an infinite dimensional optimization problem. We have shown that even a discrete version of this
problem is NP-hard [1], and thus it is not practical to generate an optimal route. We will therefore present
algorithms that make a trade-off between optimality and tractability.

2.1 Expected Value vs. Worst Case

It is useful to note the difference between minimizing the expected value of the time to find an object and
minimizing the time it would take in the worst case. To minimize the worst case time, the robot must find
the shortest path that completely covers the environment (the shortest watchman tour problem [16]). This
usually means that no portions of the environment are given any priority over others and the rate at which
new portions of the environment are seen is not important. On the other hand, to minimize the expected
value of the time, the robot should gain probability mass of seeing the object as quickly as possible. For a
uniform fXY , this requires sensing large portions of the environment as soon as possible.

For a given environment, the route that minimizes the distance traveled typically does not minimize the
expected value of the time to find an object along it. This is illustrated in the example shown in Fig. 2. In
this example, there are two rooms, and these can be observed from viewpoints L1 and L2 respectively. The
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Figure 2: Example with a simple environment

probability of finding an object in a room is proportional to the size of the room. Assume that the robot
starts in the corridor at location L0 and moves with unit speed.

There are only two routes the robot might take to solve this problem: Go to the smaller room first,
L0 → L1 → L2, or go to the larger room first, L0 → L2 → L1. In the former case, the robot reaches L1 at
t = 1 and L2 at t = 7, and the expected value of the time to find the object is

E [T | (L0, L1, L2)] = (0.1)(1) + (0.9)(7) = 6.4.

The robot always completes its search by t = 7. In the latter case, the robot reaches L2 at t = 5 and L1 at
t = 11, and the expected time to find the object is

E [T | (L0, L2, L1)] = (0.9)(5) + (0.1)(11) = 5.6.

In the worst case, the robot completes its search at t = 11. Thus, as can be seen from this simple example,
the trajectory that is optimal in the distance traveled does not necessarily minimize the expected value of
the time to find the object.

3 Solution Overview

In general, it is not possible to solve (1) directly to obtain the globally optimal trajectory S∗. For this
reason, we have adopted a two-level approach that constructs an approximation to S∗. At the top level, we
use a decomposition of the workspace to impose a qualitative structure on our solution trajectory. At the
lower level, individual segments of this trajectory are refined using local numerical optimization methods.

If the environment is convex then everything can be seen from a single point, and the solution is trivial.
If the environment contains a single corner – nonconvex vertex1, as the one in Fig. 3 a), any path that covers
the polygon must reach one of the inflection rays (aspect graph lines) [33], either A1 or A2, associated to
the nonconvex vertex.

We call the area bounded by the inflection rays the corner guard regions [34]. In Fig 3 a) the corner
guard region is shown in gray. These regions have the characteristic that any point inside them can see “both
sides” of their associated nonconvex vertices. In Fig. 3 b), the inflection rays are the dotted lines (incident
to the vertices labeled A,B and C) that demarcate the corresponding corner guard regions shown in gray.

A sufficient and occasionally necessary condition for a searcher to view the entirety of a polygon is that
the searcher visit each corner guard region. This observation is the motivation for our top-level strategy.

1The nonconvex vertices are also called reflex vertices, those which internal angle is bigger than π. Those vertices are key in
our problem because they are the ones that break the environment convexity
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(a) An environment with (b) Inflection rays (dotted segments)
one nonconvex vertex associated with nonconvex vertices A, B and C

Figure 3: Optimal trajectories

Since a continuous path needs to visit the corner guard regions, it is important to decide in which order
they are visited. The problem can be abstracted to finding a specific order of visiting nodes in a graph that
minimizes the expected value of time to find an object.

We describe this strategy in Section 4. The basic idea is to select viewing locations Li associated to each
nonconvex vertex, and to determine the optimal ordering of visiting the Li locations.

Given the ordering on the locations Li, the low-level strategy constructs locally optimal paths between
regions. Each of these locally optimal path segments begins at the endpoint of the previous segment, and
terminates somewhere on the edge bounding the next region to be visited. The optimization is performed
using the Runge-Kutta method to numerically solve the Euler-Lagrange equations found using the calculus
of variations. This is described in Section 5. In Section 6 we present trajectories that are obtained when the
two levels are combined.

4 The Top-Level Trajectory

As mentioned before, our overall strategy is to partition the workspace with critical curves, calculate the
locally optimal trajectory in each region and then concatenate the sub-paths to construct the final trajectory.

Recall that to cover a polygon, it is sufficient that a trajectory visits at least one point inside each corner
guard region (as defined in section 3) associated to nonconvex vertices of the polygon.

To estimate the ordering to visit inflection rays (critical curves), we select discrete view locations Li, each
is associated to a nonconvex vertex. We place one Li near each nonconvex vertex inside its corner guard
region. We call these locations guards (from the art gallery problem [35]).

Thus, the high-level, combinatoric algorithm finds an ordering for the robot to visit the guards. Note that
when the robots travels the continuous path to cover the environment, it does not visit the exact location
of the guards but the inflection rays associated to them. The guards’ locations are only used to define an
ordering to visit the corner guard regions associated to them.

Fig. 4, shows a polygon with the two guards locations marked by an “x” and labeled L1 and L3. The
guards’ visibility regions are shown with two gray colors, and the visibility region intersection is shown in
white.

6



Figure 4: Guards (sensing locations) associated to nonconvex vertices and their visibility region V (Li)

4.1 Choosing an Ordering of Regions

Our algorithm to choose an ordering to visit regions builds on our previous research on expected value search
with mobile robots [1]. We use a utility function to drive a greedy algorithm in a reduced search space that
is able to explore several steps ahead without incurring too high a computational cost. Below, we describe
our efficient algorithm to define an order to visit sensing locations.

We define the visibility region for location Lj , denoted V (Lj), as the set of points that have an unoccluded
line of sight to Lj (the line segment connecting them does not intersect the exterior of P ). Thus, if the
object lies within V (Lj), the robot will successfully recognize the object from Lj . If the set {Li} is chosen
as described in Section 3, the associated visibility regions define a cover of P , i.e.,

⋃

j

V (Lj) = P.

Thus, a sufficient condition to ensure that the object is found is that the robot visit each Lj . In this section,
we give an algorithm for determining the optimal order in which the Lj should be visited.

For a given ordering of locations Li1 , Li2 . . . , we define T as the random variable that denotes the time
required to find the object by sensing successively at these locations2. For a given sequence, the expected
value of the time it takes to find the object is given by

E [T |S] =
∑

j

tjP (T = tj) (2)

where

P (T = tj) =
Area

(

V
(

Lij

)

\
⋃

k<j V (Lik
)
)

Area(P )
, (3)

assuming that the object’s location is specified by a uniform probability density on P . Here, tj is the time
it takes the robot to go from its initial position – through all locations along the route – until it reaches the
jth visited location Lij

, and P (T = tj) is the probability of seeing the object for the first time from location
Lij

. Since the robot only senses at specific locations, we also denote this probability of seeing the object for
the first time from location Lij

as P
(

Lij

)

.
In the remainder of this section we first describe a complete algorithm for determining the optimal ordering

of viewing locations, and show that the underlying problem is NP-hard. We then give a heuristic algorithm
with near real-time performance, and present results that demonstrate its efficiency and effectiveness.

2We use the notation Lj to refer to a particular sensing location in the environment, while Lik
refers to the kth location in

the visitation sequence. That is, the robot always starts at Li1 , and the kth location it visits is referred to as Lik
.
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4.2 Computing the Optimal Sequence

Given the set {Li}, determining the sequence that minimizes the expectation given in (2) can be solved
using combinatorial search on a graph with dynamic weights. The graph is constructed as follows.

(1) For each location Lj , create a node Nj in the graph.

(2) For each pair of nodes Nj and Nk, add an edge with variable weight Wjk .

(3) The weight Wjk is dynamic; it depends on the route followed by the robot before reaching Nj . These
weights are calculated on-line.

Figure 5: Example for the dynamic weight W23

The weight Wjk should correspond to the increase in expected time the robot incurs by going from Lj

to Lk (i.e., the partial calculation of (2) along the current route). This is a function of the time at which
it arrives at Lk, which in turn depends on the route followed by the robot up to that point. For example,
consider the abstract environment in Fig. 5. In the figure, the nodes represent locations and the arcs represent
the time it takes to move from one location to another3. If robot starts in location L0 at time t = 0, it can
take two paths to location L2 and the increase in expected value of time W23 to go from L2 to L3 depends
on which route the robot follows. If the robot goes directly from L0 to L2, it reaches L2 at time t = 2.0, and
the increase is W23 = 2.0 · P (L3). On the other hand, if the robot goes from L0 to L1 and then to L2, it
reaches L2 at t = 4.0, so the the increase in expected value of time to reach L3 from L2 is W23 = 4.0 ·P (L3) .

Given this graph, we must find the path of minimum cost that starts at the robot’s initial location Li1

and includes all other locations. This can be accomplished with a branch and bound graph search [41]. This
search strategy maintains a list of nodes to be opened, ordered by their accumulated cost. The next node
to be expanded (i.e., the one whose accumulated cost is currently minimal) is always at the head of the list.
When a node is expanded, only those nodes that are adjacent and not already included in the current path
are considered children. The added cost Wjk of expanding a child Nk from its parent Nj is given by

Wjk = T ime (Nk) · P (Lk)

T ime (Nk) = T ime (Nj) +
Dist (Lj , Lk)

Speed
.

Then, the accumulated cost for the child is

Cost (Nk) = Cost (Nj) + Wjk ,

with a cost of zero for the node corresponding to the initial position, Cost (Ni1) = 0.

3In general, the robot may not be able to travel between two locations by following a straight line. In such cases, we use a
reduced visibility graph [36] and Dijkstra’s Algorithm to follow the shortest path between them to compute these values.
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Initially, the branch and bound list contains only the starting location. Then, the head of the list is
expanded and its children added to the ordered list until a solution is found – a path that contains all
locations in {Li} When a solution is found, the currently best nodes still continue to be expanded until

(a) a lower cost solution is found, in which case the better solution is saved and the process continues, or

(b) the lowest cost node is worse than the current solution, in which case we know that the current solution
is optimal.

This algorithm finds the optimal solution – the one that minimizes the expected time to find the object.
Unfortunately, its space and time complexities are not of polynomial order. Furthermore, the problem itself
is intractable, more specifically, it is NP-hard, as we now show.

Figure 6: Polygon (one instance of our problem) corresponding to the MWHP problem

Proposition: Finding the sequence that minimizes the expectation given in (2) is an NP-hard problem.
Proof: We prove the proposition by a reduction from the minimum weight Hamiltonian path problem
(MWHP), which is known to be NP-hard [37].

Consider a set {Li}, for i = 1 . . . n, such that V (Li)∩V (Lj) = ∅, for all i 6= j, and for which P (Li) = 1/n
(i.e., the probability of seeing the object is equally likely for all locations). This reduction is illustrated in
Fig. 6. The environment on the left consists of four “rooms” that are equally likely to contain the object.
In the graph on the right, nodes correspond to these rooms, and edges are weighted by the time required to
travel between rooms.

In this special case, the ordering that minimizes the expected time to find the object will be exactly
the same as the one that minimizes the distance traveled. This can be seen by letting P (T = tj) = 1/n in
(2), and noting that the sum depends only on the accumulated time to traverse the sequence. Thus, this
particular instance of our problem is identical to the MWHP problem (merely set edge weight for the edge
from vi to vj to the time required to move from Li to Lj). If a polynomial time algorithm were to exist for
our problem, it would thus be possible to solve MWHP in polynomial time.
�

Given that our problem is intractable, we now turn our attention to a heuristic algorithm that finds an
approximate solution.

4.3 A Heuristic Algorithm

In this section we describe a heuristic algorithm that has proved to be both effective and efficient in practice.
At the heart of the algorithm is a utility function that gives an estimate of the benefit gained by visiting a
specific Li. This utility function gives rise to the notion of dominating strategies, which can be used to limit
the nodes that are explored by the search algorithm. Following the description of this algorithm, we present
results that quantitatively demonstrate the algorithms performance against the exact algorithm described
above in Section 4.2.
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At first, it might seem intuitive to assign to location Li a utility value that is inversely proportional to the
increase in the partial calculation of (2) along the current route. This approach performs poorly in practice,
because the product in (2) causes locations with low probability to be given high utility value, thus causing
the exploration strategy to begin by looking in the least likely locations. A more effective utility function
balances the desire for a high probability of finding the object against the desire to minimize search time.
Thus, we define the utility of moving from location Lj to location Lk as the ratio

U (Lj , Lk) =
P (Lk)

T ime (Lj , Lk)
. (4)

A robot using this function to determine its next destination will tend to prefer locations that are close
and/or locations where the probability of seeing the object is high.

The utility function (4) is directly related to the expectation of (2). Consider the alternate definition of
expectation for a non-negative random variable, such as time, from [38]

E[T |S] =

∫ ∞

0

P (T > t|S)dt =

∫ ∞

0

(

1 − FT |S

)

dt (5)

in which FT |S is a cumulative distribution function that depends on the specific route followed. In our
problem, every valid trajectory S defines a particular cumulative distribution function of finding the object,
FT |S . Since we are dealing with a discrete problem, the distributions are piecewise constant, with the dis-
continuities being the times at which the robot reaches the distinct Li along the route. By (5), the expected
value of a random variable with distribution FT |S is the area under the curve 1−FT |S , shown in Fig. 7, and
it is this area that we wish to minimize.

Figure 7: The function 1 − FT |S

The utility function in (4) can be used to define a 1-step greedy algorithm. At each step, simply evaluate
the utility function for all available locations and choose the one with the highest value. This algorithm has a
running time of O

(

n2
)

. However, in general it is preferable to use a multi-step look ahead. Unfortunately, this
typically increases the complexity of the algorithm by a factor of O(n) for each look ahead step. Therefore,
we use the notion of dominating strategies to reduce the branching factor at each stage of the look ahead.
In particular, if the current location is Lj , we say that location Lk strictly dominates location Ll if both of
the following conditions are true

P (Lk) > P (Ll) ,

T ime (Lj , Lk) < Time (Lj , Ll) ,

i.e., if the time required to travel to Lk is smaller than that required to travel to Ll and the probability of
seeing the object from location Lk is greater than the probability of seeing it from Ll.
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Figure 8: Location dominance

If we plot unexplored locations on the “time-probability” plane as shown in Fig. 8, it is easy to see that
dominating locations will lie on the convex hull of the set of unexplored locations. The endpoints of this
partial convex hull are not considered as candidates since they are not defined locations. By only considering
this subset of the remaining locations at each step, we reduce the branching factor, making it possible to
explore more steps ahead without incurring too high a computational cost. Of course, there is no guarantee
that the optimal solution is indeed a member of this reduced search space or even that this will yield better
results. However, we have found it to be a good heuristic in practice, as we will show below.

Figure 9: Exploration algorithm

The full algorithm consists in iteratively exploring several steps ahead, choosing the most promising route
up to that point and starting over from there. For n locations, if the branching factor (average number of
children per node) is B, a tree of height logB n can be explored in linear time. This creates a partial route of
length logB n. Since a solution should be of length n, the process needs to be repeated n

logB n
times for the

complete route. This is depicted in Fig. 9. In the figure, the larger triangle represents the tree that would
be generated if a complete exploration were made, whereas the small triangles represent the trees that are
actually generated (explored) by the algorithm.
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Thus, our final algorithm is as follows:

(1) For the last location along the current solution (initially just the robot starting location) explore the
possible routes (create a tree breadth-first) until the number of nodes is of order O(n).

(2) For each node that needs to be expanded, compute the set of locations that are not strictly dominated
by others and only choose those as children. This can be done with a convex hull algorithm with
complexity O (n log n) .

(3) When the number of nodes in the exploration tree has reached order O(n), choose the best leaf according
to the heuristic in (4), discard the current tree and start over with the best node as root.

The complexity of the algorithm is proportional to exploring a tree of order O(n), choosing the best
children for each node in the tree with a convex hull algorithm in O (n log n) and repeating n

log n
times to

generate a complete route. This is

O

(

n · n log n ·
n

log n

)

= O
(

n3
)

.

In the worst case, when the branching factor is not reduced at all, our algorithm only explores one step
at a time and has a running time of

O (n · n log n · n) = O
(

n3 log n
)

. (6)

This analysis only considers the time complexity of the search algorithm itself. It does not include the time
complexity of performing polygon clipping operations, which are required to compute the actual probabilities
of seeing the object for the first time from location Li. To date, we have implemented our algorithm only for
the case of a uniform probability density function of the object’s location over the environment; consequently,
the probability of seeing the object from any given location is proportional to the area of the visibility region
from that location (point visibility polygon [39]). The probability of seeing the object for the first time
from location Lij

is proportional to the area visible from Lij
minus the area already seen from locations

Lik
∀k < j, as stated in (3). This requires polygon clipping operations to compute set unions and differences.

Any clipping algorithm supporting two arbitrary polygons must have a complexity of at least O(n m) where
n and m are the number of vertices in each polygon [40]. The cost of performing these clipping operations
must be added to the complexity in (6) to describe the total complexity of the algorithm when applied to
general polygons. One of the polygons in every operation will be a point visibility polygon, with at most n
vertices – the same as the number of vertices in the polygonal environment.

We have implemented this approach using standard routines for computing visibility polygons, the re-
duced visibility graph and shortest paths (Dijkstra’s algorithm) [41]. To compute the union of visibility
regions, we used the gpc library developed by Alan Murta based on an approach proposed in [42].

4.4 Numerical Results: Combinatoric Layer

We tested our algorithm using the polygonal world shown in Fig. 10. The black regions correspond to the
obstacles and the small circles to the sensing locations Li.

In this example, we chose a subset of nonconvex vertices whose visibility region union totally cover the
environment. We have chosen a small subset, 10 locations 4 to be able to compute the globally optimal paths
and compare them against the result obtained by our algorithm.

For comparison, we computed three routes: (a) the route that minimizes the expected value of the time
to find the object (i.e., the optimal solution), (b) the route that minimizes the distance traveled, and (c) the
route generated by our heuristic algorithm. These are shown in Figs. 10 (a)-(c), respectively. The results
are summarized in Table 1, where for each route we show the expected value for the time required to find

4This order of magnitude is the maximum for problems for which one can hope to find the globally optimal solution, due to
computational complexity
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(a) (b) (c)

Figure 10: Routes to search for an object by different criteria: the optimal expected value of time (a), the
optimal distance traveled (b) and the heuristic utility function (c)

the object, the total distance traveled (which is proportional to the worst-case time to find the object), and
the required computation time. With respect to the optimal solution, the route generated by our algorithm
is about 4% worse in expected value of the time to find the object, and about 7% worse in distance traveled.
However, in execution time, our algorithm is more than 2000 times faster. With respect to the minimum
distance route, the route generated by our algorithm is about 1% better in expected value of the time to
find the object, even though it is about 30% longer in distance traveled. In execution time, our algorithm is
more than 1000 times faster.

Strategy Expected Time Dist. Traveled Processing (sec)
Optimal Expected Time 943.21 2783.20 892.82

Optimal Distance 994.79 2273.09 488.87
Heuristic Algorithm 982.21 2970.43 0.44

Table 1: Comparison between the three strategies

4.5 Decomposing a Polygon into Regions for Continuous Optimization

As we have described above, we divide the environment using inflection rays (such as the segment A1 in
Fig. 11) a), which delimit corner guard regions. The corner guard regions are used as sub-goals that the
robot must visit to cover the whole environment.

In the continuous optimization of the local paths, we compute, by means of an integral, the increase of
the area seen as the robot moves and the locally optimal robot trajectory (see Section 5). To do so, we
triangulate the environment. Every triangle area is compute rotating a line passing through a nonconvex
vertex. Hence, in our division of the environment, we also use lines connecting nonconvex vertices and convex
vertices.

These lines delimit regions where the edge being seen “through” a nonconvex vertex changes. A segment
line connecting a nonconvex vertex and a convex vertex is labeled R1 in Fig. 11 a). In Fig. 11 a), the edge
seen through nonconvex vertex G1 while the robot is inside the shaded region is E1, but as the robot moves
out of this region, the edge seen through G1 changes to E2. These lines are important because the visibility
region generated by the nonconvex vertex will change non-smoothly when the robot crosses one of them.
Hence, the integral used to compute the increase of the area seen (as the robot moves) changes its form.
Note that this second kind on lines are only used to compute local optimal paths, they are not needed to
establish an ordering to visit regions. If the robot is moving between two sub-goals and it encounters one
of such lines then a new portion of the local optimal path is computed based on the polygon’s segment
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Figure 11:

associated to this line, but the robot continuous its path toward the next corner guard region. Recall that
the ordering to visit regions is defined by the top-level layer.

When the polygonal workspace contains more than one nonconvex vertex, as shown in Fig. 11 b), then
we generate paths that are optimal for only one corner at a time, shown in Fig. 11 b). This strategy ignores
the area visible behind other corners for the purpose of generating paths. The advantage of this policy is
that it can be “guided” to follow a certain order of nonconvex vertices. The top-level, combinatoric layer
attempts to find global optimality by forcing a specific ordering for the low-level, continuous layer. Without
this ordering, the end result would be a purely greedy algorithm that follows the visibility gradient 5 and
does not consider the amount of area visible in the future and the cost (distance) to travel the path.

We use this approach to make the robot follow an ordering of regions that globally reduces the expected
value of time.

5 Optimizing the local paths

Once a visitation order for the Li has been established by the top-level algorithm, it is necessary to generate
a continuous path that successively visits the corresponding regions delimited by the inflection rays. In this
section, we formalize the problem of generating locally optimal segments of this continuous path. Since the
Li correspond to nonconvex vertices in the environment, we consider here the case in which the robot will
move around such a corner from one region to another. The final, global path will be a concatenation of
these local paths. Below, we first derive the Euler-Lagrange equations that are satisfied by locally optimal
paths, and we then present numerical methods for their solution.

5.1 Conditions for Optimality

The problem we consider is shown in Fig. 12. In this case, the robot moves around a nonconvex vertex
(corner) to explore the unseen area A′. For now, we assume that this is the only unseen portion of the
environment.

5The visibility gradient is a vector that yields the maximal local reduction of the shadow caused by a visibility obstruction
(nonconvex vertex). In symbols ∇f(V (Sr(q)|v, E), where V (Sr(q)|v, E) is the visibility polygon which reduction depends on
the robot path Sr(q), given the nonconvex vertex position v and the environment E. The direction of ∇f is the orientation in
which the directional derivative has associated the maximal local shadow area reduction.
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Figure 12: Base case for a continuous sensing robot

Clearly, any locally optimal path for this problem will have the property that the unseen portion of the
environment A′ decreases monotonically with time (otherwise, the robot would be wasting time exploring
previously seen areas). As can be seen in Fig. 12, as the robot moves around the corner, A′ decreases
monotonically if and only if the angle from the corner to the robot increases monotonically. For this reason,
it is natural to express the path in polar coordinates (r, θ) with the origin at the corner. For the moment, let
us assume that the robot will have a starting position such that its line of sight will only sweep the horizontal
edge E1. While the analysis is only valid for an axis-parallel edge, it can be easily adapted to the general
case.

Let Qx(t) and Qy be horizontal and vertical distances from the origin to the point where the robot’s line
of sight through the origin intersects E1. The area of the unexplored region A′(t) (which corresponds to the
probability mass of seeing the object and therefore the gain) is

A′(t) =
QyQx(t)

2
. (7)

As can be seen in Fig. 12,

tan (α(t)) =
Qx(t)

Qy

and
α(t) =

π

2
− θ(t).

Since tan
(

π
2 − θ(t)

)

= 1
tan(θ(t)) , we have tan (θ(t)) =

Qy

Qx(t) , and (7) can be written as

A′(t) =
QyQx(t)

2
=

Qy
2

2 tan (θ(t))
.

For the case when the probability density function of the object’s location over the environment is
constant, the probability of not having seen the object at time t is

P (T > t|S) =
A′(t)

A
=

Qy
2

2A tan (θ(t))
, (8)

where A is the area of the whole environment.
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Finally, from (5) and (8),

E[T |S] =
Qy

2

2A

∫ tf

0

dt

tan (θ(t))
. (9)

Equation (9) is useful for calculating the expected value of the time to find an object given a robot
trajectory S expressed as a parametric function θ(t).

The calculus of variations [43] is a mathematical tool employed to find stationary values (usually a
minimum or a maximum) of integrals of the form

I =

∫ b

a

F (x, y, y′)dx, (10)

where x and y are the independent and dependent variables respectively. The integral in (10) has a stationary
value if and only if the following Euler-Lagrange equation is satisfied,

∂F

∂y
−

d

dx

(

∂F

∂y′

)

= 0. (11)

In our case, we cannot apply the prototypical Euler-Lagrange equation directly to expression (9) for two
reasons. First, r and θ are expressed as parametric equations, instead of one as a function of the other. This
is not really a problem, because expressions very similar to (11) can be derived to accommodate the case of
parametric functions [43]. The real problem is that (9) does not impose any constraints on the parametric
equations describing the robot motion. The optimal trajectory without any constraints would be one where
θ increases infinitely fast.

Figure 13: Generalized motion of a particle moving along path S

To address both of these problems, we introduce the constraint that the robot moves with constant
(unitary) speed.6 To do this, we express its velocity vector as a generalized motion [44] in a basis where one
component Ur is radial from the origin and the other Uθ is perpendicular, as shown in Fig. 13. Both Ur and
Uθ are unit vectors and define an orthogonal basis. In this basis, the robot’s velocity (in polar coordinates)
is described as

V = ṙUr + rθ̇Uθ.

The constraint that the robot speed is constant can be expressed as

‖V ‖ = ṙ2 + r2θ̇2 = 1. (12)

Starting with (12), it is possible to express the differential of time as a function of a differential of θ.
This will allow us to rewrite the parametric equation as a function in which θ and r are the independent and

6Note that by proceeding in this manner, we are considering the cost of moving the robot.
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dependent variables respectively,

1 =
(dr)2

(dt)2
+ r2 (dθ)2

(dt)2
,

(dt)2 =
(

(dr)2 + r2(dθ)2
) (dθ)2

(dθ)2
,

(dt)2 =
(

r′
2

+ r2
)

(dθ)2,

dt =
(

r′
2

+ r2
)

1

2

dθ, (13)

where r′ = dr
dθ

. Substituting (13) into (9), we obtain an expression for the expected value of time to find an
object where the robot’s trajectory S is expressed as r being a function of θ,

E[T |S] =
Qy

2

2A

∫ θf

θi

1

tan(θ)

(

r′
2
+ r2

)
1

2

dθ. (14)

To find stationary values of (14), we use equation (11) with x = θ, y = r and F = 1
tan θ

(

r′
2

+ r2
)

1

2

.

After simplification, this yields the second order non-linear differential equation

r′′ = r +
2r′

2

r
+

2

sin(2θ)

(

r′ +
r′

3

r2

)

. (15)

Solutions to (15) define stationary values for the expected value of time in (14). If this is coupled with a
sufficient condition for optimality (like the transversality condition [46]), then we will obtain the route to
move around a nonconvex vertex (corner) to search the area on the other side optimally.

Since closed-form solutions do not exist for (15), we now turn our attention to numerical solutions.

5.2 Numerical Integration

We solved equation (15) numerically using an adaptive step-size Runge-Kutta method [45]. Since this
equation is of second order, any numeric approach that integrates it as an initial value problem requires
two initial conditions: r(θi) and r′(θi). We know the staring point r(θi) and the integration range (θi, θf ),
but we do not impose any other constraints on the trajectories other than unitary speed. Therefore, the
possible solutions are a family of curves that depend on the value of the first derivative at the beginning of
the integration range r′(θi). These are shown in Fig. 14.

Most of the possible solutions diverge long before they reach the end of the integration range. In fact,
it is evident from (15) that the solution is not defined there (at θf = π

2 ). However, it is possible to get
arbitrarily close, and to do so, the first derivative at the end of the integration range must be such that
the trajectory approaches the target manifold (the vertical line in Fig. 12) perpendicularly. This translates
to stating that r′(θf ) = 0. In fact, the transversality condition for the Euler-Lagrange equation establishes
that, in order to satisfy the equation and obtain a minimum, the solution function must be perpendicular to
the target manifold at t = tf [46].

This observation allows us to integrate equation (15) as a two point boundary value problem, where we
specify the position at the beginning of the integration range r(θi) and the first derivative at the end r′(θf ).
For this, we coupled the Runge-Kutta algorithm with a globally convergent Newton-Raphson method [45].

Fig. 15 a) shows the paths generated for six different starting positions in solid black lines. To save space,
the figure only shows the upper right portion of an environment similar to that in Fig. 12 (the units on the
axes are arbitrary).

To verify the accuracy of this solution, we have also found optimal trajectories using simulated annealing
[47], and compared these to the trajectories found using numerical integration. In our implementation, we
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Figure 14: Family of curves depending on initial conditions

(a) Numerical integration (b) Simulated annealing

Figure 15: Optimal trajectories

have defined the solution trajectory using a set of control point that collectively define the system state.
The results are shown in Fig. 15 b). As can be seen, the general shape of the trajectories generated for
six different starting positions by our numerical integration (solid lines) and simulated annealing (control
points) are very similar. We should point out, however, that each simulated annealing run took more than
an hour whereas the numeric integration is done in a fraction of a second. As mentioned before, the figure
only shows the upper right section of an environment, like that in Fig. 12 of arbitrary dimensions.

6 Simulation Results

This section presents an example of how our proposed two-layered approach can be used to generate a
continuous trajectory that covers a polygon with the goal of reducing the expected value of the time to find
an object along that trajectory.
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Figure 16:

Fig. 16 a) shows a polygon and a staring position P (near the bottom). We selected one Li near each
nonconvex vertex and used the algorithm described in Section 4 to find an efficient ordering for visiting
the Li. This algorithm returns a complete ordering, all the sensing locations (called guards) associated to
the nonconvex vertices are included once. However, the set {Li} can be redundant; since sensing is done
continuously the polygon may be completely covered before all Li have been visited. As a consequence,
some of the Li late in the ordering may not need to be visited. This is the case of guards L4 and L5 in the
figure. Note that the computed ordering is still valid, since the redundant sensing locations are the last in
the ordering – the least important to minimize the expected value of time to find the object.

Once an ordering has been established, the trajectory is generated piecewise according to which guard is
to be visited. The robot does not actually travel towards the guard, but rather it goes around its associated
nonconvex vertex in a locally optimal trajectory, as described in section 5. A locally optimal portion of the
complete path is generated for every edge seen through the current nonconvex vertex. For example, in Fig. 16
b) as the robot moves from the starting position P, in the shaded region, the section of the environment
that will be visible through guard L1 is bounded by edge E1, that is, as the robot moves, its line of sight
through the corner will “sweep” edge E1 until it reaches edge E2. At this point, the shape of the current
sub-path changes as it is now edge E2 that will be swept. When the trajectory reaches one of the inflection
rays associated with the nonconvex vertex of the current guard, the process starts over with the next region
in the ordering.

Fig. 17 a) shows all the path segments (A through F ) generated for the polygon and the guards to which
they correspond. There may be occasions, such as portion E, where the locally optimal trajectory would
leave the polygon. In this case, the route is saturated and made to follow the polygon boundary. Note that
the endpoints of each path portion correspond to critical events, which occur at inflection rays or when there
is a transition between the edges that are currently been seen through the corner.

Fig. 17 b) shows the final trajectory. The zig-zag motion is not necessarily bad because a good path must
find a compromise between advancing to the next region and sensing a larger portion of the environment as
soon as possible.

For this particular example, the expected value of the time to see the object along the shown path is 115.3.
This contrasts with the expected value along the straight line segments shown in Fig. 16 a) (L1 → L2 → L3),
which turns out to be 136.9.
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Figure 17:

7 Discussion and Conclusions

We addressed the problem of continuous sensing for expected value search in polygonal environments. This
problem involves the generation of a motion strategy that minimizes the expected value of the time to find
an object.

We presented a two-level algorithm that determines an efficient ordering of visiting regions and then
generates locally optimal sub-paths to construct a complete trajectory.

The final trajectory is not globally optimal for two reasons. First, since the discrete version of the problem
is NP-hard, we proposed a heuristic algorithm. Second, we chose to decouple the task of finding an ordering
and moving between regions (bounded by inflection rays).

Obviously, the optimal paths will depend on the general shape of the polygon. For example, in polygons
where most of the area is visible towards the end of the trajectory a motion strategy that moves the robot
in the visibility graph will yield good results. This happens because it is reducing the distance to travel up
to the point where it is more likely to find the object. In contrast, if the majority of the visible area lies near
the starting point a completely greedy algorithm that follows the visibility gradient will perform better. In
our case, the high-level, combinatoric layer attempts to find global optimality by forcing a specific ordering
for the low-level, continuous layer. Without this ordering, the end result would be a purely greedy algorithm
that does not consider the amount of area visible in the future and the cost (distance) to travel the path.
For this reason, our algorithm presents a useful trade-off. Furthermore, our locally optimal paths are better
than traveling in straight lines (the shortest paths in euclidean sense).
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