
A Sample-based Convex Cover for Rapidly
Finding an Object in a 3-D Environment

Alejandro Sarmiento†, Rafael Murrieta-Cid‡ and Seth Hutchinson†
†Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign
Urbana Illinois, USA

{asarmien, seth}@uiuc.edu
‡Mechatronics Research Center

ITESM – Estado de México Campus
Atizapán de Zaragoza, Estado de México, México

rafael.murrieta@itesm.mx

Abstract— In this paper we address the problem
of generating a motion strategy to find an object in
a known 3-D environment as quickly as possible on
average.

We use a sampling scheme that generates an
initial set of sensing locations for the robot and
then we propose a convex cover algorithm based
on this sampling. Our algorithm tries to reduce the
cardinality of the resulting set and has the main
advantage of scaling well with the dimensionality of
the environment.

We then use the resulting convex covering to gen-
erate a graph that captures the connectivity of the
workspace. Finally, we search this graph to generate
trajectories that try to minimize the expected value
of the time to find the object.

Index Terms— Motion Planning, Sensor Planning,
Convex Cover, Hidden Guard Sets, Monte Carlo
Approach

I. Introduction

This work builds on our previous research on ex-
pected value search with mobile robots. We define the
problem as follows: Given a mobile robot with sensing
capabilities, a known environment and recognizable
object in an unknown location, generate a motion
strategy to find the object in the least amount of time
on average.

We describe the object as a probability density func-
tion of its location over the environment; and we try to
find a trajectory that minimizes the expected value of
the time it takes to find it. We believe that minimizing
the expected value is better than minimizing the total
distance traveled (i.e. the worst-case time) because the
robot stops once the object is found. Most times, it
will not have to sense the whole environment. In [8] we
proved that the two policies are not equivalent, that is,
a trajectory that minimizes the distance traveled may
not minimize the expected value of the time to find the
object.

In [9] we proposed an approach to solve this prob-
lem in a polygonal environment. The basic idea was

to define a set of sensing locations from which the
whole environment is covered. We then defined a graph
over these locations and used a greedy algorithm in a
reduced search space able to explore several steps ahead
without incurring too high a computational cost.

The present work builds on the same problem but in
a three dimensional workspace. For this, we also define
a set of sensing locations that cover the space, link
them in a graph and perform a graph search to generate
trajectories. The difference is that, in order to generate
the sensing locations and calculate the size and shape
of their visibility regions, we propose a probabilistic
scheme instead of a deterministic one as before.

A. Approach Overview

To address the problem of rapidly searching for an
object in a 3-D setting, we will use the sampling
strategy proposed in [11] to cover the environment
and provide probabilistic bounds on how good the
coverage is. In our case, this strategy is also useful to
determine an initial set of sensing locations that cover
the environment.

Then, we will present an algorithm to transform
this initial coverage into a convex decomposition of
the space and define a new set of sensing locations
that will be connected in a graph. Finally, we use
our previously proposed greedy approach to search the
resulting graph and generate trajectories that try to
minimize the expected value of the time to find an
object in the environment.

The convex cover and subsequent graph abstraction
capture the connectivity of the workspace. There have
been many related approaches that connect samples
to capture connectivity of high dimensional spaces, for
example, [4], [3] and [5] just to name a few. Our work is
different in several aspects. First, we are interested in
representing the workspace for searching an object, not
in abstracting the configuration space for path planning
purposes. Second, most techniques throw away “use-

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 3497

less” samples, we keep all of them since we need to
estimate the size of volumes. Finally, we can determine
a clear-cut threshold of when it is no longer useful to
continue sampling (as described below).

II. Sampling the Environment

We use probabilistic sampling to decompose the
workspace into convex regions and to estimate the
size of those regions. Our main motivation for sam-
pling is the high computational complexity of visibility
queries in three dimensions [2]. As mentioned before,
we implemented the sampling strategy in [11] originally
proposed to construct a probabilistic roadmap in the
configuration space. The difference in our case is that
we will sample the workspace (not the configuration
space) and keep all samples, as opposed to throwing
away those that do not join important configurations.

A. Sampling that Covers the Environment

In order to capture the size and shape of the work-
space W, we generate a set of independent, uniformly
distributed samples S in the interior of W. Among these
samples, we choose a hidden guard set G. A set is
called a hidden guard set if it covers the environment
and individual member of the set are not visible to
each other. Since we are approximating W with sample
points, for the set G to cover the environment, every
sample in S must be visible to at least one guard in G.
That is, ⋃

gi∈G
V is (gi) = S,

where V is (gi) is the set of points in S whose line
segment to gi does not intersect the exterior of the
workspace

(
W
)
. Also, since guards must not be mu-

tually visible, gi /∈ V is (gj) ∀j 6= i.
The algorithm to generate samples and the hidden

guard set is as follows:
(1) Initialize the sample set S to empty.
(2) Initialize the hidden guard set G to empty.
(3) Set the counter of the number of consecutive

visible samples n to zero.
(4) While n is less than a constant m,

(4.1) Generate a uniformly distributed random
sample in the interior of W.

(4.2) If the sample is visible from at least one of
the current guards in G, add it to the sample
set S and increment n.

(4.3) Else, add it as a new guard to G and reset
n to zero.

(5) Return.
It is evident that this algorithm will generate a set

of hidden guards that see all the other samples and
– with a large enough m – the vast majority of the
environment.

To determine how well the workspace has been cov-
ered, consider an environment of unit volume like the
one shown in Fig. 1. Suppose that the portion of the
environment that is visible from the guard set is A and
has measure µ(A) = 1− ε , while B is another portion
with measure µ(B) = ε that is not yet visible and does
not contain a single sample point.

If samples are drawn independently, the probability
of m consecutive points not falling into the uncovered
region B is P (Am) = (1 − ε)m. After m consecutive
samples, it is still possible that the actual size of B is
greater than ε, but with a large m, we can bound this
probability with a small value α. For this, we determine
m as follows,

(1− ε)m ≤ α

m log(1− ε) ≤ log(α)

m ≥ log(α)
log(1− ε) .

Therefore, choosing a large enough m we can expect
with certainty (1−α) that the size of the unseen region
B is at most ε.

B. First Approach for Generating Trajectories

The algorithm above returns a set of guards that
with high certainty cover the vast majority of the
environment, and we can estimate the size of the
visibility region of each guard (and their intersections)
with a Monte Carlo approach [1]. This is sufficient to
generate an efficient trajectory that tries to minimize
the expected value of the time to find an object.

However, we would like to have more flexibility in the
possible routes that the robot must follow. We would
like to have the robot visit a region, as opposed to a
single point (the guard). For this reason, we decided to
decompose the space into overlapping convex regions,
that is, a convex cover.

III. Sample-based Convex Cover

The algorithm we propose for the sample-based con-
vex cover is based on the idea that there is a dual

Fig. 1. An environment of unit volume and the sizes of covered
(A) and uncovered (B) regions

3498

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Convex cover algorithm

between a maximum hidden guard set and a minimum
convex cover. It has been proved that a minimum
convex cover is an NP-hard problem [6], therefore our
aim is just an efficient algorithm that tries to generate
as few convex regions as possible, without any guaran-
tee of optimality. Nevertheless, we have found that in
practice, our algorithm does find a minimal cardinality
set in many instances.

A. Convex Cover Algorithm

Given our strategy of stochastically choosing a hid-
den guard set, there will be a neighborhood around each
guard that only that particular guard can see (since a
small perturbation on a guard is not likely to make it
visible to the others). Likewise, provided an adequate
number of samples, there will be a set of sample points
that only one particular guard can see. We call this set
of points, the kernel of the guard, and denote it as

Ker (gi) = V is (gi) \
⋃

j 6=i
V is (gj) .

In any minimum convex cover C, each convex region

Ci has a set of points only contained in that particular
region. Otherwise, region Ci could simply be removed
and the cover would not have been minimal. Although
we know there is not an exact equivalence, we use guard
kernels as an approximation to these unique subsets.
Thus, the main idea behind our convex cover algorithm,
is that by “growing” convex regions around the guard
kernels, we can generate a low cardinality convex cover.

The following description of our algorithm is depicted
in Fig. 2. In the figure, guards are circles and samples
small squares. The current guard, as well as its kernel
are highlighted.

(1) Choose the guard g with the largest kernel (Fig. 2
(a)), g = argmaxj {|Ker (gj) |} and compute the
convex hull QO = Conv (Ker (g)) of the kernel.
For this, we start with the guard and add kernel
samples to the current convex hull using the
iterative algorithm described in [7]. Each kernel
point adds new edges to the current hull, and we
check to make sure that they do not collide with
facets of the environment.

(2) At some point, the convex hull may collide with
the obstacle region (Fig. 2 (b)), that is Q0

⋂
W 6=

(a)

(b)

Fig. 3. A polygon (a) and the covering convex regions generated
(b)

3499

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. An environment (a) and the eight covering convex regions generated (b) – (i)

3500

φ. In this case, we move the guard g to a random
location inside the kernel but outside the current
hull (Fig. 2 (c)). This does not violate the hidden
property because the kernel was only visible to
this guard. Then, we re-process the rest of the
samples with the algorithm described in section
II-A. After this, at least one new guard will be
generated and added to G (Fig. 2 (d)) because
the original guard g can no longer see all the
previous kernel points (since it was moved outside
a growing convex region). This process tries to
generate a maximum cardinality hidden guard set
in situations where a single guard covers both
sides of a convex corner. In this case, the guard
is moved to one side of the corner and a new one
generated on the other side. We then go to (1)
and start over.

(3) If the whole kernel can be contained in a single
convex region that does not intersect the envi-
ronment boundary (Fig. 2 (e)), Q0

⋂
W = φ,

we continue to “grow” this region adding sample
points in S as long as doing so does not generate
a collision with the obstacle region (Fig. 2 (f)).
That is, we generate the convex hull Qi+1 =
Conv (Qi

⋃{s}) for some s ∈ S, but only if
Qi+1

⋂
W = φ. When the convex region has

reached its maximum size, we remove the original
guard g from G. If all the guards have been
processed, terminate, otherwise continue at (1).

This algorithm scales well with the number of dimen-
sions of the environment, as long as a suitable convex
hull algorithm and a segment-facet intersection test
are implemented. Therefore, it is possible to use the
same algorithm to generate a convex cover in different
dimensions. To illustrate this point, Fig. 3 shows the
results of our algorithm when applied to a polygon
(resulting regions were drawn with an offset for clarity)
and Fig. 4 when applied to a 3-D environment (here,
one of the boxes is on the ground while the other is
“floating”).

B. Second Approach for Generating Trajectories

As long as the dimensionality of the internal obsta-
cles matches that of the environment, our proposed ap-
proach will decompose the workspace into overlapping
convex regions. These regions can then be transformed
into a graph that captures the connectivity of the
workspace. The process is as follows: For every pair
of regions, place a new sensing location (node) at the
center of their intersection (if it exists). Then, join all
the intersection centers within each region with straight
line segments. This process is depicted in Fig. 5.

The locations on the resulting graph have the prop-
erty of covering the whole environment (since there is
at least one in every region). To each of these locations,

(a)

(b)

Fig. 5. The intersection center of two convex regions (a) and the
graph connecting all the intersection centers (b)

we assign a reduced visibility region – just the two
generating convex regions, and we estimate their size
using the samples that fall inside of them. With this,
it is possible to use the approach we proposed in [9] to
search the graph and generate efficient trajectories that
reduce the expected value of the time to find an object
in the environment.

IV. Simulation Results

We applied the convex cover algorithm described
in section III and our previous approach to search
a graph connecting sensing locations to the synthetic
environment shown in Fig. 6. The environment has
three rooms and several obstacles (some of which are
floating). Fig. 6 also shows two views of the same
trajectory with the starting position highlighted with
a small square.

The trajectory first goes a bit to the left, as seen in

3501

(a) (b)

Fig. 6. Two views of an environment with three rooms and the final covering path

Fig. 6 (a), then goes through the two doors to the last
room, then back to the first room through the windows
and finally returns to the third room to cover the last
portion. Bear in mind that this route is not trying to
minimize the distance traveled, and that the back and
forth movements are actually good for minimizing the
expected value of the time to find an object. In this
case, what is required is to sense the largest portions
of the environment as quickly as possible, even if it
means investing more time later to finish sensing the
environment [8].

V. Discussion and Future Work

We proposed a sample-based convex cover algorithm
for rapidly finding an object in a 3-D environment.
Our algorithm tries to reduce the cardinality of the
resulting set and has the advantage of scaling well with
the dimensionality of the environment.

Since our method explicitly computes and records
the intersection of overlapping convex regions, it cap-
tures the connectivity of the workspace. We believe this
can also be exploited in path planning. We intend to
use this method to bias a path planner to those regions
known to be connected in the workspace, since it is
obvious that disconnected regions in the workspace will
also be disconnected in the configuration space. We
think this might be useful in locating narrow passages
since they are not as narrow in the workspace (a robot
with volume must be able to pass through).

Another extension to the proposed problem is to
consider a volumetric robot. We have already followed
that line of research and the results are in [10]. We
addressed the object search problem – in simulation –
using a mobile manipulator with a sensor on its end
effector. We were specially interested in the problem of

finding trajectories that compromise between moving
the base and moving the robotic arm. These trajectories
are useful in cases where, for example, the robot must
sense behind an obstacle and must decided whether to
go around it or extend the arm over it. For this, the
convex decomposition was particularly helpful since it
gave us flexibility on exactly where to place the end
effector.

References

[1] Evans, M. and T. Swartz, Approximating Integrals via Monte
Carlo and Deterministic Methods, Oxford University Press,
2000.

[2] In Handbook of Discrete and Computational Geometry,
J. E. Goodman and J. O’Rourke, editors, CRC Press, 1997.

[3] Hsu, D., J. C. Latombe and R. Motwani, “Path Plan-
ning in Expansive Configuration Spaces,” in Proc. IEEE
Int. Conf. on Robotics and Automation 1997.

[4] Kavraki, L. E., P. Svestka, J. C. Latombe and M. H. Over-
mars, “Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces,” IEEE Transactions on
Robotics and Automation, Vol. 12, Num. 4, Jun 1996.

[5] Leven, P. and S. Hutchinson, “Real-Time Path Planning in
Changing Environments,” Int. Journal of Robotics Research,
Vol. 21, Num. 12, Dec 2002.

[6] O’Rourke, J., “The Complexity of Computing Minimum Con-
vex Covers for Polygons,” in Proc. 20th Annual Allerton
Conf. on Communication, Control, and Computing 1982.

[7] O’Rourke, J., Computational Geometry in C, Cambridge
University Press, 1994.

[8] Sarmiento, A., R. Murrieta-Cid and S. Hutchinson, “A Strat-
egy for Searching an Object with a Mobile Robot,” in
Proc. Int. Conf. on Advanced Robotics 2003.

[9] Sarmiento, A., R. Murrieta-Cid and S. Hutchinson, “An Effi-
cient Strategy for Rapidly Finding an Object in a Polygonal
World,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems 2003.

[10] Sarmiento, A., “Generating Expected-Time Efficient Tra-
jectories for Rapidly Finding an Object in Known Environ-
ments,” Dept. of Computer Science Report No. 2491, U. of
Illinois at Urbana-Champaign, Dec. 2004.

[11] Simeon, T., J. P. Laumond and C. Nissoux, “Visibility
Based Probabilistic Roadmaps,” Advanced Robotics Journal,
Vol. 14, Num. 6, 2000.

3502

	MAIN MENU

