
An Efficient Strategy for Rapidly Finding an Object in a Polygonal World

A. Sarmiento R. Murrieta S.A. Hutchinson
C.S. E.C.E. E.C.E.

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign�

asarmien, murrieta, seth � @ uiuc.edu

Abstract— In this paper we propose an approach to solve the
problem of finding an object in a polygon which may contain
holes.

We prove that a policy for complete exploration that is optimal
in the distance traveled is not the best one for finding an object
as quickly as possible.

The object search problem is shown to be NP-hard by reduc-
tion, therefore, we propose the heuristic of an utility function,
defined as the ratio of a gain over a cost and an greedy algorithm
in a reduced search space that is able to explore several steps
ahead without incurring in too high a computational cost.

This approach was implemented and simulation results are
shown.

I. INTRODUCTION

The problem of determining a good strategy to accomplish
a visibility-based task such as environment modeling [2],
pursuit-evasion [5] [6], or object finding [4] [12], is a very
challenging an interesting research area. Specially when the
sensors are not static but rather are carried by mobile robots.

We are interested in the problem of finding an object. Our
goal is to find an efficient strategy to perform the object search.

In general, the robot will not be able to see the whole
environment in a single sensing. Therefore, more than one
perceptions will be needed to completely cover the environ-
ment. There are several schemes to generate and combine these
perceptions.

One approach is to have the robot continuously sense the
world as it moves along a given trajectory, thereby scanning
the environment in a continuous fashion. In this case, it is not
clear how to generate a globally optimal trajectory for a given
criterion. A greedy strategy could use the gradient of the new
visibility information to guide the search. This strategy could
be based on critical events such as crossing lines in an aspect
graph based on perspective projection [12].

Another approach is to make the robot sense the environ-
ment only at specific locations. This changes the nature of
the problem from continuous to discrete, with information
arriving in blocks. This introduces the problem of generating
an “appropriate” set of sensing locations.

There are several criteria for determining the goodness of
this set. For example, the minimal number of locations (art
gallery problem [8]), locations along the shortest path that
covers the whole environment (shortest watchman path [11]),
and so on.

In this paper we will assume that the set of locations is given
as input – they will not be generated automatically. In any
case, once the sensing locations are known, it is still necessary

to visit those locations in an specific order to minimize the
expected time to find the object. This transforms the object
search into a combinatorial problem.

In this paper our objective is to generate an exploration
strategy based on the given sensing locations that finds the
object as quickly as possible. That is, a strategy that minimizes
the expected time it takes to find it (as explained in the next
section). We will show that, under this definition of optimality,
the best exploration strategy is not necessarily the one that
minimizes the distance traveled.

II. PROBLEM DEFINITION

In general terms, we define the problem of searching for
an object as follows: Given a mobile robot with some kind
of sensing capabilities, a completely known environment and
an object sitting somewhere in the world, develop a motion
strategy for the robot to find the object in the least amount of
time.

At this point we are not concerned with the geometry of
the robot or the capabilities of the sensor (field of view, range,
resolution and so on). For now, we consider only a point robot
with an omnidirectional, infinite range sensor.

Furthermore, we assume that the known environment �
is a polygon that may contain holes and that the probability
of the object being in any specific point is evenly distributed
throughout the polygon’s interior. Therefore, the probability
of the object being in any subset ����� is proportional to
the area of � .

We also assume that we are given a set of locations �
(also known as guards from the art gallery problem [11]) from
which every point in � can be seen. The visibility region of
location �	� , denoted
���	������� , is the set of points in � that
have a clear line of sight to �	� (the line segment connecting
them does not intersect the exterior of �). The set � is chosen
so that the associated visibility regions define a cover of � .
This means that their union adds up to the environment � .� �
��� � ���������
We do not require nor assume the set � to be minimal.

Our exploration protocol is as follows: The robot always
starts at a particular location in � (the starting point) and visits
the other locations as time progresses (it follows the shortest
paths between them). It only gathers information about the
environment (sensing) when it reaches one of these locations –
it does not sense while moving. We describe the route followed

by the robot as a series of locations ����� that starts with the
robot’s initial location and includes the other locations once.
It is important to note that while �	� refers to locations in the
environment, ����� refers to the order in which those locations
are visited. That is, the robot always starts at ����� , and the � -th
location it visits is referred to as ����� . Obviously, every �����
has a corresponding � � in the environment, but their indices
need not match.

For any route � , we define the time to find the object as
the time it takes to go through the locations – in order – until
the object is first seen. We assume that the robot will be able
to identify the object from any given viewpoint and that there
are no other objects that could be mistaken as the searched
object [3].

Our goal is to find the route that minimizes the expected
value of the time it takes to find the object!#" %$ �'&(�*) �,+ �.-/�0 1� + �2� (1)

where

-��0 #� + �2���4365�728 9
�:�;�=<>���@?�ACBED2F �
��G�����H�����JI3K5�7>8 �G���
Where -/�G #� + �.� is the probability of finding the object at
the L -th visited location and + � is the time the robot takes to go
from its initial position, through all locations along the route
until it reaches ���=< . Since the robot only senses at specific
locations, we denote this probability of finding the object at
the �;�=< location as - : �;�=< ? .

The probability of finding the object from a given location
is proportional to the visibility polygon of that region minus
the its intersection with the already explored space up to that
point.

It is important to point out the difference between this prob-
lem and the problem of completely exploring the environment
in the least amount of time. Both problems seem to be related,
but the best trajectories for each of them are not the same.

For the problem of searching for an object, the robot stops
when the object is found, therefore, not all locations are visited
every time. Hence, it might payoff to visit the most promising
locations first. In other words, if the robot first visits those
locations where the probability of finding the object is higher,
it is likely that it will be finished sooner. Of course, in the
worst case the robot must visit all locations before finding the
object, but we are interested in minimizing the average time
it takes.

Consider the problem of complete exploration with a similar
definition of viewing locations (guards) and associated visibil-
ity polygons. In this case, it is assumed that the robot will visit
all locations at least once, so the shortest path between them
must be found (minimum distance traveled). This problem
completely disregards the relative “goodness” of each region,
in fact, goodness is not even defined (one could think it refers
to the size of the visibility regions or some other similar
measurement).

Now we will prove that the route that minimizes the
distance traveled is not the best one for searching an object.
Proposition: For a given set of sensing locations, the route
that minimizes the distance traveled is not the route that, on
average, finds the object as quickly as possible.
Proof: This is proved by counter example (see Fig. 1).

Fig. 1. Example with a simple environment

The robot starts on the corridor at location ��M . The object
will always be in one of two rooms, and the probability of it
being in either is related to the size of the room. The room to
the right – seen from location �CN – is smaller but lies closer
to the initial location, while the room to the left – seen from�;O – is larger but farther from initial position. There are only
two routes the robot might take to solve this problem, go to
the smaller room first (�;MQPR�SN%PT��O) or go to the larger
room first (� M PU� O PV� N). For the following analysis, the
robot is moving at a constant speed of 1 unit per second.

a) Route 1 –: If the robot goes to the smaller room first
and then moves on to the larger room, it reaches �KN at timeW

and �;O at time X . From (1), the expected value of the time
it takes to find the object following this route is!#" %$Y�G� M ��� N �Z� O �[&\�,�0]_^ W �Y� Wa` �cb1�G]d^feH�Y�[X ` �;�#g_^ h `
The robot always completes its search after X seconds.

b) Route 2 –: If the robot moves to the larger room first
and then goes to the smaller room, it reaches � O at time i and� N at time

WHW
. The expected time in this case is!#" %$Y�0��Mj���;O>����Nk�[&\�,�0]_^ el�Y�Gi ` �mb��0]_^ W �Y� WnWa` ����id^ g `

In the worst case, it will take the robot
WHW

seconds to find the
object.

A robot following route 1 always finishes searching after X
seconds, while a robot following route 2 takes

WHW
. Route 1 is

better for completely exploring the environment. However, the
average time it takes for a robot following route 1 to find the
object is gd^ h ` 7>o ` whereas for route 2 is only ip^fg ` 7>o ` . Route
2 is better for finding the object as quickly as possible.

This example proves that a strategy that is optimal in the
time it takes to completely explore the environment is not
necessarily the best one to minimize the expected time to find
an object in that environment.

III. PROPOSED SOLUTION

Since we assume that we are given a set of sensing locations
that completely cover the environment, we are interested in
finding an order of visiting those locations – the problem
becomes a combinatorial search. In this section we present
two algorithms for such a task. The first one is a traditional
graph search that finds the optimal ordering but is intractable.
The second is a greedy algorithm that can be computed in
polynomial time and yields good results.

In general, the robot will not be able to travel between two
locations by following a straight line. In this cases, we use a
reduced visibility graph [9] and Dijkstra’s Algorithm to follow
the shortest path between them.

A. Algorithm for Optimal Ordering

Given a set of locations � that are guards to a polygonal
region � , there exists an algorithm for computing the route
that minimizes the expected time to find the object. It is
described hereafter.

Construct a complete weighted graph as follows:
(1) For each location ��� , create a node qr� in the graph.
(2) For each pair of nodes qr� and q D , add an edge with

variable weight �s� D .
(3) The weight �s� D is dynamic, meaning it depends on the

route followed by the robot before reaching qa� . These
weights are calculated on-line.

The weight �s� D should correspond to the increase in
expected time t !u" C& the robot incurs by going from ��� to� D . This is a function of the time in which it arrives at � D ,
which in turn depends on the route followed by the robot up
to that point.

In this graph, we need to find the path of minimum cost
that starts at the robot’s initial location � � � and includes all
other locations. This can be accomplished with a Branch and
Bound graph search. This search strategy maintains a list of
nodes to be opened ordered by their accumulated cost. The
next node to be expanded is always the head of the list, the
one whose accumulated cost is currently minimal.

When a node is expanded, only those nodes that are adjacent
and not already included in the current path are considered
children. The added cost �v� D of expanding a child q D from
its parent qw� is� � D � Kx[y 7 �0q D �{z.-��G� D � Kx[y 7 �|q D �}� Kx[y 7 �0q � �mb�~\� 7>7>� z2��x ` + �0� � ��� D �
Then, the accumulated cost for the child is��� ` + �0q D ��� ��� ` + �0q � �mb�� � D

Initially, the Branch and Bound list contains only the starting
robot location. Then, the head of the list is expanded and its
children added to the ordered list until a solution is found – a
path that contains all locations in � . When this happens, the
currently best nodes continue to be expanded until

(a) A lower cost solution is found, in which case the better
solution is saved and the process continues, or

(b) The lowest cost node is worse than the current solution.
In this case we know that this solution is optimal.

This algorithm finds the optimal solution – the one that
minimizes the expected time to find the object. Unfortunately,
its space and time complexities are not of polynomial order.
Furthermore, the problem itself is intractable, more specifi-
cally, NP-hard.

B. Reduction from an NP-hard problem

The Minimum Weight Hamiltonian Path Problem, known to
be NP-hard [1], can be reduced to the problem of finding the
optimal visiting order of sensing locations which minimizes
the expected time to find an object.

In order to make a formal reduction, we abstract the concept
of environment and visibility regions. We only consider a set
of locations which have an associated probability of finding
the object which are independent of each other.

The reduction consists in defining the distance between
the sensing locations as the edge weights of the Minimum
Weight Hamiltonian Path Problem and setting the probabilities
uniformly (same value for all).

Since the probabilities are set uniformly, the route that
minimizes the expected time will be the exactly the same as
the one that minimizes the distance traveled. This happens
because the expected value of the time to find an object is
determined only by the time it takes to reach locations along
the route. Since time is proportional to distance, the route that
minimizes time will also minimize the distance.

Given that the solutions to both problems are the same
ordering of locations, finding a polynomial algorithm to solve
these instances of the defined problem would also solve the
Minimum Weight Hamiltonian Path Problem in polynomial
time. Thereby proving that the proposed problem is NP-hard.

C. Utility Heuristic

Since trying to find an optimal solution is a futile effort, we
decided to implement an iterative greedy strategy. One that
tries to achieve a good result in one (or just a few) steps at a
time.

In the obvious version of this algorithm the next location
to visit is chosen as the one that causes the least increase
in the partial calculation of (1) along the current route. That
is, at each step of the route, calculate how much would the
expected value of the time to find the object increase for going
to the remaining locations and then choose the least increase.
This has � :G� O ? complexity, because each step has to consider
every available location.

This algorithm performs poorly. We believe this happens
because the product in (1) makes locations with low proba-
bility be preferred and visited first, which seems contrary to
what should be done.

For this reason, we propose an alternate greedy algorithm,
called utility greedy, that tries to maximize an utility func-
tion. This function measures how convenient it is to visit a

determined location from another, and is defined as follows:� ������Z� D �;� -��0� D � 6xy 7 �|�����Z� D � (2)

This means that if the robot is currently in �;� , the utility
of going to location � D is proportional to the probability of
finding the object there and inversely proportional to the time
it must invest in traveling.

A robot using this function to determine its next destination
will tend to prefer locations that are close and/or locations
where the probability of finding the object is high. Intuitively,
it is convenient to follow such an strategy, but its relationship
with the expected value minimization will be more evident
after the following analysis.

Consider a definition of expectation for a non-negative
random variable, such as time, from [10]!u" C&������M -��0 @� + � �l+
This is equivalent to!Q" C&(�����M WC� -��| �� + � �H+ �����M WC���c� �H+ (3)

Where
� �

is a cumulative distribution function.

(a)

(b)

Fig. 2. Defined cumulative distribution functions. (a) �_� (b) �c�%�p�
In our problem, every valid trajectory defines a particular

cumulative distribution function of finding the object
�	�

.

Since we are dealing with a discrete problem, the distributions
are only piecewise continuous with the discontinuities being
the times at which the robot reaches the distinct locations along
the route, as shown in Fig. 2a.

By (3), we know that the expected value of a random
variable with distribution

� �
is the area under the curve

Wn�K� �
,

shown in Fig. 2b. This area is the value we want to minimize.
One method for making this area small is to have the time

intervals as small as possible and the probability changes
(down step) as large as possible. This is the notion that our
utility function in (2) captures; its value is larger when the
probability of finding the object in a particular location is high
(large down step) and/or when the location is near (small time
interval).

D. Efficient Utility Greedy Algorithm

The utility function in (2) is sufficient to define a 1-step
greedy algorithm. At each step, simply evaluate the utility
function for all available locations and choose the one with the
highest value. This algorithm has a running time of ��: � O ? .

However, it might be convenient to explore several steps
ahead instead of just one to try to “escape local minima” and
improve the quality of the solution found. The downside of this
idea is that it usually increases the complexity of the algorithm
by a factor of ��� � � for each step ahead.

To reduce this effect we propose a second heuristic that
reduces the branching factor. The heuristic is that the children
of each location can only be those other locations that are
not strictly dominated according to the two variables in the
utility function. As seen from the L -th location ��� , a location� D strictly dominates another ��� if both of the following
conditions are true -��� D ��� -��0���0���x ` + �|���j��� D ��� ��x ` + �G�����Z�;�0�
Graphically, this is shown in Fig. 3. It is straightforward
that dominating locations will lie on the convex hull of the
remaining set of locations when plotted on the probability
vs. distance plane.

Fig. 3. Location dominance

By only considering a subset of the remaining locations at
each step, we are reducing the branching factor, making it
possible to explore more steps ahead without incurring in too
high a computational cost. Of course, there is no guarantee that
the optimal solution is indeed a member of this reduced search
space or even that this will yield better results. However, we
have found it to be a good heuristic in practice, as described
in the next section.

The full algorithm consists in iteratively exploring several
steps ahead, choosing the most promising route up to that point
and starting over from there. For � locations, if the branching
factor is � , a tree of height �� H¡l¢6� � � can be explored in linear
time. This creates a partial route of length �� n¡ ¢ � � � . Since a
solution should be of length � , the process needs to be repeated£¤ ¥Z¦Y§m¨ £j© times for the complete route. This is depicted in Fig. 4.

Fig. 4. Exploration algorithm

Thus, our final algorithm is as follows:
(1) For the last location along the current solution (initially

just the robot starting location) explore the possible
routes (create a tree breadth-first) until the number of
nodes is of order ��� � � .

(2) For each node that needs to be expanded, compute the
set of locations that are not strictly dominated by others
and only choose those as children. This can be done
with a convex hull algorithm in ��� � �� H¡ª� � �«� .

(3) When the number of nodes in the exploration tree has
reached order ��� � � , choose the best leaf according to
the heuristic in (2), discard the current tree and start over
with the best node as root.

This has to be repeated several times to generate a complete
route, therefore the total complexity of the algorithm is�¬ � z � �� H¡ª� � �cz ��� n¡ª� � ��® �1� :G�°¯k?

Of course, this result depends on the number of dominating
locations being significantly smaller than � on average. Which
may be difficult to determine for a specific problem. We know,
for example, that the expected number of points on the convex
hull of a set sampled uniformly from a convex polygon is of
order ������� n¡ª� � �±� for a � -sided polygon [7]. In the worst case,
when the branching factor is not reduced at all, our algorithm

only explores one step at a time and has a running time of�/� � z � �� H¡_� � �{z � ����� :G�°¯ �� n¡ª� � � ?
This analysis only considers the time complexity of the

search algorithm itself. It does not include the time complexity
of performing polygon clipping operations. These are needed
every step of the algorithm because they are used to calculate
the probability of finding the object at any given location
(which depends on the route followed up to that point).

IV. SIMULATION RESULTS

For our simulations, we implemented routines for com-
puting visibility polygons, the reduced visibility graph and
shortest paths (Dijkstra’s Algorithm). For calculating the union
of visibility regions, we used the gpc library developed by
Alan Murta [13].

This section presents the simulation results for the polygonal
world shown in Fig. 5. The black regions correspond to the
obstacles, the small circles to the sensing locations(guards)
given as input and the grey region is the visibility polygon of
the starting location.

For this instance, we generated the sensing locations man-
ually. While we tried to find as few as possible, they do not
correspond to any kind of optimal criteria.

Fig. 5. Test polygonal world

For the following routes, we show the expected value of the
time it takes to find the object following that particular route,
and its total length. These values are given in arbitrary units,
what really matters in the relative value differences between
the routes. The execution times are in seconds for a regular
PC workstation.

For this polygonal world, we computed three routes. The
first one is the route that minimizes the expected value of the
time to find the object (the optimal solution). For purposes of
comparison, we also computed the route that minimizes the
distance traveled, and finally, we show the route generated by
our heuristic algorithm.

Fig. 6 shows the route that minimizes the expected value
of the time to find the object – the optimal solution to our
problem. For this route the expected value is 943.21 with
a total distance traveled of 2783.20. This result took 892.82
seconds to compute.

Fig. 7 shows the route that minimizes the distance traveled
from the starting location. In this case, the expected value of

Fig. 6. Route that minimizes the expected time to find the object

the time to find the object is 994.79 with a total distance of
2273.09. This route was computed in 488.87 seconds. This
result further shows that the best strategy to find an object as
quickly as possible on average, is not the one that minimizes
the distance traveled.

Fig. 7. Route that minimizes the distance traveled

Fig. 8 shows the route generated by our heuristic algorithm.
The expected value along this route is 982.21 with a total
distance traveled of 2970.43. This result was obtained in only
0.44 seconds.

Fig. 8. Route generated by the utility heuristic algorithm

We were able to solve this instance of the problem optimally
because the number of sensing locations is relatively small
(
W]).

For this particular example, the expected value of the time
to find the object along the route obtained by our heuristic
algorithm is slightly smaller (by

W ^³²H´) than along the route
that minimizes the distance traveled. Of course, the length of
the route is larger (by about µH]l´).

With respect to the optimal solution, the route generated by
our algorithm is worse in both expected value of the time to
find the object (by hª^ W ´) and distance travelled (by g_^³XH´).
However, in execution time, our algorithm is more than ²n]n]H]
times faster.

V. CONCLUSIONS

In this paper we proposed an efficient approach to solve the
problem of searching an object in a polygonal environment.
We defined an optimal solution as the route that minimizes
the expected time it takes to find the object.

We proved that a policy for complete exploration that is
optimal in the distance traveled is not necessarily the best one
for finding an object as quickly as possible.

The problem itself was shown to be NP-hard by reduction,
therefore, we proposed the heuristic of an utility function,
defined as the ratio of a gain (increase in a cumulative
distribution function) over a cost (travel time).

We also proposed an greedy algorithm in a reduced search
space that is able to explore several steps ahead without
incurring in too high a computational cost.

We showed experiments in simulation that suggest that the
quality of the routes generated by our algorithm is close to
the optimal solutions.

Future work will consist in the development of an approach
to generate a set of sensing locations automatically. The set
should be “helpful” to the problem of minimizing the expected
time to find an object. It seems that desirable properties include
low cardinality and low spread. A formal definition of these
properties is a major part of the solution to the problem.

REFERENCES

[1] Garey, M.R. and D.S. Johnson, Computers and Intractability, W. H.
Freeman and Company, 1979.

[2] González-Baños, H.H. and J.C. Latombe, “Navigation Strategies for
Exploring Indoor Environments,” to appear in Int. Journal of Robotics
Research.

[3] Lacroix, S., P. Grandjean and M. Ghallab, “Perception Planning for
a Multi-Sensory Interpretation Machine,” in Proc. IEEE Int. Conf. on
Robotics and Automation 1992.

[4] LaValle, S.M. et al, “Finding an Unpredictable Target in a Workspace
with Obstacles,” in Proc. IEEE Int. Conf. on Robotics and Automation
1997.

[5] LaValle S.M. et al, “Motion Strategies for Maintaining Visibility of a
Moving Target,” in Proc. IEEE Int. Conf. on Robotics and Automation
1997.

[6] Murrieta-Cid, R., H.H. González-Baños and B. Tovar, “A Reactive
Motion Planner to Maintain Visibility of Unpredictable Targets,” in Proc.
IEEE Int. Conf. on Robotics and Automation 2002.

[7] Preparata, F.P. and M.I. Shamos, Computational Geometry: an Introduc-
tion, Springer-Verlag New York, 1985.

[8] O’Rourke, J., Art Gallery Theorems and Algorithms, Oxford University
Press, 1987.

[9] Rohnert, H., “Shortest Paths in the Plane with Convex Polygonal
Obstacles,” Information Processing Letters, 23:71-76, 1986.

[10] Ross, S.M., Introduction to Probability and Statistics for Engineers and
Scientists, Wiley, 1987.

[11] Shermer, T.C., “Recent Results in Art Galleries,” Proc. of the IEEE, Vol.
80, issue 9, September 1992.

[12] Tovar, B., S.M. LaValle and R. Murrieta-Cid, “Optimal Navigation and
Object Finding without Geometric Maps or Localization,” accepted in
IEEE Int. Conf. on Robotics and Automation 2003.

[13] Vatti, B.R., “A Generic Solution to Polygon Clipping,” Communications
of the ACM, 35(7), pp.56-63, July 1992.

