
Planning Expected-time Optimal Paths for
Searching Known Environments
Alejandro Sarmiento Rafael Murrieta-Cid Seth Hutchinson

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Urbana Illinois, USA
Email: {asarmien, murrieta, seth}@uiuc.edu

Abstract— In this paper we address the problem of finding
time optimal search paths in known environments. In par-
ticular, the task is to search a known environment for an
object whose unknown location is characterized by a known
probability density function (pdf). With this formulation , the
time required to find the object is a random variable induced
by the choice of search path together with the pdf for the
object’s location. The optimization problem is to find the path
that yields the minimum expected value of the time required
to find the object.

We propose a two layered approach. Our algorithm first
determines an efficient ordering of visiting regions in a
decomposition that is defined by critical curves that are
related to the aspect graph of the space to be searched. It
then generates locally optimal trajectories within each ofthese
regions to construct a complete continuous path. We have
implemented this algorithm and present results.

I. I NTRODUCTION

In this paper, we address the problem of finding an
object in a polygonal environment as quickly as possible on
average with a mobile robot that can sense the environment
continuously. This is the optimization problem of minimiz-
ing the expected value of time required to find the object,
where time is a random variable defined by a search path
together with the probability density function associatedto
the object’s location. The possible applications have a wide
range, from finding a specific piece of art in a museum to
search and rescue of injured people inside a building.

In [10], we presented a discrete, combinatoric version of
this problem. In that work, we abstracted the problem to
one of finding a path in a graph whose nodes represented
sensing locations (guards). Associated to each node is the
probability of sensing the object from the corresponding lo-
cation, and associated to each arc is a cost that corresponds
to the time required to move between the corresponding
sensing locations. We showed that for this problem, a
trajectory that minimizes the distance traveled may not
minimize the expected value of the time to find the object.

In [11], we extended our approach to the more general
case of searching in a polygon. In this case, we used
a visibility-based decomposition of the polygon to again
convert the problem into a combinatoric one. The visibility
regions were used to calculate the probability of seeing an
object for the first time from particular sensing locations,
which were again chosen from a predefined set. Paths were
constructed from arcs in a reduced visibility graph. We
showed the problem to be NP-hard by reduction.

The work that we present here is qualitatively different
from our previous efforts. In our past work, all robot paths
consisted of piecewise linear segments between preselected
sensor locations. In this paper, we findoptimal continuous
pathsby using methods derived from the calculus of vari-
ations, and there is no predefined set of sensing locations
for the given task. Our approach exploits a decomposition
of the space to be searched using critical curves that are
related to the aspect graph of the space. We use the utility
function described in [11] to find an efficient order of
visiting these regions, and the calculus of variations to find
locally optimal trajectories within each one of them.

II. PROBLEM DEFINITION

As in [11], we define the the random variableT to be
the time required to find the object, i.e., the time until the
object enters the robot’s field of view for the first time. We
are interested in finding a continuous pathS that minimizes
the expected value of this random variable along that path,
E[T |S]. This trajectory will, on average, find the object as
quickly as possible.

We model the robot as a single point with an infinite
range, omni-directional sensor. We do not impose any con-
straints on the movement of the robot other than constant
speed.

III. PROPOSEDAPPROACH FORCONTINUOUS SENSING

As mentioned before, in this paper we are dealing with
continuous sensingin a continuous space. We assume that
the robot is sensing the environment as it moves. This
contrasts with sensing only at specific locations, as was
described in [11].

We say that a continuous trajectorycovers[12] a poly-
gon P if each pointp ∈ P is visible from some point along
the trajectory. If the trajectory is to minimize the distance
traveled, then the problem is called the Shortest Watchman
Tour problem [1]. This is not exactly our problem since, as
we showed in [10], a trajectory that minimizes the distance
traveled may not minimize the expected value of the time
to find an object along it.

The Shortest Watchman Tour problem is also related to
the Art Gallery problem [5] in that they both deal with
visibility in polygons. However, the Art Gallery problem
seeks to minimize the number of point guards needed cover



a polygon and is not concerned at all with the distances
between them.

Any trajectory that covers a simple (without holes)
polygon must visit each subset of the polygon that is
bounded by the aspect graph lines associated to non-convex
vertices of the polygon. An aspect graph for a polygon [3]
consists of a set of line segments generated by features of
the polygon. We only use the line segments generated by
non-convex vertices of the polygon. These line segments
are simply extensions of the incident edges on non-convex
vertices, as shown in Fig. 1 with grey lines.

We call the area bounded by these aspect graph lines the
corner guard regions. These regions have the characteristic
that any point inside them can see “both sides” of their
associated non-convex vertices. Therefore, a continuous
trajectory that covers a simple polygon needs to have at
least one point inside the region associated to “outlying”
non-convex vertices (non-convex vertices in polygon ears),
like A andC in the figure. Since these points need to be
connected with a continuous path, the trajectory will cross
all other corner guard regions, like the one associated to
vertexB.

Fig. 1. The aspect graph lines (in grey) associated to non-convex vertices
A, B andC

Since a continuous trajectory needs to visit all the corner
guard regions, it is important to decide in which order they
are visited. The problem can be abstracted to finding an
specific order of visiting nodes in a graph that minimizes
the expected value of time to find an object. In [11] we
showed that a version of this problem is NP-hard.

For this reason, to generate continuous trajectories we
propose an approach with two layers that solve specific
parts of the problem. The high level,combinatoric layer
attempts to find a “suitable” order of visiting corner guard
regions without taking into account how exactly the robot
is to move between them. The low level,continuouslayer
takes an ordering from the upper level and tries to find how
to best visit the given regions.

This decoupling makes the problem simpler to address,
but does so at the expense of global optimality. To preserve
global optimality, an algorithm would need to consider how
the robot is moving while generating the best ordering
of visiting corner guard regions. Calculating the globally
optimal robot motions is not an easy task because the
trajectory can make “sudden” direction changes within
a single region (as will be described in section V) and
also because these motions must make a compromise
between the distance traveled (time) and the amount of the
environment (probability) that is visible at different points

along the complete trajectory (to minimize the overall
expected value).

In the remainder of the paper, we describe our two-
level approach. In section IV we describe how optimal
continuous paths are generated for moving from one region
to another. In section V we address the problem of choosing
a good ordering for the regions. Results are given in section
VI.

IV. PLANNING OPTIMAL CONTINUOUS

PATHS WITHIN REGIONS

Once an ordering of visiting corner guard regions is
established by the combinatoric layer, it is still necessary
to generate a continuous trajectory between them.

Given that we want to generate a continuous path, it is
necessary to compute the expected value of timeE[T |S]
along a trajectoryS (as the robot moves). The form of the
equation to computeE[T |S] changes in different regions of
the polygon. For this reason, we have analyzed the simplest
case – within one region – and concatenated these sections
for a complete trajectory. Note that with this approach,
there are no guarantees as to whether locally optimal sub-
paths will lead to a globally optimal solution.

A. Continuous Sensing in the Base Case

The simplest case for a continuous sensing robot is that
shown in Fig. 2. In this case, the robot has to move around
a non-convex vertex (corner) to explore the unseen areaA′.
For now, we assume that this is the only unseen portion of
the environment.

Fig. 2. Base case for a continuous sensing robot

As the robot follows any given trajectoryS, it will
sense new portions of the environment. The rate at which
new environment is seen determines the expected value of
the time required to find the object along that route. In
particular, consider the following definition of expectation
for a non-negative random variable from [8],

E[T |S] =

∫

∞

0

P (T > t) dt. (1)

The particular routeS followed by the robot determines
the probability of not having seen the object at any given
time, P (T > t).

We require that this probability decreases monotonically,
which is equivalent to considering only trajectories along
which the size of the unseen region decreases monoton-
ically. As shown in Fig. 2, the remaining section of the



environment to be exploredA′ decreases monotonically if
and only if the angle from the corner to the robot increases
monotonically. For this reason, it is natural to express the
trajectory in polar coordinates with the origin at the corner.

B. Expected Value of Time Along any Trajectory

In the simple environment shown in Fig. 3 the robot’s
trajectory is expressed as a function in polar coordinates
with the origin on the non-convex vertex. We assume that
the robot will have a starting position such that its line of
sight will only sweep the horizontal edgeE1. As mentioned
before, the expected value of the time to find an object
depends on the areaA′ not yet seen by the robot. Since
we assume infinite sensing range, at any timet the only
important feature of the robot’s position is its angleθ(t)
relative to the origin.

Fig. 3. Base case for a continuous sensing robot

The following analysis is only valid for an axis-parallel
edgeE1, but it can be easily adapted to the general case.
Let Qx(t) and Qy be horizontal and vertical distances
from the origin to the point where the robot’s line of sight
through the origin intersectsE1. The area of the unexplored
regionA′(t) is

A′(t) =
Qy Qx(t)

2
. (2)

As can be seen in Fig. 3,

tan (α(t)) =
Qx(t)

Qy

and
α(t) =

π

2
− θ(t).

Since tan
(

π
2 − θ(t)

)

= 1
tan(θ(t)) , we havetan (θ(t)) =

Qy

Qx(t) , and (2) can be written as

A′(t) =
Qy Qx(t)

2
=

Qy
2

2 tan (θ(t))
.

Assuming that the probability density function of the
object’s location over the environment is constant, the
probability of not having seen the object at timet is

P (T > t) =
A′(t)

A
=

Qy
2

2A tan (θ(t))
, (3)

whereA is the area of the whole environment.

Finally, from (1) and (3),

E[T |S] =
Qy

2

2A

∫ tf

0

dt

tan (θ(t))
. (4)

Equation (4) is useful for calculating the expected value
of the time to find an object given a robot trajectoryS

expressed as a parametric functionθ(t). It is interesting to
note that the expression does not directly depend on the
radius r(t) (a consequence of infinite sensing range). In
the next section, we will also use (4) to find the optimal
trajectoryS∗ by minimizing the value of the integral.

C. Minimization Using Calculus of Variations

The calculus of variations is a mathematical tool em-
ployed to find stationary values (usually a minimum or a
maximum) of integrals of the form

I =

∫ b

a

F (x, y, y′) dx, (5)

wherex andy are the independent and dependent variables
respectively.

The integral in (5) has a stationary value if and only if
the Euler-Lagrange equation is satisfied,

∂F

∂y
−

d

dx

(

∂F

∂y′

)

= 0. (6)

In our case, it is not useful to apply the prototypical
Euler-Lagrange equation directly to expression (4) for
two reasons. First,r and θ are expressed as parametric
equations, instead of one as a function of the other.
This is not really a problem, because expressions very
similar to (6) can be derived to accommodate the case of
parametric functions [2]. The real problem is that (4) does
not impose any constraints on the parametric equations
describing the robot motion. The optimal trajectory without
any constraints would be one whereθ increases infinitely
fast.

To address both of these problems, we introduce the
constraint that the robot moves with constant (unitary)
speed. To do this, we express its velocity vector as a
generalized motion [7] in a basis where one componentUr

is radial from the origin and the otherUθ is perpendicular,
as shown in Fig. 4. BothUr andUθ are unit vectors that
define an orthogonal basis. In this basis, the robot’s velocity
(in polar coordinates) can be described as

V = ṙ Ur + r θ̇ Uθ.

Fig. 4. Generalized motion of a particle moving along pathS



The constraint that the robot speed is constant can be
expressed as

‖V ‖ = ṙ2 + r2 θ̇2 = 1. (7)

In practice, this means that the maximal speed the robot
can achieve is constant regardless of the direction of
motion. The velocity components need to “add up” to a
constant value. This contrasts with other systems where
each dimension can be controlled independently, like a
plotter.

Starting with equation (7), it is possible to express the
differential of time as a function of a differential ofθ.
This will allow us to rewrite the parametric equation as
a function in which θ and r are the independent and
dependent variables respectively,

1 =
(dr)2

(dt)2
+ r2 (dθ)2

(dt)2
,

(dt)2 =
(

(dr)2 + r2 (dθ)2
) (dθ)2

(dθ)2
,

(dt)2 =
(

r′
2

+ r2
)

(dθ)2,

dt =
(

r′
2

+ r2
)

1
2

dθ, (8)

where r′ = dr
dθ

. Substituting (8) into (4), we obtain an
expression for the expected value of time to find an object
where the robot’s trajectoryS is expressed asr being a
function of θ,

E[T |S] =
Qy

2

2A

∫ θf

θi

1

tan(θ)

(

r′
2

+ r2
)

1
2

dθ. (9)

To find stationary values of (9), we use (6) withx = θ,

y = r and F = 1
tan θ

(

r′
2
+ r2

)
1
2

. After simplification,
this yields the following second order non-linear differen-
tial equation,

r′′ = r +
2r′

2

r
+

2

sin(2θ)

(

r′ +
r′

3

r2

)

. (10)

This equation describes the route to move around a non-
convex vertex (corner) to search the area on the other side
optimally (according to the expected value of time).

D. Numerical Integration

We solved equation (10) numerically using an adaptive
step-size Runge-Kutta method [6]. Since this equation is
of second order, any numeric approach that integrates it
as an initial value problem requires two initial conditions:
r(θi) andr′(θi). We know the staring pointr(θi) and the
integration range(θi, θf ), but we do not impose any other
constraints on the trajectories other than unitary speed.
Therefore, the possible solutions are a family of curves that
depends on the value of the first derivative at the beginning
of the integration ranger′(θi). These are shown in Fig. 5.

Most of the possible solutions diverge long before they
reach the end of the integration range. In fact, it is evident
from (10) that the solution is not defined there (atθf = π

2 ).
However, it is possible to get arbitrarily close, and to do so,

Fig. 5. Family of curves depending on initial conditions

the first derivative at the end of the integration range must
be such that the trajectory approaches the target manifold
(the vertical line in Fig. 3) perpendicularly. This translates
to stating thatr′(θf ) = 0. In fact, the transversality
condition for the Euler-Lagrange equation establishes that,
in order to satisfy the equation and obtain a minimum,
the solution function must be perpendicular to the target
manifold att = tf [9].

This observation allows us to integrate equation (10) as
a two point boundary value problem, where we specify
the position at the beginning of the integration range
r(θi) and the first derivative at the endr′(θf ). For this,
we coupled the Runge-Kutta algorithm with a globally
convergent Newton-Raphson method [6].

Fig. 6 shows the trajectories generated for six different
starting positions in solid black lines. To save space, the
figure only shows the upper right portion of an environment
similar to that in Fig. 3 (the units on the axes are arbitrary).

Fig. 6. Optimal trajectories for a simple environment obtained through
numerical integration

E. Simulated Annealing

To corroborate our results from the previous section,
we found an approximate solution to the original problem,
as depicted in Fig. 2, by another method independent of
our previous analysis. For this, we implemented Simulated
Annealing [4]. This stochastic relaxation method is based
on describing the possible solutions as system states,
assigning an energy value to them and then minimizing



that energy. Obviously, the state of minimum energy must
correspond to the optimal solution.

The system goes through a heating process, where the
energy of the system is incremented then a cooling process
where the energy is iteratively decreased. We made these
variations exponentially by multiplying the current tem-
perature by constants (2.0 for heating up, 0.98 for cooling
down).

To generate a new statesi+1, the current statesi is
perturbed randomly. If the energy of the new stateU (si+1)
decreases, then the new state is deterministically accepted.
If the energy rises, a Boltzmann acceptance criterion is
used. Namely, the new state is accepted with probability

P ∼ e
K

„

U(si)−U(si+1)
T emp

«

,

whereK is a normalization constant.
In our problem, a state is an ordered set of control

points that define the robot’s trajectory. These points were
randomly perturbed along one dimension only (vertically)
– except for the first point, which corresponds to the initial
position, and was always fixed. We defined the energy of
any state as the expected value of time to find an object by
visiting those points in order (with respect to the horizontal
dimension).

We started the heating process with unitary temperature
(in arbitrary units) and multiplied it by2.0 until more than
97% of the new states generated were accepted. Then, we
cooled down with a constant of0.98 until no new states
were accepted. Each epoch corresponded to individually
perturbing each point approximately four times, and then,
at the end of the epoch, perturbing the whole range once.

As can be seen in Fig. 7, the general shape of the
trajectories generated for six different starting positions
by our numerical integration (solid lines) and stochastic
relaxation (control points) are very similar. We should point
out, however, that each Simulated Annealing run took more
than an hour whereas the numeric integration is done in a
fraction of a second. As mentioned before, the figure only
shows the upper right section of an environment, like that
in Fig. 3 of arbitrary dimensions.

Fig. 7. Optimal trajectories for a simple environment obtained with
simulated annealing

V. CHOOSING AN ORDERING OFREGIONS

To cover a simple polygon, it is sufficient that a trajec-
tory visits at least one point inside each corner guard region
(as defined in section III) associated to reflex vertices of
the polygon. The high level, combinatoric layer attempts
to find an ordering for the robot to visit these corner guard
regions such that the expected value of the time to find an
object in the environment is reduced.

To find a suitable ordering, we defined a point guard
inside each corner guard region and used the approach
we presented in [11] for sensing at specific locations.
Potentially, any point in the closure of a corner guard
region can be used as a point guard; we decided to place
them very close to the non-convex vertices.

Once point guards have been defined, it is straightfor-
ward to calculate the visibility regions and distances re-
quired for the proposed utility function of [11]. In the end,
the algorithm yields an ordering for visiting corner guard
regions (associated to non-convex vertices) that attemptsto
reduce the expected value of the time to find an object.

Once an ordering has been established, the lower level,
continuous layer uses the sequence of non-convex vertices
to perform locally optimal motions around each of them,
thus generating a complete trajectory that covers the polyg-
onal environment.

We believe that this trajectory reduces the expected
value of the time to find an object, but we know that any
trajectory generated in this fashion will not be globally
optimal in the general case. There are several reasons
for this, the most obvious being that any partition of the
problem into locally optimal portions does not guarantee
global optimality (Bellman’s principle of optimality does
not apply). Another reason is that our generated trajectories
will only change direction abruptly (non-smoothly) in
aspect graph lines and points where the edge being seen
through a reflex vertex changes, for example, when the
robot has finished seeing an ear of the polygon and must
reverse direction. However, an optimal trajectory might
need to change direction in other points of the environment
as well, as described in the next section.

A. Direction Changes within a Region

An optimal trajectory may change direction at points
that are not part of our set of critical curves, that is, it
may change direction abruptly in the interior of a region.
Consider the polygon in Fig. 8(a). If the robot starts at
P , it is clear that any trajectory that covers the polygon
must reach the vertical lines at non-convex verticesA and
B belonging to the aspect graph. If such a trajectory is
to be optimal, then it is not necessary to cross said lines
because the complete side region would already be visible
and nothing is to be gained by going further.

Also, since both non-convex vertices are “above” the
starting position and the robot is already at the lower limit
of the polygon, the optimal trajectory will not move verti-
cally. The robot cannot go “downward” because it would
leave the polygon, and it is not useful to move “upward”
because no new regions would ever be visible moving this



(a)

(b)

Fig. 8. Two similar polygonal environments

way. Any new point seen in a diagonal trajectory could be
seen sooner by traveling a shorter distance on the horizontal
component of said trajectory. Also, the two closest aspect
graph lines that must be visited are vertical, therefore,
moving vertically does not decrease the distance to either
of them.

Since moving vertically does not help either of the two
variables involved in the expected value search, distance
(time) and visible area (probability), we can conclude that
the optimal trajectory will not have a vertical component.

Having established that the optimal trajectory for this
particular problem will only move horizontally, let us
consider the case of horizontal trajectories starting atP

that cover the whole polygon.
A trajectory that covers the polygon and only moves

horizontally needs to reverse directionat leastonce. If it
only changes direction once, then there are only 2 cases,
it must go fromP to B then toA (PBA) or go fromP to
A then toB (PAB).

It is also possible that a trajectory changes direction
twice, for example, it may go fromP towards (but not
reaching)B, reverse once to go toA then reverse again
to reach B. In this case, there is a range of possible
trajectories depending on how far they go the first time
they move towardsB.

The graph in Fig. 9(a) tallies the expected value of
the time to find an object in the environment depicted
in Fig. 8(a) when following a horizontal trajectory that
makes only two direction reversals. The horizontal axis in
Fig. 9(a) represents the point at which the first direction
change is made. The negative domain means that the robot
starts moving towardsA instead ofB.

The discontinuity at the origin is the result of the
initial direction of motion. Since the trajectories must make
exactly two direction changes, if the robot initially moves
right towardsB, it will reverse direction and reachA first.
On the other hand, if it starts moving left for a while, it
will change direction and reachB first.

(a)

(b)

Fig. 9. Expected value of time vs. direction change point

Notice that if the first direction change happens very
close to the origin or very close toA or B, the expected
value is practically the same as either of the two trajectories
with only one change (shown in the graph as the horizontal
lines). It is also interesting to note that the best case (lowest
expected value) for these trajectories does not happen at the
boundary – equivalent to thePBA andPAB trajectories.
The optimal trajectory, therefore, must haveat least two
direction changes (it may have more).

Now consider the polygon in Fig. 8(b). It is very
similar to (a), except for one vertex that was raised so
that the relative area of the left side of the polygon is



larger. Analogous to the previous case, Fig. 9(b) shows
the expected value of the time to find an object following
trajectories with two direction changes in this new polygon.
It can be seen that trajectoryPAB is now better than
trajectoryPBA but neither of them is the best one in this
group. Also, it is evident that the best point to make the
direction change (global minimum) has shifted to the left.

The graphs in Fig. 9 show that, for routes that make
two direction changes, the best trajectory (the one with
the lowest expected value of time) moves towards but not
reachesB, then reverses direction to go toA and then
finally B. The best point at which the first direction change
is made does not correspond to any point in the aspect
graph of the polygon. Furthermore, this point shifted to the
left when the area of the left portion of the environment
was increased.

These examples do not show what the optimal trajectory
is, however, they do show that it must have at least
two direction changes and that the points at which these
changes are made do not necessarily correspond to aspect
graph lines or points where the edge being seen through a
reflex vertex changes. In conclusion, an optimal trajectory
may change direction abruptly inside our defined regions,
not just at the boundary on our defined critical curves.

VI. SIMULATION RESULTS

This section presents an example of how our proposed
two layered approach can be used to generate a continuous
trajectory that covers a simple polygon with the goal of
reducing the expected value of the time to find an object
along that trajectory.

Fig. 10. A simple polygon with non-convex vertices as guards

Fig. 10 shows a simple polygon and a staring position
P (near the bottom). We placed a guardGi close to every
non-convex vertex and used the algorithm proposed in [11]
to find an efficient ordering for visiting the guard locations.
This algorithm returns a complete ordering (all guards are
included once).

However, the guard set can be redundant and since sens-
ing is done continuously the polygon may be completely
covered before all guards are “visited”. In consequence,
some guards late in the ordering may not need to be visited.
This is the case of guardsG4 andG5 in the figure.

Once an ordering has been established, the trajectory
is generated piecewise according to which guard is to
be visited. The robot does not actually travel towards

the guard, but rather it goes around its associated non-
convex vertex in a locally optimal trajectory, as described
in section IV. A locally optimal portion of the complete
path is generated for every edge seen through the current
non-convex vertex. For example, in Fig. 11 as the robot
moves from the starting positionP , in the shaded region,
the section of the environment that will be visible through
guard G1 is bounded by edgeE1, that is, as the robot
moves, its line of sight through the corner will “sweep”
edgeE1 until it reaches edgeE2. At this point, the shape
of the current sub-path changes as it is now edgeE2 that
will be swept. When the trajectory reaches one of the
aspect graph lines associated to the non-convex vertex of
the current guard, the process starts over with the next
guard in the ordering.

Fig. 11. Edges visible through guardG1

Fig. 12 shows all the trajectory pieces (A throughF )
generated for the polygon and the guard they correspond
to. There may be occasions, such as portionE, where the
locally optimal path would leave the polygon. In this case,
the trajectory is saturated and made to follow the polygon
boundary. Note that the endpoints of each trajectory portion
correspond to critical events, which occur at aspect graph
lines or when there is a transition between the edges that
are currently been seen through the corner (guard).

Fig. 12. Locally optimal trajectories for the guards that generated them

Fig. 13 shows the final trajectory for that polygon.
It is important to remark that this trajectory attempts
to minimize the expected value of the time to find an
object, not the distance traveled. The zig-zag motion is
not necessarily bad because a good trajectory must find
a compromise between advancing to the next guard and
sensing a larger portion of the environment as soon as
possible.



Fig. 13. The final trajectory for a simple polygon

For this particular example, the expected value of the
time along the shown trajectory is115.3. This contrasts
with the expected value along the straight line segments
shown in Fig. 10 (G1 → G2 → G3), which turns out to
be 136.9.

VII. D ISCUSSION ANDCONCLUSIONS

We addressed the problem of continuous sensing for
expected value search in simple polygons. This problem
involves the generation of a motion strategy that minimizes
the expected value of the time to find an object.

We presented a two layered algorithm that determines
an efficient ordering of visiting regions and then generates
locally optimal sub-paths to construct a complete trajectory.

The final trajectory is not globally optimal for two
reasons. First, the discrete version of the problem is NP-
hard and we proposed a tractable algorithm. Second, we
chose to decouple the task of finding an ordering and
moving between regions (bounded by aspect graph lines
and points where the edge being seen through a reflex
vertex changes). However, these lines are not the only
places where an optimal trajectory may change direction,
showing our proposed decoupling may not be the best one.

Obviously, the optimal paths will depend on the general
shape of the polygon. For example, in polygons where most

of the area is visible towards the end of the trajectory
a motion strategy that moves the robot in the visibility
graph will yield good results. This happens because it is
reducing the distance to travel up to the point where it is
more likely to find the object. In contrast, if the majority
of the visible area lies near the starting point acompletely
greedy algorithm that follows the visibility gradient will
perform better. In our case, the high level, combinatoric
layer attempts to find global optimality by forcing a specific
ordering for the low level, continuous layer. Without this
ordering, the end result would be a purely greedy algorithm
that does not consider the amount of area visible in the
future. For this reason, we think our algorithm presents a
good trade-off.

REFERENCES

[1] Chin, W.P. and S. Ntafos, “Optimum Watchman Routes,”Informa-
tion Processing Letters,Vol. 28, pp. 39–44, 1988.

[2] Fox, C., An Introduction to the Calculus of Variations,Dover
Publications, Inc, 1987.

[3] Gigus, Z. and H. Malik, “Computing the Aspect Graph for Line
Drawings of Polyhedral Objects”in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition 1998.

[4] Kirkpatrick, S., C.D. Gelatt Jr and M.P. Vecchi, “Optimization by
Simulated Annealing,”Science,Vol. 220, No. 4598, 1983.

[5] O’Rourke, J.,Art Gallery Theorems and Algorithms,Oxford Uni-
versity Press, 1987.

[6] Press, W.H.et al, Numerical Recipes in C : The Art of Scientific
Computing,Cambridge University Press, 1993.

[7] Resnik, R. and D. Halliday,Physics,John Wiley and Sons, Inc,
1977.

[8] Ross, S.M.,Introduction to Probability and Statistics for Engineers
and Scientists,Wiley, 1987.

[9] Sage, A.P. and C.C. White,Optimum Systems Control,Prentice Hall,
1977.

[10] Sarmiento, A., R. Murrieta and S.A. Hutchinson, “A Strategy for
Searching an Object with a Mobile Robot,”in Proc. Int. Conf. on
Advanced Robotics 2003.

[11] Sarmiento, A., R. Murrieta and S.A. Hutchinson, “An Efficient
Strategy for Rapidly Finding an Object in a Polygonal World,” in
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems2003.

[12] Shermer, T.C., “Recent Results in Art Galleries,”Proc. of the IEEE,
Vol. 80, issue 9, September 1992.


