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Abstract— In this paper we address the problem of finding The work that we present here is qualitatively different
time optimal search paths in known environments. In par-  from our previous efforts. In our past work, all robot paths
ticular, the task is to search a known environment for an  4ngjsted of piecewise linear segments between preselecte

object whose unknown location is characterized by a known locati In thi fiodtimal fi
probability density function (pdf). With this formulation , the ~ SENSOr locations. In this paper, we fioptimal continuous

time required to find the object is a random variable induced ~ Pathsby using methods derived from the calculus of vari-
by the choice of search path together with the pdf for the ations, and there is no predefined set of sensing locations
object’s location. The optimization problem is to find the pah  for the given task. Our approach exploits a decomposition
that yields the minimum expected value of the time required ¢ the space to be searched using critical curves that are
to find the object. .
We propose a two layered approach. Our algorithm first ~ '€lated to the aspect graph of the space. We use the utility
determines an efficient ordering of visiting regions in a function described in [11] to find an efficient order of
decomposition that is defined by critical curves that are visiting these regions, and the calculus of variations td fin

related to the aspect graph of the space to be searched. It |ocally optimal trajectories within each one of them.
then generates locally optimal trajectories within each othese

regions to construct a complete continuous path. We have
implemented this algorithm and present results.
| INTRODUCTION As in [11], we define the the random varialifeto be

In thi dqd h bl ¢ findi the time required to find the object, i.e., the time until the
n this paper, we address the problem of finding arE)bject enters the robot’s field of view for the first time. We

objectin a_polygonql environment as quickly as pos;ible OUre interested in finding a continuous patthat minimizes
average with a mobile robot that can sense the environmept, expected value of this random variable along that path,

_continuously. This is the op_timizatioq pmb'ef“ of minimiz- E[T)S]. This trajectory will, on average, find the object as
ing the expected value of time required to find the ObJethhuickIy as possible

;Nhert'?] tlme’trlftr? randk())n;_}{?ngble _E[je;meq[_by a sea_r;lr;é)at We model the robot as a single point with an infinite
ogether wi € probability density Tunction associ range, omni-directional sensor. We do not impose any con-

the object's cha’Flon. The pp_ssple appllcatl_ons have EEW'dstraints on the movement of the robot other than constant
range, from finding a specific piece of art in a museum t%peed

search and rescue of injured people inside a building.

In [10], we presented a discrete, combinatoric version 0]‘”_
this problem. In that work, we abstracted the problem to
one of finding a path in a graph whose nodes representedAs mentioned before, in this paper we are dealing with
sensing locations (guards). Associated to each node is thentinuous sensingn a continuous space. We assume that
probability of sensing the object from the corresponding lothe robot is sensing the environment as it moves. This
cation, and associated to each arc is a cost that corresporgg@itrasts with sensing only at specific locations, as was
to the time required to move between the correspondingescribed in [11].
sensing locations. We showed that for this problem, a We say that a continuous trajectorgvers[12] a poly-
trajectory that minimizes the distance traveled may nogon P if each poinp € P is visible from some point along
minimize the expected value of the time to find the objectthe trajectory. If the trajectory is to minimize the distanc

In [11], we extended our approach to the more generdfaveled, then the problem is called the Shortest Watchman
case of searching in a polygon. In this case, we use@our problem [1]. This is not exactly our problem since, as
a visibility-based decomposition of the polygon to agairwe showed in [10], a trajectory that minimizes the distance
convert the problem into a combinatoric one. The visibilitytraveled may not minimize the expected value of the time
regions were used to calculate the probability of seeing ato find an object along it.
object for the first time from particular sensing locations, The Shortest Watchman Tour problem is also related to
which were again chosen from a predefined set. Paths wetlee Art Gallery problem [5] in that they both deal with
constructed from arcs in a reduced visibility graph. Wevisibility in polygons. However, the Art Gallery problem
showed the problem to be NP-hard by reduction. seeks to minimize the number of point guards needed cover

Il. PROBLEM DEFINITION

PROPOSEDAPPROACH FORCONTINUOUS SENSING



a polygon and is not concerned at all with the distancealong the complete trajectory (to minimize the overall
between them. expected value).

Any trajectory that covers a simple (without holes) In the remainder of the paper, we describe our two-
polygon must visit each subset of the polygon that idevel approach. In section IV we describe how optimal
bounded by the aspect graph lines associated to non-convaxntinuous paths are generated for moving from one region
vertices of the polygon. An aspect graph for a polygon [3}o another. In section V we address the problem of choosing
consists of a set of line segments generated by features @fjood ordering for the regions. Results are given in section
the polygon. We only use the line segments generated Bil.
non-convex vertices of the polygon. These line segments
are simply extensions of the incident edges on non-convex
vertices, as shown in Fig. 1 with grey lines.

We call the area bounded by these aspect graph lines theOnce an ordering of visiting corner guard regions is
corner guard regionsThese regions have the characteristi€stablished by the combinatoric layer, it is still necegsar
that any point inside them can see “both sides” of theif0 generate a continuous trajectory between them.
associated non-convex vertices. Therefore, a continuousGiven that we want to generate a continuous path, it is
trajectory that covers a simple polygon needs to have &ecessary to compute the expected value of tHf€|S]
least one point inside the region associated to “outlying@long a trajectorys' (as the robot moves). The form of the
non-convex vertices (non-convex vertices in polygon earsgquation to comput&|7'|S] changes in different regions of
like A and C in the figure. Since these points need to bdhe polygon. For this reason, we have analyzed the simplest
connected with a continuous path, the trajectory will cros§ase — within one region — and concatenated these sections

all other corner guard regions, like the one associated " & complete trajectory. Note that with this approach,
vertex B. there are no guarantees as to whether locally optimal sub-

paths will lead to a globally optimal solution.

IV. PLANNING OPTIMAL CONTINUOUS
PATHS WITHIN REGIONS

A. Continuous Sensing in the Base Case

The simplest case for a continuous sensing robot is that
shown in Fig. 2. In this case, the robot has to move around
a non-convex vertex (corner) to explore the unseen dfea
For now, we assume that this is the only unseen portion of

the environment.
<\/

\\9

Fig. 1. The aspect graph lines (in grey) associated to nomesovertices
A, BandC

Since a continuous trajectory needs to visit all the corner
guard regions, it is important to decide in which order they
are visited. The problem can be abstracted to finding an
specific order of visiting nodes in a graph that minimizes
the expected value of time to find an object. In [11] we
showed that a version of this problem is NP-hard. -

For this reason, to generate continuous trajectories we
propose an approach with two layers that solve specific Fig. 2. Base case for a continuous sensing robot
parts of the problem. The high leveipmbinatoriclayer
attempts to find a “suitable” order of visiting corner guard As the robot follows any given trajector, it will
regions without taking into account how exactly the robokense new portions of the environment. The rate at which
is to move between them. The low levehntinuousdayer  new environment is seen determines the expected value of
takes an ordering from the upper level and tries to find howhe time required to find the object along that route. In
to best visit the given regions. particular, consider the following definition of expeoctati

This decoupling makes the problem simpler to addressor a non-negative random variable from [8],
but does so at the expense of global optimality. To preserve oo
global optimality, an algorithm would need to consider how E[T|S] = / P(T > t) dt. 1)
the robot is moving while generating the best ordering 0
of visiting corner guard regions. Calculating the globallyThe particular routeS followed by the robot determines
optimal robot motions is not an easy task because thbe probability of not having seen the object at any given
trajectory can make “sudden” direction changes withirtime, P(T" > t).

a single region (as will be described in section V) and We require that this probability decreases monotonically,
also because these motions must make a compromisdich is equivalent to considering only trajectories along
between the distance traveled (time) and the amount of thvehich the size of the unseen region decreases monoton-
environment (probability) that is visible at different pt8 ically. As shown in Fig. 2, the remaining section of the




environment to be explored’ decreases monotonically if  Finally, from (1) and (3),
and only if the angle from the corner to the robot increases

2 t
monotonically. For this reason, it is natural to express the E[T|S] = Q [V dt ) 4)
trajectory in polar coordinates with the origin at the carne 24 Jo tan(6(t))
B. Expected Value of Time Along any Trajectory Equation (4) is useful for calculating the expected value

of the time to find an object given a robot trajectaosy

In the simple environment shown in Fig. 3 the robot Sexpressed as a parametric functit(m). It is interesting to

trajectory is expressed as a function in polar coordlnatenso,[e that the expression does not directly depend on the

with the origin on the non-convex vertex. We assume that_ . . .
. . . o adiusr(t) (a consequence of infinite sensing range). In
the robot will have a starting position such that its line o?r r(t) ( q g ge)

. : ; . the next section, we will also use (4) to find the optimal
sight will only sweep the horizontal eddg . As mentioned . B L .

. ) . trajectory.S* by minimizing the value of the integral.
before, the expected value of the time to find an object ] y y 9 g

depends on the ared’ not yet seen by the robot. Since

L X . C. Minimization Using Calculus of Variations
we assume infinite sensing range, at any tirtbe only

important feature of the robot's position is its anglg) The calculus of variations is a mathematical tool em-
relative to the origin. ployed to find stationary values (usually a minimum or a
maximum) of integrals of the form
A t=0 b
(r(),6(0)) I = / F‘(x7 Y, y/) dm, (5)
a
i |0 wherex andy are the independent and dependent variables
Wm0 | respectively.
“O g, The integral in (5) has a stationary value if and only if
. the Euler-Lagrange equation is satisfied,
E; }
0. a—F — 4 (9_F =0. (6)
dy dx \ 0y’
Fig. 3. Base case for a continuous sensing robot In our case, it is not useful to apply the prototypical

Euler-Lagrange equation directly to expression (4) for
The following analysis is only valid for an axis-parallel two reasons. Firsty and 6 are expressed as parametric
edgeF,, but it can be easily adapted to the general casequations, instead of one as a function of the other.
Let Q.(t) and Q, be horizontal and vertical distancesThjs is not really a problem, because expressions very
from the origin to the point where the robot's line of sightsjmilar to (6) can be derived to accommodate the case of
through the origin intersects, . The area of the unexplored parametric functions [2]. The real problem is that (4) does
region A'(t) is not impose any constraints on the parametric equations
, Qy Qu(t) describing the robot motion. The optimal trajectc_)ry_ vyithou
Al(t) = -5 (2) any constraints would be one whetdncreases infinitely
fast.
To address both of these problems, we introduce the
tan (a(t)) = Q. (t) constraint that the robot moves _With constant (unitary)
Qy speed. To do this, we express its velocity vector as a
generalized motion [7] in a basis where one compobgnt
is radial from the origin and the othéfy is perpendicular,
as shown in Fig. 4. Botli/,. and Uy are unit vectors that
define an orthogonal basis. In this basis, the robot’s vsloci
(in polar coordinates) can be described as

As can be seen in Fig. 3,

and

Since tan (£ — 0(t)) = m

Q?E’t)’ and (2) can be written as
_ Qy Ql(t) — Qy2
2 2 tan (0(t))

Assuming that the probability density function of the
object’s location over the environment is constant, the
probability of not having seen the object at timés

A(t) Q>
A 24 tan(0(t))’

where A is the area of the whole environment. Fig. 4. Generalized motion of a particle moving along péth

we havetan (6(t)) =

V=7U.+r0U,.

A'(t)

P(T>t)= (3) R ©00)




The constraint that the robot speed is constant can be T S S——
expressed as i O\
.2 2 52 i‘ \Q\
V] =7 +7r* 6% =1. 7
In practice, this means that the maximal speed the robot A4 // ////
can achieve is constant regardless of the direction of i ) {1
motion. The velocity components need to “add up” to a By .

constant value. This contrasts with other systems where
each dimension can be controlled independently, like a
plotter.

Starting with equation (7), it is possible to express the
differential of time as a function of a differential df.
This will allow us to rewrite the parametric equation as
a function in whichf and r are the independent and

Fig. 5. Family of curves depending on initial conditions

dependent variables respectively, the first derivative at the end of the integration range must
(dr)? , (df)? be such that the trajectory approaches the target manifold
L = (dt)? +r Wa (the vertical line in Fig. 3) perpendicularly. This trartsls
(d6)? to stating thatr’'(d;) = 0. In fact, the transversality
(dt)* = ((dr)* +r* (d9)?) yTIvE condition for the Euler-Lagrange equation establishet tha
(df) in order to satisfy the equation and obtain a minimum,
(dt)? = (r'2 +r2) (d6)?, the solution function must be perpendicular to the target
manifold att = ¢; [9].
dt = (r’2 + 7’2) ’ do, (8) This observation allows us to integrate equation (10) as

a two point boundary value problem, where we specify
wherer’ = 2r. Substituting (8) into (4), we obtain an the position at the beginning of the integration range
expression for the expected value of time to find an objeGt(g,) and the first derivative at the end(d;). For this,
where the robot’s trajectory is expressed as being a we coupled the Runge-Kutta algorithm with a globally

function of 0, convergent Newton-Raphson method [6].
02 [ 1 2 N\% Fig. 6 shows the trajectories generated for six different
E[T|S] = ﬁ tan(0) (T/ +r ) df. (9) starting positions in solid black lines. To save space, the
0;

_ . . figure only shows the upper right portion of an environment
To find stationary values of (9), we use (6) with= 6,  similar to that in Fig. 3 (the units on the axes are arbitrary)

1

y=randF = P22 ® . After simplification,

tan 6
this yields the following second order non-linear differen =
tial equation, "
2r/? 2 '3 = _\
P =r4+ v+ — . 10 _\
et ae \e (10) - s
This equation describes the route to move around a non- T~
. 100 \
convex vertex (corner) to search the area on the other side
. . . < @ Starting positions
optimally (according to the expected value of time). oy Integrated trajectories
D. Numerical Integration x
We solved equation (10) numerically using an adaptive oo om o momoam e

step-size Runge-Kutta method [6]. Since this equation is
of second order, any numeric approach that integrates Fﬂg 6. Optimal trajectories for a simple environment ofa through
as an initial value problem requires two initial conditions numerical integration
r(6;) and+’(0;). We know the staring point(6;) and the
integration ranggd;, 6,), but we do not impose any other
constraints on the trajectories other than unitary spee
Therefore, the possible solutions are a family of curves tha To corroborate our results from the previous section,
depends on the value of the first derivative at the beginninge found an approximate solution to the original problem,
of the integration range’ (6;). These are shown in Fig. 5. as depicted in Fig. 2, by another method independent of
Most of the possible solutions diverge long before theyur previous analysis. For this, we implemented Simulated
reach the end of the integration range. In fact, it is evidenAnnealing [4]. This stochastic relaxation method is based
from (10) that the solution is not defined therefat= 7). on describing the possible solutions as system states,
However, it is possible to get arbitrarily close, and to dp soassigning an energy value to them and then minimizing

§. Simulated Annealing



that energy. Obviously, the state of minimum energy must V. CHOOSING ANORDERING OFREGIONS

correspond to the optimal solution. To cover a simple polygon, it is sufficient that a trajec-

The system goes through a heating process, where thgy visits at least one point inside each corner guard regio
energy of the system is incremented then a cooling proceggs defined in section I1l) associated to reflex vertices of
where the energy is iteratively decreased. We made thegg polygon. The high level, combinatoric layer attempts
variations exponentially by multiplying the current tem-tq find an ordering for the robot to visit these corner guard
perature by constants (2.0 for heating up, 0.98 for coolingegions such that the expected value of the time to find an
down). object in the environment is reduced.

To generate a new statg,, the current states; is To find a suitable ordering, we defined a point guard
perturbed randomly. If the energy of the new stdtés;+1)  inside each corner guard region and used the approach
decreases, then the new state is deterministically aatept§ve presented in [11] for sensing at specific locations.
If the energy rises, a Boltzmann acceptance criterion ipotentially, any point in the closure of a corner guard
used. Namely, the new state is accepted with probabilityregion can be used as a point guard; we decided to place

U(ss)-U(si41) them very close to the non-convex vertices.
K(T7m> Once point guards have been defined, it is straightfor-

ward to calculate the visibility regions and distances re-
where K is a normalization constant. quired for the proposed utility function of [11]. In the end,

In our problem, a state is an ordered set of controlhe algorithm yields an ordering for visiting corner guard
points that define the robot’s trajectory. These points wergegions (associated to non-convex vertices) that attetapts
randomly perturbed along one dimension only (verticallyyeduce the expected value of the time to find an object.

— except for the first point, which corresponds to the initial Once an ordering has been established, the lower level,
position, and was always fixed. We defined the energy afontinuous layer uses the sequence of non-convex vertices
any state as the expected value of time to find an object g perform locally optimal motions around each of them,
visiting those points in order (with respect to the horizdnt thus generating a complete trajectory that covers the polyg
dimension). onal environment.

We started the heating process with unitary temperature We believe that this trajectory reduces the expected
(in arbitrary units) and multiplied it b.0 until more than value of the time to find an object, but we know that any
97% of the new states generated were accepted. Then, wejectory generated in this fashion will not be globally
cooled down with a constant @f.98 until no new states optimal in the general case. There are several reasons
were accepted. Each epoch corresponded to individualfgr this, the most obvious being that any partition of the
perturbing each point approximately four times, and therproblem into locally optimal portions does not guarantee
at the end of the epoch, perturbing the whole range onceglobal optimality (Bellman’s principle of optimality does

As can be seen in Fig. 7, the general shape of theot apply). Another reason is that our generated trajexgori
trajectories generated for six different starting posiio will only change direction abruptly (non-smoothly) in
by our numerical integration (solid lines) and stochasti@spect graph lines and points where the edge being seen
relaxation (control points) are very similar. We shouldrgoi through a reflex vertex changes, for example, when the
out, however, that each Simulated Annealing run took morebot has finished seeing an ear of the polygon and must
than an hour whereas the numeric integration is done in@verse direction. However, an optimal trajectory might
fraction of a second. As mentioned before, the figure onlyeed to change direction in other points of the environment
shows the upper right section of an environment, like thaas well, as described in the next section.
in Fig. 3 of arbitrary dimensions.

P~e

)

A. Direction Changes within a Region

An optimal trajectory may change direction at points
that are not part of our set of critical curves, that is, it
00 may change direction abruptly in the interior of a region.
‘ Consider the polygon in Fig. 8(a). If the robot starts at
P, it is clear that any trajectory that covers the polygon
must reach the vertical lines at non-convex vertideand
B belonging to the aspect graph. If such a trajectory is
to be optimal, then it is not necessary to cross said lines

0000 Simulated Annealing

1 Numerica Integration because the complete side region would already be visible
and nothing is to be gained by going further.
= Also, since both non-convex vertices are “above” the

-50 0 50 100 150 200 250 300 350

starting position and the robot is already at the lower limit
of the polygon, the optimal trajectory will not move verti-
Fig. 7. Optimal trajectories for a simple environment oméai with ~ cally. The robot cannot go “downward” because it would
simulated annealing leave the polygon, and it is not useful to move “upward”
because no new regions would ever be visible moving this
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Fig. 8. Two similar polygonal environments

way. Any new point seen in a diagonal trajectory could be wrs)
seen sooner by traveling a shorter distance on the horizonta
component of said trajectory. Also, the two closest aspect

graph lines that must be visited are vertical, therefore, 50
moving vertically does not decrease the distance to either
of them. 0

Since moving vertically does not help either of the two
variables involved in the expected value search, distance
(time) and visible area (probability), we can conclude that

20
-60 -40 20 O 20 40 60 80 100 120 140 160 180

the optimal trajectory will not have a vertical component. Change Point
Having established that the optimal trajectory for this (€)
particular problem will only move horizontally, let us sy 150
consider the case of horizontal trajectories startingPat :jz M
that cover the whole polygon. 120
A trajectory that covers the polygon and only moves 1o
horizontally needs to reverse directian leastonce. If it “;2
only changes direction once, then there are only 2 cases, 50
it must go fromP to B then toA (PBA) or go fromP to 70 PAB
A then to B (PAB). -
It is also possible that a trajectory changes direction w0
twice, for example, it may go fronP towards (but not D
reaching) B, reverse once to go ta then reverse again (b)

to reach B. In this case, there is a range of possible
trajectories depending on how far they go the first time Fig. 9. Expected value of time vs. direction change point
they move towards3.
The graph in Fig. 9(a) tallies the expected value of
the time to find an object in the environment depicted Notice that if the first direction change happens very
in Fig. 8(a) when following a horizontal trajectory that close to the origin or very close td or B, the expected
makes only two direction reversals. The horizontal axis irvalue is practically the same as either of the two trajeetori
Fig. 9(a) represents the point at which the first directiorwith only one change (shown in the graph as the horizontal
change is made. The negative domain means that the robimes). It is also interesting to note that the best cased&iw
starts moving towardsl instead ofB. expected value) for these trajectories does not happee at th
The discontinuity at the origin is the result of theboundary — equivalent to thBBA and PAB trajectories.
initial direction of motion. Since the trajectories mustkea The optimal trajectory, therefore, must haat leasttwo
exactly two direction changes, if the robot initially movesdirection changes (it may have more).
right towardsB, it will reverse direction and reachH first. Now consider the polygon in Fig. 8(b). It is very
On the other hand, if it starts moving left for a while, it similar to (a), except for one vertex that was raised so
will change direction and reachB first. that the relative area of the left side of the polygon is



larger. Analogous to the previous case, Fig. 9(b) showthe guard, but rather it goes around its associated non-
the expected value of the time to find an object followingconvex vertex in a locally optimal trajectory, as described
trajectories with two direction changes in this new polygonin section 1V. A locally optimal portion of the complete
It can be seen that trajectorf? AB is now better than path is generated for every edge seen through the current
trajectory PBA but neither of them is the best one in thisnon-convex vertex. For example, in Fig. 11 as the robot
group. Also, it is evident that the best point to make thenoves from the starting positioR, in the shaded region,
direction change (global minimum) has shifted to the leftthe section of the environment that will be visible through
The graphs in Fig. 9 show that, for routes that makguard G; is bounded by edgd”;, that is, as the robot
two direction changes, the best trajectory (the one witlmoves, its line of sight through the corner will “sweep”
the lowest expected value of time) moves towards but nadgeFE1 until it reaches edg#,. At this point, the shape
reachesB, then reverses direction to go té and then of the current sub-path changes as it is now eflgehat
finally B. The best point at which the first direction changewill be swept. When the trajectory reaches one of the
is made does not correspond to any point in the aspeaspect graph lines associated to the non-convex vertex of
graph of the polygon. Furthermore, this point shifted to thehe current guard, the process starts over with the next
left when the area of the left portion of the environmenguard in the ordering.
was increased.
These examples do not show what the optimal trajectory

is, however, they do show that it must have at least -
two direction changes and that the points at which these 2
changes are made do not necessarily correspond to aspect

graph lines or points where the edge being seen through a

reflex vertex changes. In conclusion, an optimal trajectory
may change direction abruptly inside our defined regions,
not just at the boundary on our defined critical curves.

V1. SIMULATION RESULTS

This section presents an example of how our proposed
two layered approach can be used to generate a continuous
trajectory that covers a simple polygon with the goal of Fig. 12 shows all the trajectory pieced through F)
reducing the expected value of the time to find an objecjenerated for the polygon and the guard they correspond
along that trajectory. to. There may be occasions, such as porfiyrwhere the

locally optimal path would leave the polygon. In this case,
the trajectory is saturated and made to follow the polygon
boundary. Note that the endpoints of each trajectory portio
correspond to critical events, which occur at aspect graph
lines or when there is a transition between the edges that
are currently been seen through the corner (guard).

Fig. 11. Edges visible through guafe

Fig. 10. A simple polygon with non-convex vertices as guards

Fig. 10 shows a simple polygon and a staring position
P (near the bottom). We placed a guarg close to every
non-convex vertex and used the algorithm proposed in [11]
to find an efficient ordering for visiting the guard locations
This algorithm returns a complete ordering (all guards argig. 12. Locally optimal trajectories for the guards thaheated them
included once).

However, the guard set can be redundant and since sens¥ig. 13 shows the final trajectory for that polygon.
ing is done continuously the polygon may be completelyt is important to remark that this trajectory attempts
covered before all guards are “visited”. In consequencep minimize the expected value of the time to find an
some guards late in the ordering may not need to be visitedbject, not the distance traveled. The zig-zag motion is
This is the case of guards, and G5 in the figure. not necessarily bad because a good trajectory must find

Once an ordering has been established, the trajectoaycompromise between advancing to the next guard and
is generated piecewise according to which guard is teensing a larger portion of the environment as soon as
be visited. The robot does not actually travel towardgossible.




Fig. 13. The final trajectory for a simple polygon

of the area is visible towards the end of the trajectory
a motion strategy that moves the robot in the visibility
graph will yield good results. This happens because it is
reducing the distance to travel up to the point where it is
more likely to find the object. In contrast, if the majority
of the visible area lies near the starting pointampletely
greedy algorithm that follows the visibility gradient will
perform better. In our case, the high level, combinatoric
layer attempts to find global optimality by forcing a specific
ordering for the low level, continuous layer. Without this
ordering, the end result would be a purely greedy algorithm
that does not consider the amount of area visible in the
future. For this reason, we think our algorithm presents a

For this particular example, the expected value of thgood trade-off.

time along the shown trajectory ikl5.3. This contrasts

with the expected value along the straight line segments

shown in Fig. 10 ¢; — G2 — G3), which turns out to
be 136.9.

VIl. DIscUsSION ANDCONCLUSIONS

We addressed the problem of continuous sensing fogs
expected value search in simple polygons. This problem
involves the generation of a motion strategy that minimizes

the expected value of the time to find an object.

We presented a two layered algorithm that determinegs]
an efficient ordering of visiting regions and then generate%]

locally optimal sub-paths to construct a complete trajgcto
The final trajectory is not globally optimal for two

reasons. First, the discrete version of the problem is NP-B]
hard and we proposed a tractable algorithm. Second, W[e
chose to decouple the task of finding an ordering and9]

i

vertex changes). However, these lines are not the only
places where an optimal trajectory may change directioft1]
showing our proposed decoupling may not be the best one.
Obviously, the optimal paths will depend on the generali2]
shape of the polygon. For example, in polygons where most

moving between regions (bounded by aspect graph lin
and points where the edge being seen through a refl
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