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Abstract Three-dimensional (3D) object reconstruction is
the process of building a 3D model of a real object. This
task is performed by taking several scans of an object from
different locations (views). Due to the limited field of
view of the sensor and the object’s self-occlusions, it is a
difficult problem to solve. In addition, sensor positioning
by robots is not perfect, making the actual view different
from the expected one. We propose a next best view
(NBV) algorithm that determines each view to reconstruct
an arbitrary object. Furthermore, we propose a method
to deal with the uncertainty in sensor positioning. The
algorithm fulfils all the constraints of a reconstruction
process, such as new information, positioning constraints,
sensing constraints and registration constraints. Moreover,
it improves the scan’s quality and reduces the navigation
distance. The algorithm is based on a search-based
paradigm where a set of candidate views is generated
and then each candidate view is evaluated to determine
which one is the best. To deal with positioning uncertainty,
we propose a second stage which re-evaluates the views
according to their neighbours, such that the best view is
that which is within a region of the good views. The results
of simulation and comparisons with previous approaches
are presented.

Keywords View Planning, Sensor Planning, Next Best
View, Object Reconstruction

1. Introduction

Three-dimensional (3D) models of real objects are used in
several robotic applications, such as object manipulation,
pose estimation and tracking. There are at least two
ways to obtain a 3D model of an object. The first is
by CAD modelling; unfortunately, this way requires a
skilled human modeller. The second way is by object
reconstruction, which consists of taking several scans of
the object’s surface with a range sensor (see Fig. 1). The
sensors or scanners must be placed in different locations
because they have a limited field of view and also because
the objects have self-occlusions. The set of different
locations (or views) must be chosen carefully, such that
each location satisfies certain acquisition constraints (in
the next section, we discuss these constraints). A human
operator can select these views, as in the Michelangelo
Project [1]; however, human intervention should be
reduced as much as possible in robotics applications.
Another way to get these views is to place the sensor in
a predefined set of views around the object [2], but this
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solution cannot be adequate given different object shapes
and sizes. Thus, the best solution for robotics applications
is a view planning algorithm which can automatically find
each sensor location [3].

Figure 1. Required views to build a 3D model of an object. The
arrows indicate the position and orientation of the sensor, from
which a scan is taken.

1.1 The Next Best View Problem

Planning all the required views in advance is not possible
because the object is unknown; instead , view planning
must be done concurrently with the reconstruction process
in a sequence of steps involving robot positioning,
scanning, registration and planning of the next view. Fig.
2 shows the task flowchart.

The problem addressed in this paper is to plan the next
sensor’s position, called the ’next best view’(NBV). The
NBV is the best view for the reconstruction process from
a set of candidate views. Determining the NBV is a
complex problem because the determined view must fulfil
the following constraints:
1. New information. The NBV must see unknown

surfaces in order to completely observe the object.
2. Positioning constraint. The view must be reachable by

the robot and there must be enough space around the
view location for the robot’s placement.

3. Sensing constraint. The surfaces to be seen must be
within the camera’s field of view and depth of view;
in addition, the angle formed between the sensor’s
orientation and the surface normal must be smaller
than a given angle defined by the sensor in question
[4].

4. Registration constraint. To ensure that the new scan
will be merged with the previous ones, there must be
an overlap between them. This overlap is used by
algorithms like iterative closest point [5] to merge the
surfaces. In some cases, this overlap is also used to
update the camera’s pose and decrease the positioning
estimation error.

Figure 2. Object reconstruction process. One iteration of the
process consists of four steps: positioning, scanning, registration
and planning.

(a) Front view (b) Top view (c) Left view

Figure 3. Output model from our view planner for a bunny
object. All the sub-figures show the voxel representation.
Sub-figure a) also shows the voxel normals.

In addition to the previous constraints, there are certain
other desirable characteristics that the NBV should have.
These desirable aspects are not completely necessary,
but they can improve both the reconstruction process’s
efficiency and the 3D model:
• Greatest unknown area. A given view should see

as much of the unknown surface as is possible so
as to reduce the number of required views. This
characteristic increases in importance if the number of
scans is limited.

• Navigation distance. Given that travelling from the
current sensor position to the NBV consumes time
and energy, it is desirable that the navigation distance
should be short.

• Perpendicularity. If the angle formed between the
surface normal and the sensor’s orientation is close to 0,
the scan surface will have better quality. This desirable
characteristic is named scan’s quality [6].

• Spatial uncertainty. Robots implement non-ideal
positioning. The consequences of such error are: (i)
decreased coverage, (ii) different precision and density
than expected, and (iii) reduced visibility of the surface
[7]. Therefore, the planned view should decrease these
consequences.

1.2 Contributions

We present a NBV algorithm that can reconstruct arbitrary
3D objects. Fig. 3 shows a 3D model of an object obtained
with our method. The algorithm follows a search-based
paradigm, where a set of candidate views is computed and
then every view is tested to determine whether it is the
best view. In this paradigm, a utility function is used to
evaluate how good a view is.

The first contribution is a utility function that evaluates
most of the constraints (the constraints that are not
evaluated by the function are fulfilled during the
generation of the candidate views). We consider
our function to be more comprehensive than previous
functions. For example, this function is one of the first
to use the navigation distance as an important factor to
determine the NBV; additionally, it is directly applicable
to certain types of robots, like quadcopters and coordinate
measurement machines. The second contribution is an
efficient search strategy. This strategy reduces the time to
evaluate the candidate views. The third contribution is a
method for re-evaluating the candidate views in order to
decrease the positioning error effects.
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2. Related Work

Researchers have addressed the NBV problem since the
1980s. Previous works can be divided according to two
types: search-based methods and occlusion-based methods.
Search-based methods use an optimization criteria to find
the NBV among a set of candidate views. Occlusion-based
methods use the occlusion boundaries within the range
image of the current view to determine the NBV. Our
algorithm is a search-based method, and as such we will
mainly review similar methods in this section. For an
extended review of all the methods, see [3].

The early works [8], [9] and [10] aimed to find the view
that provides the ’greatest unknown area’ (GUA). Banta
and others in [9] used a combination of occlusion-based
and search-based algorithms. They proposed to use
the occlusion edges (called ’jump edges’) of the range
images to generate some candidate views, after which
they constructed a ray tracing in order to determine
which candidate view will disclose the most hidden point
information. Wong, in [10], proposed an ’optimal method’
where a set of views around the object is created and
each view is evaluated; unfortunately, the method requires
significant computation time.

The view that provides the ’greatest unknown area’ (GUA,
for short) from the early works is sometimes not the
best choice because other constraints need to be satisfied.
To address this limitation, other methods have been
proposed. Massios, in [6], included a quality factor in
the utility function. Sanchiz, in [11], proposed a utility
function including overlap and unknown areas.

Other works have included essential constraints in view
planning and have proposed techniques to compute the
NBV within a short time. In [12], Blaer and Allen proposed
a method that determines the NBV from a set of candidate
views - they reduced the computation time by means of
looking for just one type of voxel (called a ’boundary
voxel’). However, the view planning phase only looked for
the greatest unknown area, leaving certain constraints like
overlap and navigation distance. In [13], Low and Lastra
proposed a way to join views and voxels into patches -
based on this, they proposed a hierarchical strategy to
find the NBV within a short time. However, their utility
function does not consider the navigation distance or scan
quality. Foissotte et al. in [14] proposed a new way to find
the GUA using an optimization technique; however, they
do not specify how to solve for the object’s self-occlusions.

New methods include motion planning for fixed arms in
order to reach the planned views. In [15], Kriegel et al.
combined two approaches for determining the NBV - a
surface-based method and a volumetric method. First,
they computed a set of candidate paths over the triangular
mesh border; then, they evaluated the goodness on the
volumetric representation. The goodness was evaluated
with information gain (IG), while in the present work
the goodness is determined by the combination of several
desired characteristics. Another work is that of Torabi
and Gupta [16]. In their work, the authors plan a NBV
from a set of candidates in the workspace and then use
inverse kinematics to obtain a configuration that matches

the desired sensor location in the workspace. The novelty
of the method is in the generation of the candidates and
the stop criteria. The candidates are synthesized over
the borders of the scanned surface and the stop criteria
ensure that if the surface has no more candidates then the
model is completed. Krainin et al. [17] proposed a method
in which the robot grasps the object and moves it inside
the camera’s field of view (FOV); the candidate views are
evaluated with a trade-off between the view goodness and
the motion cost. One limitation of the approach in [17]
is that the robot might not have the ability to grasp and
move the object. In [18], the authors address the problem
of actively searching for an object in a 3D environment
with a humanoid robot. The authors have proposed a
’greedy’ strategy for selecting the next best view and they
have shown that fast and reliable 3D object localization is
feasible (if certain reasonable constraints on the problem
are fulfilled). These constraints include placing bounds on
the size of the search space, having controlled illumination
conditions, and small dead-reckoning errors. However,
the work in [18] does not address the problem of the
reconstruction of the sought model.

The previous work has focused on reconstructing an object
with high coverage. However, such works have not
been tested in scenarios where the positioning system
has low accuracy, such as with quadcopters and mobile
robots. Scott [7] notes that the pose error can cause
serious scanning deficiencies. In this paper, we propose
a NBV method that predicts the error and plans a view to
compensate for it.

The work we report here represents a combination and
an extension of our previous work. In [19], we have
proposed a utility function that provides a complete
evaluation of the views - it includes unmarked surfaces,
quality, overlap and distance. In [20], we presented a
method for dealing with position error in the context of
NBV planning. In this paper, we combine these two
methods in a coherent manner, describing in more detail
the proposed approaches, and we perform additional
experiments comparing the method with the related work.

3. Method Overview

Our method is based on the dual assumption that the robot
knows the position and the approximated dimensions
of the object in question. The method is summarized in
algorithm 1 and is explained now. In the first step, the
robot performs a scan with the range sensor. If there are
scans taken from previous iterations, they will need to
be registered and merged to build a unique model. Such
registration is concerned with matching point clouds into
one reference frame. This task is carried out by an ICP
[5] algorithm, which iteratively minimizes the distances
between the overlap of two sets of 3D points. After
registration, the redundancy between the overlapped
areas is decreased and a surface representation is created;
in this work, we use a voxel map representation, which
is explained in section 4. Afterwards, the robot computes
a set of candidate views around the object. Next, all
those candidate views that do not fulfil the positioning
constraints are deleted, leaving only a set of feasible views.
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Algorithm 1: 3D object reconstruction with view planning

Input : Initial view (v0)
Output: Object model (M)
Position the sensor in v0;
Im ← Take range image;
M ← Update model M using Im;
while true do

nbv ← Compute next best view ;
if nbv does not provide information then

Return M;
Finish reconstruction;

end
Position the sensor in nbv;
Im ← Take range image;
M ← Update model M using Im;

end

The set of feasible views is evaluated using a utility
function (during the evaluation, we perform a ray tracing
whereby the sensing constraints are considered). Next, a
re-evaluation of the views is performed in order to select
views robust to any positioning error. Next, the views
are ranked and the best evaluated view is selected as the
NBV. This process allows us to evaluate and satisfy all the
constraints.

Once the NBV has been chosen, the robot moves the sensor
to the NBV position. If something comes up and the
robot cannot reach the position, a new NBV is computed.
Otherwise, when the robot reaches the position, the scan is
performed and the information is registered with the ICP
algorithm. Afterwards, the partial model is updated.

At this point, the model may be complete or not. However,
since we do not know the real object, we cannot know if
the model is complete. As such, a new view is computed.
If the new computed view provides new information, the
process is repeated until the NBV does not provide new
information.

We use a voxel map to store the information about the
reconstruction scene. A voxel is the smallest volume of
an object and a voxel map is a 3D vector where each unit
is a voxel. Using a voxel map has certain advantages: (i)
a voxel can represent many surface points that are inside
its boundaries, speeding-up the NBV computation and the
model display, and (ii) a voxel map is easily implemented
because it is only a 3D vector.

4. Scene Representation

Each voxel has three associated attributes: (i) a label, (ii) a
normal value, and (iii) a quality value [11]. The label of a
voxel indicates its type according to the different areas that
exist in a given reconstruction scene (see Figure 4):
• Unmarked voxel. This is a voxel that has not been

seen by the sensor. When the algorithm starts, a cube
of ’unmarked’ voxels is placed in the space where the
object is.

• Occupied voxel. This voxel represents a surface
scanned by the sensor. After a scan has been taken, all

the voxels whose positions correspond with measured
points are labelled as ’occupied’ voxels.

• Empty voxel. These voxels represent empty space.
After a scan, all the unmarked voxels between a
measured point and the sensor position are labelled as
’empty’ voxels.

• Occluded voxel. These voxels represent an area that
was within the sensor’s field of view but which was
occluded by a surface. All the unmarked voxels that
have been occluded by occupied voxels are labelled as
’occluded’ voxels.

• Occplane voxel. An occplane is a contraction of
’occlusion plane’. This type of voxel is part of the
occluded space, but it is on the boundary of this space.
Formally, it is an occluded voxel that is adjacent to an
empty voxel.

Normal and quality attributes are only defined for occupied
voxels. The normal attribute is related to the surface normal
and the quality attribute is related to the perpendicularity
of the sensor with respect to the surface. To obtain the
attribute normal, we first determine the surface normal of
every point within the range image; next the average of the
surface normals from the points whose positions coincide
with the voxel position is obtained; finally, the normal
attribute is equal to the average obtained. In addition, to
obtain the quality attribute, we first determine the sensed
quality of each point of the range image as the cosine of
the angle formed by the point’s surface normal and the
sensor’s orientation. The greatest sensed quality from the
points that match up with the voxel position is the quality
attribute.

The process followed in order to update the voxel map is
based on the Sanchiz algorithm [11], whereby the positions
of the sensor and the points of the scanned surface are used
to update it.

Range sensor

Field of View

Scanned surface

Occlusion plane

Occluded area

Empty area

Object

Figure 4. Horizontal slice from a reconstruction scene. The
figure shows the different types of areas that appear when a scan
is taken.

4.1 Candidate Views

The set of candidate views, V, is evaluated to determine
the NBV. When there is no positioning error, we use a set
of candidate views around the object - this configuration is
often called a’view sphere;, where each view is equidistant
from the centre. To generate the view sphere, we use a
technique called ’sphere tessellation’. This technique starts
from an icosahedron and tessellates each face to create four
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new faces; the tessellation process is repeated recursively
until the tessellation level required is achieved. Next, the
centroid of each face is taken as a view position and it is
oriented to the sphere’s centre.

When there is a positioning error, the views are not
restricted to a view sphere but are instead distributed
inside a cube. The cube is divided as a 3D grid and the
position of each cell is taken as a candidate view. Each
candidate view is pointed towards the object (the centre
of the cube). The cube is defined by three orthogonal
line segments: Sx, Sy and Sz. The 3D grid is obtained by
dividing each segment Sx, Sy and Sz in n cells, generating
a set of n3 views.

4.2 Candidate View Evaluation

The evaluation of each view in V is done in two steps: ray
tracing and utility function evaluation.

The ray tracing consists of tracing a set of rays inside the
voxel map according to the Bresenham algorithm [21]. The
ray tracing is configured according to the sensor parameter
—field of view, the resolution (rows × columns), the
sensor view angle and the depth of view — . When a
ray ’touches’ a voxel (as distinct from empty voxels), the
attributes from this voxel are stored. After ray tracing, we
have all the information about the voxels that are ’visible’
from the candidate view. In other words, we have the
number of occupied voxels (noc), the number of occplane
voxels (nop), the number of unmarked voxels (num), and
the quality and the normal for each occupied voxel. We
call number of rays of the ray tracing the ’ray tracing
resolution’ (RTR). A full RTR is equal to the resolution of
the sensor used to scan the object.

In the second step, the information obtained from the ray
tracing is used by the utility function to get a numerical
value for each candidate view.

5. Utility Function

The utility function quantifies the desirability of a view
based on the NBV constraints given in section 1.1. This
utility function is formed by several factors that quantify
each constraint of a desirable view. Each factor is detailed
below and, at the end of this section, the complete function
is presented.

5.1 Area Factor

The objective of the area factor is to perceive unseen areas
and to provide, at the same time, some overlap with
previous scans. This objective is achieved when the NBV
provides a certain percentage of each voxel-type. For
instance, a view that sees only occupied voxels is a bad
view because it does not have unknown areas; a view that
sees only occplane voxels is also bad because it does not
provide overlap. As such, the best view is that which sees a
percentage of occupied and occplane voxels. Accordingly,
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Figure 5. The graph shows the desired behaviour for each
function fi . The x axis indicates the percentage of voxels of type
i after ray tracing. α indicates the desired percentage for the
voxel-type i; α can be between 0 and 1.

the area factor evaluates the percentage of each voxel1

looking for a desired percentage2.

Mathematically, the area factor is represented by a sum of
functions,

farea =
2

∑
i=1

fi (1)

where each fi evaluates the percentage of a certain
voxel-type (occupied or occplane). Each function fi gives a
value within the range [0, 1] based on the voxel percentage
seen by the ray tracing and the desired percentage for
a given voxel-type. fi reaches a maximum when the
percentage xi of voxels i is equal to the desired percentage,
αi; this means that fi = 1 when xi = αi. The function
reaches a minimum when the percentage xi is either 0 or
1 - that is to say, the candidate view does not perceive this
type of voxel or else it only perceives voxels of this type.
Figure 5 shows the desirable behaviour for each function
fi.

Next, we formally list in (2) the set of constraints for
each function fi (simplified to f ), which in addition to the
mentioned restrictions incorporates some smoothness and
continuous restrictions:

f (0) = 0 f ′ (0) = 0

f (α) = 1 f ′ (α) = 0

f (1) = 0 f ′ (1) = 0

f (x) > 0, ∀ x ∈ (0, 1)

f ′(x) > 0, ∀ x ∈ (0, α)

f ′ (x) < 0, ∀ x ∈ (α, 1)

(2)

To model the behaviour required by the constraints: (i)
we first propose the use of a polynomial as a template
function, and (ii) we then find the coefficients of the
polynomial, so that the constraints are satisfied. In this
case, we use a third-degree polynomial divided into two

1 The percentage of a voxel type is calculated as the number of voxels of
this type divided by the sum of the occupied voxels, occplane voxels and
unmarked voxels.

2 In our work, we use the ICP algorithm to register the surfaces. Thus,
the desired percentage should be set according to the requirements of
ICP. An advantage of this method is that it does not require additional
processing of the point cloud to extract higher-level features.
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parts as our template function (a lower-degree polynomial
gives negative values):

f =

{
A1x3 + B1x2 + C1x + D1, 0 < x ≤ α

A2x3 + B2x2 + C2x + D2, α < x < 1
(3)

Substituting the constraints (2) in function (3) and its
derivative, we get a system of four equations and four
variables (the coefficients) for each polynomial. Solving
the systems, we find the coefficients. Next, substituting
the coefficients in (3) leads to equation (4), formed by
expressions (5) and (6). It is worth noting that equation (4)
depends only on α and x - this makes it possible to adjust
the desired percentage (α) for each voxel-type:

f (x, α) =

{
h1 (x, α) , x ≤ α

h2 (x, α) , x > α
(4)

where:
h1 (x, α) = − 2

α3 x3 +
3
α2 x2 (5)

and:

h2 (x, α) = − 2

(α − 1)3 x3 +
3 (α + 1)

(α − 1)3 x2

− 6α

(α − 1)3 x +
3α − 1

(α − 1)3 (6)

Here, we have already defined f , which evaluates a voxel
percentage depending upon the desired percentage. As
such, the area factor is defined as follows:

farea = f (xoc, αoc) + f
(

xop, αop
)

(7)

where xoc is the percentage of occupied voxels, αoc is
the desirable percentage for occupied voxels, xop is the
percentage of occplane voxels, and αop is the desired
percentage for occplane voxels.

In our implementation, we set αoc = 0.2 and αop = 0.8.

5.2 Navigation Factor

The objective of the navigation factor is to reduce the
navigation distance between the current sensor position
and the next view. This factor evaluates as the best view
the one that is the closest to the current sensor position.
Assuming that a sensor mounted on a robotic arm will
move within a spherical surface around the object, the
orthodromic distance - defined as the shortest distance
between two points on a sphere - is a reasonable option.
Therefore, in this work, we use the orthodromic distance.
The minimum distance corresponds to the case in which
the sensor does not move - it only changes its orientation.
A maximum distance is determined by two opposite
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Figure 6. The graph shows the desired behaviour for the
navigation factor

points on the sphere, and so we can define a normalized
orthodromic distance x.

The behaviour of the navigation factor (Figure 6) must
satisfy the following constraints: (i) the candidate view
with the shortest distance must have the maximum value;
(ii) the candidate view with the largest distance must have
a minimum value given by ρ; (iii) a candidate view with
a larger distance than other must have a smaller value;
and (iv) at short distances, the value of the function must
decrease more slowly than at large distances. Therefore,
the constraints for the function are:

f (0) = 1 f ′(0) = 0

f (1) = ρ, 0 ≤ ρ < 1

f ′ (x) < 0, ∀x ∈ (0, 1)

(8)

We use a second-degree polynomial to model the desired
behaviour:

f (x) = Ax2 + Bx + C
f ′ (x) = 2Ax + B

(9)

Similar to the area factor, we substitute the constraints
(8) in the polynomial (9). Next, we solve the system of
equations. Finally, we find the expression of the navigation
factor (10) in the function of x and ρ as follows:

fnavigation = (ρ − 1) x2 + 1 (10)

where x is the normalized orthodromic distance and ρ is
the smallest value for the function.

5.3 Quality Factor

According to [6], a good scan is produced when the sensor
is orthogonal to the surface; thus, the quality factor aims to
place the sensor perpendicular to the surface. To achieve
this, we use the already scanned area (the occupied voxels)
to make a prediction regarding the new surface. Thus, the
best view has an orientation which is orthogonal to the
scanned area. Therefore, the quality factor is defined by
equation (11), as previously used by Lozano in [22]:

fquality =
∑noc

i=1 cos (αi)

noc
(11)

where αi is the angle formed between the sensor’s
orientation and the surface normal of the occupied voxel
i, and noc is the number of occupied voxels detected by ray
tracing.
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5.4 Occlusion Factor

The occlusion factor aims to determine occluded areas
quickly (e.g., an object’s self-occlusions). This factor gives
a higher value to the view that sees more occplane voxels
per ray tracing. Given this, the maximum number of seen
occplane voxels might be the number of traced rays - we
propose as the factor the ratio of occplane voxels per ray
tracing:

focclusion =
nop

rows × cols
(12)

where nop is the number of occplane voxels, and rows and
cols are the number of rows and columns of the range
image generated by the ray tracing.

5.5 Utility Function

The complete utility function is a combination of the above
factors. This combination considers as a primary factor the
area factor and the others as secondary factors (the reason
for this is that the main objective of the view planning is
to reconstruct, as much as possible, the object, while an
overlap is provided in each view):

futility = farea ∗
(

fquality + fnavigation + focclusion

)
(13)

6. Search Strategy

An exhaustive search of the NBV tests each candidate view
in V with the full RTR. As such, a densely approximated
view sphere and a high RTR guarantees that a good
view will be found. However, the computational cost
is extremely high. In addition, the NBV algorithm
will be implemented in a real robot and must operate
in real-time. Therefore, a more efficient alternative is
required. We propose a multi-resolution strategy to find
the NBV quickly.

6.1 Multi-resolution Strategy

The multi-resolution strategy is based on the variability
of the RTR while the number of candidate views and the
voxel map remain unchanged. Algorithm 2 resumes the
search strategy. This strategy consists of k stages. In each
stage, a set of views is evaluated with a RTR for that stage.
In the first stage, V is evaluated with a minimal RTR (Rmin)
(set by the user). The best evaluated views are selected
for the next stage. In the next stage, the selected views
are evaluated with a higher resolution. Again, the best
evaluated views are selected. The process continues until
the kth stage is reached whereby a reduced subset of views
is evaluated with the ideal RTR (Rideal):

6.1.1. Ideal Ray Tracing Resolution

The ideal RTR is closely related to the voxel map
resolution, and we define it as the lowest resolution
required for the ray tracing to cover the voxels of the

Algorithm 2: Computing the NBV with a multi-resolution
strategy

Data: V, k, Rmin, Rideal
Result: nbv
R1 = Rmin;
for i=1:k-1 do

Evaluate V with resolution Ri;
V ← Select the ni best evaluated views;

end
Evaluate V with resolution Rideal ;
nbv ← Best evaluated view from V;

model. When we use a RTR larger than the ideal, there
is information redundancy because the traced rays are
too close to each other, ensuring that more than one ray
touches the same voxel. With the ideal RTR, the traced rays
are separated from each other by a distance equal to the
dimension of a voxel (pretending that only one ray touches
each voxel).

Let us consider a voxel map that has a voxel length of len,
a sensor that has a horizontal aperture of α and vertical
aperture of β, and a sensor positioned at a distance r from
the centre of the voxel map; then, Rideal is computed as
follows:

cols =
α

arcsin
(

len
r

) , rows =
β

arcsin
(

len
r

) (14)

where cols is the number of columns and rows is the
number of rows.

6.1.2. Intermediate Resolutions

During the strategy, the RTR must be incremented for each
stage. We propose a homogeneous increment between the
minimal resolution (Rmin) and the ideal resolution (Rideal).
As such, the RTR used for stage i is defined by equation
(15):

Ri = Rideal − (k − i)×
(

Rideal − Rmin
k − 1

)
(15)

6.1.3. Selected Views

The number of selected views must decrease when the
stage is increased. We propose equation (16) to determine
how many views should be selected for each stage:

ni = bk−i (16)

where b is a parameter selected by the user.

6.1.4. Number of Stages

The number of stages depends upon the number of
candidate views. If the number of candidate views
increases, then the number of stages increases. This
relationship is defined by equation (17):

k = argmax
(

bk < |V|
)

(17)

where |V| is the number of candidate views.
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This makes the strategy independent from the number of
candidate views and leaves the parameters Rmin and b for
the user.

7. Convolution After Evaluation

Usually, the planned view is not reached by the positioning
system. For precise fixed arms, turntables or a Cartesian
robots, the error is close to zero, but for low-cost platforms
or mobile robots, the error is greater. Some consequences
of the positioning error are the increment of the number
of required views and the failure of the image registration
- in consequence, the failure of the model reconstruction.
Scott, in [7], provides a more detailed explanation about
the consequences of this error in terms of how it affects:
(i) the sensor coverage, (ii) the surface’s visibility, and
(iii) the precision and sampling density. We propose a
method which deals with the positioning error. We alter
the definition of the NBV thus: ’the NBV is the view
which is in the centre of a high evaluation region’. We
define a region as the set of views which are close to
a view according to its Euclidean distance in R3. With
the mentioned idea, we want to ensure that although the
sensor does not reach the planned position, it will fall into
a ’good’ position.

We propose to re-evaluate the views according to the value
of their neighbours and the distribution of the error. To
perform this task, it is necessary to increase the value of a
view when the neighbours are ’good’ and to reduce the
value when the neighbours are ’bad’. In addition, the
re-evaluation should depend upon how likely it is to fall
for one neighbour. One way to perform this task is to make
a convolution between the utility function and an error
function. The error function represents the distribution of
the positioning error. The result is an average of the utility.
Below, we detail the performed convolution.

Let x and τ be Cartesian coordinates in R3: x represents
the view position and τ the error, f is a multi-dimensional
Gaussian function representing the error distribution and
g is the utility function. Then, the convolution is given by
equation (18):

[ f ∗ g](x) =
∫

f (τ)g(x − τ)dτ (18)

The function f is defined by a multidimensional Gaussian
function according to equation (19):

f (µ, Σ, X) = A exp
[
−1

2
(X − µ)TΣ−1(X − µ)

]
(19)

where X is the error random variable, µ is the mean error
and Σ is the covariance matrix. For convenience, we have
established the parameter A = 1 to keep the maximum
value at one.

The NBV is now the view with the highest evaluation
after the convolution. Figure 7 shows an example of how
the search space is modified by the convolution. In the

example, we can see how the NBV is moved to a safe place.
With this method, although the planned view could not be
reached, it is highly plausible that the sensor will end with
a good view.

Equation (18) computes a continuous convolution.
However, for the robotic application, we have
implemented the method using the discrete convolution
defined by equation (20):

( f ∗ g)[v] =
n3

∑
i=1

f [mi]g[v − mi] (20)

where v belongs to the candidate views set and mi belongs
to M, a set of possible errors.

x y

utility

(a) Values of the utility function for a set of views around
the object of interest

x y

utility

(b) Utility values after convolution. In the graph, we can
see that the NBV has moved to ’a safe place’ among good
views. In addition, a region of good views has increased
the value of its central view

Figure 7. Plot of the candidate view’s utility before and after
convolution Each graph shows the utility of a view. The axes
x and y represent the coordinates of the view and axis z (up)
represents the utility. The experiment places several views in
concentric spheres around the object of interest (the object lies
at coordinates (10, 10)), each view was evaluated and, later, the
convolution was performed.

8. Experiments Without Positioning Error

Our algorithm was first tested in simulation without
positioning error. In this part, we describe the three
experiments. The first one shows the reconstruction
of several objects. The second one shows how the
navigation factor affects the reconstruction. Finally, the
third one gives a comparison of our approach with
previous approaches (Section 9 details the experiments
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Object Views Occup. Qual. Dist.(m)
Sphere 6 7200 0.757 17.70

Pear 7 4330 0.803 16.40
Banana 4 1050 0.803 9.54

Mug 8 7736 0.718 21.76
Bunny 9 5392 0.825 21.32

Dragon 9 3595 0.777 24.46
SGI logo 12 11952 0.843 34.02

Table 1. Reconstruction data for each object using the
exhaustive strategy

with positioning error and the use of the convolution after
evaluation).

8.1 Simulation Configuration

A time-of-flight camera was simulated and the objects
were taken from virtual models. The simulated range
camera has 45 degrees for the horizontal and vertical
apertures and a resolution of 320 x 320 points. The system
was implemented in the language C and OpenGL. The
machine used for the tests was an AMD Turion64 with 2
GB RAM.

The objects used are shown in Figure 8(a). These objects
have different shapes and exhibit incremental difficulty for
the reconstruction process: the sphere is a convex simple
object; the pear and the banana are non-convex; the mug,
bunny and dragon are non-convex with self-occlusions;
and, finally, the SGI logo has holes and self-occlusions.

8.2 Reconstruction

In this experiment, we reconstructed the seven different
objects. The voxel map dimensions were 205 × 205 × 205
(8 615 125) voxels for the scene and 55 × 55 × 55 (166 375)
voxels for the object enclosure. The voxel size was 0.02
m. We used a view sphere with a radius of 2 m and 80
candidate views. We used a multi-resolution strategy with
the parameters k = 2, b = 10, Rmin = 40x40.

Tables 1 and 2 show the results for the exhaustive and
multi-resolution strategies, respectively. Column Views
shows the number of views required to complete the
model; Occup shows the amount of occupied voxels in the
voxel map at the end of the reconstruction; Qual shows the
voxel map quality (mean quality of all occupied voxels);
and Dist shows the total travelled orthodromic distance
measured in metres. Figure 8(b) shows the reconstructed
models.

These experiments show that the algorithm has the ability
to reconstruct objects of different shapes. Besides this
ability, it provides overlap in each scan and reduces the
navigation distance. The number of required views is quite
similar to those reported in [10], where a similar voxel
resolution was used; however, in that work each view does
not ensure overlap. In addition, the algorithm fulfils all the
constraints of a NBV as described in the introduction.

Object Views Occup. Qual. Dist.(m)
Sphere 6 7200 0.757 17.70

Pear 7 4342 0.803 16.40
Banana 4 1049 0.765 7.15

Mug 8 7736 0.718 21.76
Bunny 9 5395 0.821 23.56
Dragon 9 3639 0.798 22.14
SGI logo 12 11900 0.832 32.53

Table 2. Reconstruction data for each object using the
multi-resolution strategy

(a) Synthetic objects

(b) Reconstructed objects

Figure 8. 3D Objects. In the top row are the CAD object models
used to perform the simulation, in the centre row are the voxel
representations of the reconstructed objects, and in the bottom
row are the voxel representations with surface normals.

8.2.1. Multi-resolution Strategy

The average time required to compute each NBV was 6.2
s using the multi-resolution strategy and 135.5 s using the
exhaustive strategy. The multi-resolution strategy reduces
the required time more than 20-fold while preserving its
effectiveness (compare Table 1 with 2). Multi-resolution
is faster, given that a large set of views is rapidly
evaluated with a low resolution, and only a small set of
views is selected for evaluation with a higher resolution.
One limitation of the multi-resolution strategy is that,
at the end of the reconstruction, there are very small
areas of occluded voxels, e.g., one single voxel, and
they cannot be seen by the first stage of ray tracing
(minimum resolution). Therefore, a trade-off between
speed and surface cover should be considered. In our
experiments, we achieve a high percentage of coverage for
the configured parameters.

8.2.2. Voxel Map Resolution and Candidate Views

Our algorithm can work with different voxel resolutions
and different numbers of candidate views. In table 3,
we show how the time increases when one increases the
number of views and the number of voxels in the map.
Our search strategy adapts to the configuration of the
voxel map and candidate views. We can observe that the
time required is proportional to the number of views and
the voxel resolution. When we use the multi-resolution
strategy, the saving in computation time is at least 20-fold
compared to an exhaustive search. For instance, for 1,280
views and 2,628,012 voxels, the computation time of an
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exhaustive strategy is about 1,247 s; however, using the
multi-resolution strategy the computation time is 34 s.

Vxls. in Map 80 views 320 views 1280 views

614,125 1.89 s 4.08 s 17.36 s
2,628,072 4.96 s 7.80 s 34.80 s

66,430,125 85.40 s 96.00 s 386.96 s

Table 3. Computation time for the multi-resolution strategy for
different quantities of voxels and candidate views

Object Views Qual. Dist. (m)
w wo w wo w wo

Sphere 6 6 0.75 0.75 17.7 20.9
Pear 7 7 0.80 0.82 16.4 19.7

Banana 4 4 0.76 0.81 7.15 9.50
Mug 8 8 0.71 0.72 21.7 22.7

Bunny 9 9 0.72 0.81 23.5 23.8
Dragon 9 9 0.79 0.78 22.1 28.4

SGI logo. 12 12 0.83 0.83 32.5 37.0

Table 4. Comparison when the navigation factor is included (or
not) in the utility function. The columns w show the results with
the navigation factor and the columns wo show the results
without it. In general, when the navigation factor is used, there is
a reduction in the navigation distance. Furthermore, the distance
reduction does not increase the number of required views.

8.3 Navigation Factor Behaviour

In this experiment, we show the effect of the navigation
factor in the reconstruction process. We ran the algorithm
with and without the navigation factor in the utility
function. Table 4 shows the results. We used the
multi-resolution search strategy.

As we can see, there is a significant reduction in the
distance travelled in five of the seven objects without
increasing the number of required views. Namely, when
the navigation factor is used, we can reconstruct the same
percentage of the surface with a shorter travelled distance.
This occurs because the algorithm prefers views that are
closer to the sensor position. Usually, this factor reduces
the navigation distance, but there are some cases where
there is no reduction and the total distance is similar to
that which does not use the factor; this happens because
this algorithm is a greedy one and it is locally optimal (in
each NBV) but it is not globally optimal (the set of views).

8.4 Comparison with Previous Approaches

In this paper, we use a combination of several factors (area,
quality, distance, etc.) to determine the NBV, equation 13.
In contrast, the previous works [6, 10, 12, 23] only look
for the view that provides the greatest unknown area. In
this experiment, we compare our ’combination of factors’
(CF) approach with the ’greatest unknown area’ (GUA)
approach. We implemented the GUA approach with the
utility function (21), which has a higher evaluation when
the candidate view observes more occplane voxels.

fgua =
nop

rows × cols
(21)

Figure 9. Comparison with previous approaches. Our approach
(CF) reduces the navigation distance, improves the quality and
sees the same area (occupied voxels) as regards the GUA approach
(see text for details).

where nop is the number of occplane voxels, rows and cols
are the number of rows and columns of the range image
generated by the ray tracing.

Given that a reconstruction depends upon the initial
view, we reconstructed each object several times from
different initial views to make a fair comparison. We
reconstructed the object mug (we consider it to be a
difficult object due to its self-occlusions and holes) from
20 initial views; therefore, we have 20 reconstructions
with the CF approach and 20 with the GUA approach.
The results are shown in Figure 9 (the bars have been
normalized). In the graph, we can see that, with the CF
approach, the navigation distance decreased remarkably,
the quality was improved and the number of occupied
voxels (the surface seen) was quite similar, but the number
of views increased slightly. This happened because, in our
approach, we always have an overlap (we configured an
overlap of 20%) so more views are needed to see the same
area; however, the increase in the number of views is not
too great (an average increase of 6%) compared with the
overlap of 20%.

In conclusion, our approach, generally reduces the
navigation distance, improves the quality and sees the
same area as compared with the GUA approach.

9. Experiments with Positioning Error

These experiments compare the performance of the
convolution after evaluation (CAE) method in a scenario
where there is positioning error. The performance is
measured with the percentage of reconstructed surface per
iteration. The error is simulated as a random variable
with zero centred normal distribution. The comparison
of the CAE method is made against the standard
method (without convolution) in the same scenario with
positioning error. We take the performance of the standard
method as a baseline which has to be improved by the
CAE method. In addition, we make a comparison with
an ideal case, where there is no positioning error and the
standard method is used. The ideal case will serve as a
top-line performance. We expect that the CAE method can
improve the baseline significantly and that it will be close
to the top-line.

The objects reconstructed in this experiment are the
sphere, the mug and the SGI logo (Figure 8) - they
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(a) Sphere reconstruction
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(b) Mug reconstruction
Figure 10. Reconstruction of the sphere and mug objects
with positioning error. Comparison of the percentages of
reconstruction using: a) σ0 = 0 cm, σ1 = 10 cm and the
convolution after evaluation (CAE) method with σ = 10 cm. The
graphs show the reconstruction percentage against the number of
scans. For both reconstructions, the CAE method stays closer to
the top-line than the standard method.

provide a sample of objects of different complexities. The
reconstruction scene has been configured with the object in
the centre and free space surrounding it. The positioning
system is a free-flyer of five-DOF (x, y, z, pan, tilt). The
utility function does not include the evaluation of the
navigation distance, since the candidate views used in this
part are not restricted to a sphere.

For these experiments, we have used the set of candidate
views generated by the cube. We have divided the cube
into 17 cells per dimension, given a total of 4,913 (173)
candidate views (|V| = 4913). For the purpose of speeding
things up, we only considered views that were between an
interior radius and an exterior radius - the evaluated views
were 1,932. Our experiments considered only positioning
error in the three axes (x, y, z) - we did not include
positioning error in pan or tilt, which will be modelled in
future work. Furthermore, we have assumed the following
standard deviations: σx = 10 cm, σy = 10 cm, σz = 10
cm and conditional independence between the axes. We
used a time-of-flight simulated sensor. It had a horizontal

and vertical aperture of 92.5 degrees and 72.32 degrees,
respectively, and it had an image resolution of 320 x 240.

The experiments consisted on running the planner three
times per object: one with no error (σ0 = 0 cm), the second
with a positioning error with a standard deviation of 10
cm (σ1 = 10 cm), and the third using the CAE method
with the same error. First, we summarize the results for
the sphere and the mug, and then we will present a more
detailed discussion for the SGI logo reconstruction, given
that it provides the most challenging object.

The reconstruction results for the sphere and the mug
are summarized in figure 10. The sphere’s reconstruction
achieves the same coverage with the three variants,
given that it is a simple object and that there are no
auto-occlusions. For the mug, the CAE method coverage
was higher than the simple method. For both objects, the
CAE method stayed closer to the top-line; the benefit is
that it converges faster than the standard method when
there is positioning error.

The SGI Logo reconstruction shows clearly the benefits
of the CAE method. The results are presented in Figure
11, which shows the percentage of reconstruction until
99.5%. It is clear in this experiment that the standard
approach with positioning error requires twice as many
views to reconstruct this object (18 views compared to
nine), while our approach can reconstruct it with a number
of views that is close to the ideal (12 compared to nine).
Moreover, we noticed that during the reconstruction, the
coverage was higher than the standard method, even for
a complex object. The behaviour exhibited by the method
demonstrates the advantages of smoothing the utility of a
view according to its neighbours, especially for complex
objects. Therefore, a view that has good neighbours is a
better candidate, when there is positioning error, because it
is highly plausible that the sensor will end on one of those
neighbours.

Based on these experiments, we conclude that the
proposed method is robust against positioning errors with
a performance close to the ideal case without errors. The
advantage is more significant for complex objects, while
for simple objects there is not much difference compared
to the standard approach. Thus, the main benefits of the
CAE method are: (i) complex objects can be reconstructed
with a smaller number of views when there is positioning
error, (ii) registration errors can be prevented given that
the overlap is maintained with greater frequency, (iii) if the
reconstruction process has to be interrupted (for instance
due to time limitations), the reconstruction percentage is
higher than the standard method.

The proposed CAE method is a good solution for robots
that move without constraints in the workspace, such
as quadcopters and coordinate measurement machines.
However, the CAE method is limited and could not be
applied directly for errors generated in the configuration
space of humanoids or wheeled robots. Another
limitation is that the candidate views need to be uniformly
distributed in the space and that it is necessary to evaluate
all the candidate views before the convolution step. In
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our implementation, around 20 minutes are needed to
compute a NBV on an Intel Core i5 laptop.
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Figure 11. Reconstruction of the SGI logo. The figure shows
the average reconstruction percentage after each scan for the three
methods, until the stop criteria is satisfied, for the object SGI logo.
The methods are: NBV without error, NBV with positioning error
using σ1 = 10cm, and the CAE method with positioning error and
σ1 = 10cm.

10. Conclusions and Future Work

In this paper, a NBV algorithm for 3D object reconstruction
which can efficiently reconstruct different types of objects
has been presented. The algorithm follows a search-based
paradigm. First, a set of candidate views is generated;
next, each view is evaluated to determine which is the best
one. It uses a novel utility function to evaluate how good
a view is, depending upon the reconstruction constraints:
new information, positioning, sensing and registration.

Our main contributions are: i) a novel utility function,
ii) an efficient search strategy, and iii) a method to
deal with positioning error. The utility function, unlike
previous functions, incorporates several factors into one
expression, making it possible to effectively differentiate
the candidate views with a single mathematical function.
Furthermore, the utility function incorporates a navigation
factor which reduces the navigation distance. We believe
that navigation distance reduction is very important for
its incorporation in mobile robots. The multi-resolution
search strategy allows us to compute the NBV in an
acceptable time, even for complex objects. Reducing the
required time allows us to implement the algorithm on
robots with limited computational power. The method
proposed to deal with positioning error re-evaluates the
views according to their neighbours - the re-evaluation
is based on the convolution of the utility function and a
function representing the error distribution.

We have performed several experiments that show the
advantages of our approach. The object reconstruction
experiment shows that the algorithm can reconstruct
objects of different shapes, solving object self-occlusions
and fulfilling all the constraints. There is a significant
reduction in the computation time to obtain the NBV using
the proposed search strategy. In the experiments, this
strategy is about 20 times faster than an exhaustive search.
In the second experiment, we demonstrated a significant
reduction in the distance travelled for most of the objects

when we include the navigation factor. A comparison with
the previous approach of ’greatest unknown area’ shows
that our algorithm can fulfil more constraints and, in
most of cases, improve some aspects of the reconstruction
without affecting performance. The experiments with
convolution after evaluation to deal with the positioning
error show that complex objects can be reconstructed in
a smaller number of views when there is positioning
error, that registration errors can be prevented given that
the overlap is maintained, and that the reconstruction
percentage in complex objects is higher than the standard
method.

As future work, we plan to estimate the navigation
distance in the configuration space of the robot while
including collision avoidance. We also want to find the
way to extend the convolution according to a model of
error depending upon the robot platform.
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