
Hierarchical Ray Tracing For Fast Volumetric Next-Best-View Planning

J. Irving Vasquez-Gomez
Dept. of Computer Sciences

INAOE
Puebla, Mexico

Email: ivasquez@ccc.inaoep.mx

L. Enrique Sucar
Dept. of Computer Sciences

INAOE
Puebla, Mexico

Email: esucar@inaoep.mx

Rafael Murrieta-Cid
Mathematical Computing Group

CIMAT
Guanajuato, Mexico
murrieta@cimat.mx

Abstract—A mobile robot must have the ability of building a
representation of its environment and the objects in it. To build
a three-dimensional (3D) model of a physical object, several
scans must be taken at different locations. Selecting each
location is the next-best-view problem. Search based methods,
where candidate views are generated and evaluated by a utility
function, are a solution. However, such methods are slow
for high resolution models given that the evaluation requires
visibility computation in 3D. We propose a scene representation
by octrees with a hierarchical ray tracing that reduces the
visibility computation time. Such method performs a coarse
ray tracing, except for the interesting volumes where a finer
resolution is applied. The method decreases the computation
time at least one order of magnitude. Saving time with this
method leads to evaluate more constraints and more candidate
views in high resolution models.

I. I NTRODUCTION

In robotics, a mobile robot must have the ability of
building a representation of its environment and the objects
on it. Three-dimensional (3D) representations from such
objects have several applications, such as object recognition,
pose estimation, grasping, etc. The task of building a 3D
model from an object is known as 3D object reconstruction
[1]. In order to accomplish this task a range sensor is placed
at several locations to see the full object surface.

Automated 3D object reconstruction is a cycling process
of observing and deciding where to see next. First, a range
sensor is placed by the mobile robot at a certain location.
After that, a range image (point cloud) is obtained from
the sensor. Then, if there are images taken from previous
iterations, the new one is registered (aligned in a common
reference frame) and merged (a unique point cloud without
redundancy is created). A partial model, beyond the range
images, is updated with the images. Finally, the next sensing
location is planned, based on the current information, or the
process is finished if a stop criterion is satisfied.

Planning the next sensing location refers to determining a
new configuration which provides as much as possible new
information about the object, meanwhile several constraints
are satisfied (Section II-C details the constraints). Such
problem is called in the literature as next-best-view planning
(NBVP) [1]. The planning must be executed in running
time given that the object shape is not known in advance.

Depth dmax

Depth k

Depth 0

...

...

...

Rk

Rdmax

Figure 1. Hierarchical ray tracing. The object is represented with a
probability occupancy octree of several resolutions (right). The rays to be
traced are organized in a tree structure where each level corresponds to a
resolution of the octree (left). Image labels are explainedin section V.

Therefore, occlusions generated by the sensor field of view
or object auto-occlusions are also unknown. In this paper,
our main goal is to propose a method to determine the next-
best-view in a short time.

In general there are two types of methods for planning
the next-best-view (NBV): surface based and search based.
Surface based methods analyze the scanned surfaces to
determine the next-best-view, e.g. [2]. Such methods are
fast, but sometimes are unable to overcome auto-occlusions
or fulfill registration constraints, as the case of computing
normals in [3]. On the other hand, search based methods
generate a set of candidate views, then their visibility is
computed, and they are evaluated by a utility function. For
both types of methods, visibility is required, given that isthe
only way to assure that possible occlusions from the same
object, the robot or the environment will not interfere with
the target surface.

We propose a NBV algorithm for solving the task of
autonomous object reconstruction. The main contribution
of the method is the hierarchical ray tracing for fast vis-
ibility computation. Hierarchical ray tracing is based on
tracing few rays in a rough resolution map, then, when
interesting volumes are touch the resolution is increased
for observing details. See figure 1. Notice that the obtained

result corresponds to the finest resolution without computing
exhaustively rays for all voxels in the finest resolution. Such
strategy typically reduces the computational running time
needed to evaluate a view in at least one order or magnitude
(10 times). This reduction in time allows us to evaluate more
constraints and more views than other methods.

II. BACKGROUND

A. Range Sensor

A sensor configurationx is defined by position and
orientation. The device is able to get a 2 1/2 image (z) from
the scene, a set of 3D points with respect of the sensor’s
reference frame. We assume that the range sensor has a
perspective geometry, where there is a common origin for all
rays that pass trough the image plane. The sensor’s field of
view (FOV) is determined by a cone or a pyramid depending
on the emitted rays. We represent the sensor as follows:

S = {−→o ,
−→
d ,R}

where−→o is the origin,
−→
d the director ray andR a set ofn

rays inside the FOV.

R = {−→ui |0 ≤ i < n;−→ui = [xi, yi, zi]
T }

B. Probabilistic Occupancy Map

An occupancy map performs a division of the 3D space.
If the division is uniform, it is called voxel map, e.g. [4]. If
a hierarchical division is performed then it is called octree
[5]. The occupancy map is used to store information about
the reconstruction. Therefore it is used to reason the next-
best-view.

Our work is based on a probabilistic octree calledoctomap
[6]. An octomap is an octree with probabilistic occupancy
estimation to deal with imperfect sensor readings. Each
voxel has one of three possible labels: i)occupied, which
represents surface points measured by the range sensor, ii)
free, which represents free space and iii)unknown, whose
space has not been seen by the sensor.

An octomap has two parameters, the resolution, size of
a voxel, and the tree depth. If the depth is limited then a
coarser resolution octree can be obtained. Our work take
advantage of this characteristic to trace rays at different
depths.

C. Next-best-view Constraints

The set of candidate views used to perform the next-best-
view search is denoted byV = {v0, v1 . . . vm}. Each view
is a tuple of the form:vi = (qi, xi, Hi, u) whereqi is the
robot configuration,xi the workspace of the sensor,x ∈
R

3 × SO(3), H is a homogeneous transformation matrix,
which is applied to the sensor rays to obtain the FOV of
such view andu is the numerical utility of the view.

Our goal is to select one viewv ∈ V with the following
characteristics:

1) New information. The NBV must see unknown sur-
faces in order to completely observe the object.

2) Positioning constraint. There must be a collision free
configuration to place the sensor.

3) Sensing constraint. Surfaces to be seen must be in
the camera’s field of view (FOV) and depth of view
(DOV). Also the angle formed between the sensor’s
orientation and the surface normal must be smaller
that a certain angle defined by the vision angle [7].

4) Registration constraint. To assure that the new scan
will be merged with the previous ones there must be
an overlap between them [8].

Each selected NBV is denoted bypi. The initial view, ar-
bitrary selected, is specified byp0. We assume the existence
of an object bounding box (OBB) and a robot bounding box
(RBB).

III. R ELATED WORK

Since the 80’s the next-best-view problem has been ad-
dressed. For an extended review of classic methods see [9]
and [1]. According to [1], our algorithm is volumetric and
search based, so we will mainly review similar methods in
this section.

The work of Connolly [3] represents the object with an
octree and determines the NBV with one of two approaches.
The first one determines the NBV as the sum of normals
from unknown voxels. The second method, called planetary,
determines the NBV by testing views from a set around
the object. Recent work have done improvements in object
representation and NBV computation.

The representation of the object has been improved by
introducing octrees with probabilistic occupancy estimation
[6]. Furthermore, hierarchies of octrees have been proposed
to decrease the required storage memory [10]. Einhornet.
al. proposed the determination of map resolution and spatial
subdivision depending on the acquired data in running time
[11]. Our work differs from that of Wurm [10], given that
they represent each part of the map with disjoint octrees,
and we represent the same object with several resolutions.

The NBV computation using volumetric representations
is done by defining a search space and then, with a utility
function, decide which configuration is selected. Foissotteet.
al. [12] propose an optimization algorithm to maximize the
amount of unknown data in the camera’s FOV. However,
they do not specify how to solve object auto-occlusions.
Given that NBV constraints are many, the optimization
problem is commonly reduced to a search over a discrete set
of candidate views, where each one is tested to determine
their goodness. Vasquezet. al. [4] proposed a search over
set of views around the object and a utility function which
measures surface, quality and distance. Their problem is that
a set of pointing views is not always feasible, i. e. the robot
can be in collision with an obstacle or the sensor can be
occluded by another object, the environment or the same

robot. Therefore, instead of a fixed set of candidate views
some works synthesize a reduced set of candidate views
with promising goodness. Dornhege and Kleiner proposed
the computation of candidates which point to frontier-void
volumes [13]. Kraininet. al. [14] proposed a method in
which the robot grasps the object and moves it inside
the camera’s FOV, the candidate views are possible object
rotations which are evaluated with a trade-off between view
goodness and motion cost.

Most of the related work needs to compute visibility from
candidate views, otherwise, there is no guarantee that the
new location will overcome occlusions from the environment
or the robot. In some methods, e. g. [3], [4], [13], ray tracing
provides access to the object representation in order to query
overlap, quality and occupancy estimation. Our work allows
to compute the ray tracing in a short time, it is based
on multi-level ray tracing and coherent ray tracing which
have been used for rendering 3D scenes [15], [16]. In those
techniques, rays with a common feature are grouped into one
single beam. Unlike them, we determine when to expand a
ray based on the NBV requirements.

IV. N EXT-BEST-V IEW ALGORITHM

We propose a fast next-best-view algorithm that is able
to build the model of an arbitrary object within a maximum
size. The algorithm is based on generating candidate views
and rank them by a utility function. In this section, the
overall framework (utility function and general algorithm)
is described. Section V describes the main contribution of
this paper, which consist in a method to compute hierarchical
ray tracing. This method provides the information required
to evaluate the utility function.

A. Utility Function

The utility function ranks the candidate views according
to their goodness for the reconstruction process. We propose
a utility function as a product of factors. The utility function
is defined by equation (1).

u(v) = pos(v)· reg(v)· sur(v)· dist(v) (1)

where each factor evaluates a constraint, below we detail
each constraint.

1) Positioning: pos(v) is 1 whether all voxels inside
the robot bounding box (RBB) translated byv.H are free,
otherwise it is 0.

2) Registration: reg(v) is 1 whether a minimum overlap
with previous surfaces exist, otherwise it is 0.

reg(v) =

{

0 if oco(v) < hoc

1 if oco(v) ≥ hoc

}

(2)

whereoco(v) indicates the amount of occupied voxels that
are touched by the sensor (R rotated byv.H) and lie inside
the object bounding box (OBB), andhoc is a threshold.

3) New Surface: sur(v) evaluates a view depending of
how much unknown voxels are seen fromv. Unknown vox-
els are important given that could have occluded surfaces.
Such function returns values between 1 and 0. It is1 whether
v sees all the unknown voxels in the OBB, see equation (3).

sur(v) =
uno(v)

uno

(3)

where uno(v) returns the amount of unknown voxels
touched by the sensorR rotated byv.H that lie inside the
OBB, anduno is the total amount of unknown voxels inside
the OBB.

Given thatuno remains constant for all the evaluations of
one iteration, equation (3) can be reduced to equation (4):

sur(v) = uno(v) (4)

4) Distance: Candidate views are also evaluated accord-
ing to their distance to the current view. The function is
shown in eq. (5):

dist(v) =
1

1 + ρ(v.q, p.q)
(5)

whereρ is the euclidean distance in the configuration space.

B. Algorithm

The next-best-view algorithm generates candidate views
and ranks them with the utility function. Furthermore, a
particular evaluation scheme is applied. The scheme is based
on the efficient evaluation proposed by Low and Lastra [17].
Some factors are applied as filters. Therefore, the evaluation
is a cascade of filters where the views have to pass through.

Algorithm 1 resumes the process that is described in the
following lines. First, a configuration step is performed,
here OBB and RBB are defined, all voxels inside the OBB
are set as unknown. Octree and rays-tree are configured
as is explained in section V. Then, an arbitrary view is
given as an initial view. After that, a path is computed
with a motion planning technique. The path is executed.
Then, from the reached configuration a range image is
taken, and it is integrated to the octree. The integration is
performed via estimating the occupancy of a leaf node given
the readings, as described in [6]. Next, a set of candidate
views is computed by uniformly sampling the workspace.
Then, for each candidate view, the positioning constraint is
checked, if it does not satisfy it, then the view is deleted. For
the remaining views, hierarchical ray tracing is performed.
It determines which volumes fromM are visible from a
view v and determines the values for the functionsoco and
uno. After that, if the registration constraint is satisfied, then
the utility is computed. Next, the view with the highest
evaluation is selected as the NBV. Finally, if it does nos
provide new information, that is, if the amount of unknown
voxels visible from it is less than a threshold, then the

process is finished; otherwise the process is continued by
moving the robot to the planned configuration.

Algorithm 1 : NBV for 3D Object Reconstruction
Input : Initial position (p0)
Output : Object model (M)
Configure octree and rays-tree;1

p← p0;2

while true do3

Plan a path for reachingp;4

Move the robot top;5

z ← Take range image;6

M ← Update modelM usingz;7

V ← Generate candidate views;8

foreach v ∈ V do9

if pos(v) then10

HierarchicalRayTracing(M ,v);11

if reg(v) then12

v.u← u(v)13

else14

deletev;15

end16

else17

deletev;18

end19

end20

p← Best evaluated view fromV ;21

if p does not provide information then22

ReturnM ;23

Finish reconstruction;24

end25

end26

V. H IERARCHICAL RAY TRACING

Ray tracing has the purpose of providing visibility to a
viewpoint. In computer graphics ray tracing has been widely
used to render 3D environments [15]. In NBV planning,
ray tracing is a way to predict the sensor readings from a
candidate view.

Usually a uniform ray tracing (URT) is performed to
compute visibility. Figure 2(a) shows a uniform ray tracing
for an octree structure. Each ray from the sensor passes
through several voxels until an occupied or unknown voxel
is touched. After that, the amounts of hit voxels are returned.
Which voxels lies in the way of each ray is computed by
Amanatides algorithm [18]. Ray tracing complexity depends
on two parameters: voxel resolution and number of rays.
Voxel resolution (size of a voxel) affects the complexity
given that Amanatides algorithm spans each voxel at finest
resolution, so, as the number of voxels increase, more
computations are needed. On the other hand, the number of
rays depends on the sensor resolution (number of columns

(a) Uniform ray trac-
ing. All sensor rays are
traced in the octree.

(b) Rays traced in a
coarse octree.

(c) Ray tracing in a
finer octree only for
touched occupied vox-
els.

Figure 2. Examples of uniform ray tracing and hierarchical ray tracing.

times number of rows). Low computation time is obtained
with coarse octrees, but accuracy is decreased given that
voxel size increases and details are lost.

The proposed method starts tracing a low density set of
rays for a coarse octree (Fig. 2(b)). Then, if a occupied
voxel is hit, a higher density set of rays is traced into a
finer octree. The higher density set tries to cover only the
volume from the occupied voxel that was hit. If an unknown
voxel is hit then there is no subdivision to a finer octree.
Notice that avoiding subdivision when a unknown voxel is
hit allows us to save time. Furthermore, the information
about unknown voxels at a rough resolution is enough to
know that the sensor must move to explore the associate
space. In contrast, occupied voxels are always expanded to
the finest resolution. There are two reasons to proceed in this
way: 1) A finer resolution might contain unknown voxels.
2) The information of occupied voxels is needed up to the
finest resolution, since it is used to decide whether or not
there is enough overlapping to register the scan.

In order to trace rays for a given octree resolution, we
have computed a tree of rays where each level of the
tree correspond to a determined octree resolution. Sections
V-A and V-B detail the octree and rays-tree structures,
respectively. Section V-C formalizes the method.

A. Octree

We represent the object and the environment with an
octomapM of depthdmax. Such map can be reduced in
resolution by pruning leafs until a desired depth. Therefore,
a particular instance ofM is mi where 0 < i < dmax

indicates the depth of the octree.

1) Updating the octree: For each sensor measurement,
the octree is updated with the sensor readings according to
the occupancy grid mapping model of an octomap [6]. The
inner occupancy is updated with the mean occupancy or the
maximum occupancy [6]. Maximum occupancy provides a
more conservative strategy than mean occupancy.

B. Ray-tree

1) Rays for Resolution: For a given octree depth we
have computed a set of rays. Such set has the same sensor
aperture, but the rays are separated according to the voxel
size of the target depth.

Let’s suppose an octree nodemi with resolutionli, a range
sensor with horizontal aperture ofah and vertical aperture
of av, and a maximum depth of view ofd. Then the reduced
set of raysRi is computed by equation (6).

Ri = {
−→u (j,k)|

−→u (j,k) = [x(j,k), y(j,k), z(j,k)]
T } (6)

where the number of image rows is limited by0 ≤ j <
av

arcsin l

d

and the number of the image columns is limited by
0 ≤ k < ah

arcsin l

d

. The components of each ray are computed
as follows (We assume a right-handed coordinate system and
a sensor which points to positivez axis):

x(j,k) = cosβj sinαk

y(j,k) = sinβj

z(j,k) = cosβj cosαk

βj = −
av

2 + j ∗ arcsin l
d

αk = −ah

2 + k ∗ arcsin l
d

2) Initial Resolution: Above we have specified the set of
rays for a given octree depth. However, it is possible to select
an intermediate starting depthk, where 0 < k ≤ dmax.
When k = dmax the hierarchical ray tracing is a uniform
ray tracing in the maximum resolution, ask decreases the
amount of initial traced rays also decreases.

3) Tree: In order to replace a ray by a higher density set
of rays a tree structure is proposed. The union of all rays,
⋃dmax

i=k Ri, is organized in a treeT = {r0, r1...rn}, each
node is defined by:

rj = (−→uj , pj, Cj , lfj)

where−→uj is a ray,pj is a reference to its parent,Cj is a set
of references to its children, andlfj the number of leaves
that depends on it.

The tree is organized as follows:
• The root node is the sensor’s director ray−→ud.
• Each level is composed by the set of raysRi that

corresponds to the octree depthi.
• For each ray noderj , except the root, its parentpj is

the ray node from the superior level with the shortest
distance. The distance is computed with the angle
formed between rays. If there are equal distances, the
parent is selected arbitrary. To the selected parent a
reference torj is added to its children listC.

C. Hierarchical Ray Tracing Algorithm

Hierarchical ray tracing (HRT) is done recursively. See
algorithm 2. The input data are the candidate view, the
octree, the ray-tree and the initial depth for ray tracing. The

Algorithm 2 : Hierarchical Ray Tracing (HRT)

Data: v, M , k, rayNode = root

Result: V oxelAmouts

foreach r ∈ rayNode.C do1

switch CastRayIn(r.u, M , k) do2

caseOCCUPIED3

if k == dmax ∨ isLeaf(rayNode) then4

V oxelAmounts.occupied ++;5

else6

Add HRT(v, M , k + 1, r) to7

V oxelAmounts;

caseUNKNOWN8

V oxelAmounts.unmark += r.lf ;9

ReturnV oxelAmounts;10

output is a structure with the amounts of each voxel type.
First, each ray child of the ray root is traced in the octree.
FunctionCastRayIn() throws a ray at the specified depth
and returns the label of the hit voxel. Next, if it is occupied
then HRT is performed recursively for the children of the
rays and the map, until the leaves are reached. But, if the
hit voxel is unknown, then, there is no need to perform a
finer ray tracing, so the number of leafs from the current
rays is added (line 11). Notice that adding the number of
leaves sums up to the total number of rays.

VI. EXPERIMENTS

A. Simulation

This experiment simulates the reconstruction of several
objects. Also, a comparison in terms of efficiency between
hierarchical ray tracing (HRT) and uniform ray tracing
(URT) is performed. The scene consists of an object over
a table inside an empty room. See figure 3. The sensor is
a range camera and the positioning system is a point robot
able to move free (freeflyer) in the 3 D environment. Thus,
our device can be positioned in any collision free point in
R3 and it can be rotated to any direction. 320 candidate
views were placed around the object pointing to the object
center (views were generated with icosahedron tessellation).
A resolution of 0.01 m was established for the octree.

Performance of URT and HRT has been compared in
the reconstruction of two complex objects. Fig. 4 shows
the output models obtained with the proposed planner. The
results are shown in table I. In this table one can see that
the required time per iteration is reduced more than 90%
when HRT is applied. Furthermore, the main advantage of
the method is that it can discard fast views that are occluded,
e.g. views below the table are evaluated in 0.05 s compared
with 5.6 s obtained with the URT. The number of views is
increased given that there is an over estimation of unknown

Figure 3. Simulated reconstruction scene. The objects are placed in the
center of the table. Notice that the table occludes the object from several
view points.

(a) Bunny. (b) Dragon.

Figure 4. Output octrees from reconstructed objects.

voxels when rays are no further expanded; however this is
more than compensated by the important reduction in the
time required to analyze the views.

Object Ray Tracing Views NBV time
Bunny Uniform 10 1796 s
Bunny HRT 13 97 s
Dragon Uniform 10 2075 s
Dragon HRT 15 88 s

Table I
SIMULATION RESULTS.

B. Real Case Reconstruction

This experiment performs the reconstruction of an office
fan with a Microsoft Kinect sensor mounted on a mobile
robot. See figure 5(a). The objective is to show experimen-
tally that the method can deal with real data in acceptable
computation times.

For each iteration, 1500 candidate views were generated
randomly (sampling the robot’s configuration space and
projecting the samples to the workspace). Fifty unknown
voxels was established as stop criterion threshold. Initial
depth was established to 14 of 16. Voxel resolution was 2
cm.

The method required seven scans to reach the stop cri-
terion. Figure 5 shows some snapshots of the reconstruc-
tion. The fan was seen from different locations around it.
However, some unknown voxels were not seen given that

they are not reachable for the robot, e.g. above the fan.
The time required per iteration is shown in table II. The
values are average time per iteration. It is worth to say that
evaluating 1500 views only takes 10.3 s, it is a short time
considering that all reconstruction constraints are checked.
Previous results, shown in [4], perform the evaluation of
80 views in 6.2 s. It is worth to say that the speed up in
time is greater than in the simulation experiment, given that
there are many views that do not see the object, so they are
discarded fast.

In the case of the experiment with the real robot, we
present preliminary results, in which collision free robot’s
paths are computed with a Biased Rapidly Exploring Ran-
dom Tree [19].

Modeling Scanning 0.1 s
Octree update 6.3 s

NBV Planning Views Evaluation 10.3 s
Path Planning 0.3 s

Total time 17.0 s

Table II
AVERAGE NBV COMPUTATION TIME BY ITERATION.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented a next-best-view algorithm for 3D
object reconstruction. The main contributions are i) a way
to perform hierarchical ray tracing, which can efficiently
discard occluded views, ii) a utility function for next-best-
view planning and iii) an integrated system for object
reconstruction. Using this new hierarchical ray tracing, the
evaluation of hundreds of candidate views can be achieved in
seconds. Therefore, more restrictions can be evaluated anda
better view can be selected. In this work, we have considered
a point robot able to move free (freeflyer) in the collision
free space of a 3 D environment. As a future work we want
to consider a robot with no trivial geometry, in particular we
want to address the problem of computing the next best view
for object reconstruction with a mobile manipulator robot,
equipped with an eye-in-hand-sensor. For this problem is
essential to include a motion planning technique in order to
find collision free paths for the robot to reach a next best
view configuration.

ACKNOWLEDGMENT

This work was supported by Conacyt and the National
Institute of Astrophysics, Optics and Electronics (INAOE)

REFERENCES

[1] W. R. Scott, G. Roth, and J.-F. Rivest, “View planning
for automated three-dimensional object reconstruction and
inspection,”ACM Comput. Surv., vol. 35, pp. 64–96, March
2003.

[2] J. Maver and R. Bajcsy, “Occlusions as a guide for planning
the next view,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 15, pp. 417–433, 1993.

(a) Initial configuration. (b) Point cloud acquired from
initial configuration.

(c) First planned configuration
for the robot.

(d) Octree representation after
two scans. Object is painted in
blue. Unknown voxels of the ob-
ject bounding box are painted in
yellow.

(e) Last planned configuration. (f) Octree after seven scans.

Figure 5. Office fan reconstruction with a mobile robot and a Kinect
sensor.

[3] C. Connolly, “The determination of next best views,” inIEEE
International Conference on Robotics and Automation 1985,
ICRA85, vol. 2, 1985, pp. 432–435.

[4] J. I. Vasquez, E. Lopez-Damian, and L. E. Sucar, “View
Planning for 3D Object Reconstruction,” inIEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS09), 2009, pp. 4015–4020.

[5] D. Meagher, “Geometric modeling using octree encoding,”
Computer Graphics and Image Processing, vol. 19, no. 2,
pp. 129–147, 1982.

[6] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: A probabilistic, flexible, and compact
3D map representation for robotic systems,” inProc. of the
ICRA 2010 Workshop on Best Practice in 3D Perception and
Modeling for Mobile Manipulation, Anchorage, AK, USA,
May 2010.

[7] S. Chen, Y. Li, J. Zhang, and W. Wang,Active Sensor
Planning for Multiview Vision Tasks. Springer-Verlag, 2008.

[8] P. Besl and N. McKay, “A method for registration of 3-d
shapes,”IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, pp. 239–256, 1992.

[9] K. Tarabanis, P. Allen, and R. Tsai, “A survey of sensor
planning in computer vision,”IEEE Transactions on Robotics
and Automation, vol. 11, pp. 86–104, 1995.

[10] K. M. Wurm, D. Hennes, D. Holz, R. B. Rusu, C. Stachniss,
K. Konolige, and W. Burgard, “Hierarchies of octrees for
efficient 3d mapping,” inIEEE/RSJ International Conference
on Intelligent Robots and Systems 2011, 2011, pp. 4249–
4255.

[11] E. Einhorn, C. Schroter, and H.-M. Gross, “Finding the
adequate resolution for grid mapping - cell sizes locally
adapting on-the-fly,” inIEEE International Conference on
Robotics and Automation (ICRA), 2011, may 2011, pp. 1843
–1848.

[12] T. Foissotte, O. Stasse, A. Escande, P.-B. Wieber, and
A. Kheddar, “A two-steps next-best-view algorithm for au-
tonomous 3d object modeling by a humanoid robot,” in
Proceedings of the 2009 IEEE international conference on
Robotics and Automation, ser. ICRA’09. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 1078–1083.

[13] C. Dornhege and A. Kleiner, “A frontier-void-based approach
for autonomous exploration in 3d,” inIEEE International
Symposium on Safety, Security and Rescue Robotics (SSRR),
2011.

[14] M. Krainin, B. Curless, and D. Fox, “Autonomous generation
of complete 3d object models using next best view manipu-
lation planning,” inICRA, 2011, pp. 5031–5037.

[15] A. S. Glassner,An introduction to ray tracing. London, UK,
UK: Academic Press Ltd., 1989.

[16] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt,
S. G. Parker, and P. Shirley, “State of the art in ray tracing
animated scenes,” inSTAR Proceedings of Eurographics
2007, D. Schmalstieg and J. Bittner, Eds. The Eurographics
Association, Sep. 2007, pp. 89–116.

[17] K.-L. Low and A. Lastra, “Efficient constraint evaluation
algorithms for hierarchical next-best-view planning,”3D
Data Processing Visualization and Transmission, Interna-
tional Symposium on, vol. 0, pp. 830–837, 2006.

[18] J. Amanatides and A. Woo, “A fast voxel traversal algorithm
for ray tracing,” inIn Eurographics ’87, 1987, pp. 3–10.

[19] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic
planning,” The International Journal of Robotics Research,
vol. 20, no. 5, pp. 378–400, 2001.

