
View Planning for 3D Object Reconstruction with a Mobile Manipulator
Robot

J. Irving Vasquez-Gomez∗, L. Enrique Sucar∗, Rafael Murrieta-Cid†
∗National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico

Email: {ivasquez,esucar}@inaoep.mx
†Center for Mathematical Research (CIMAT), Guanajuato, Mexico

Email: murrieta@cimat.mx

Abstract— The task addressed in this paper is to plan
iteratively a set views in order to reconstruct an object using
a mobile manipulator robot with an “eye-in-hand” sensor. The
proposed method plans views directly in the configuration space
avoiding the need of inverse kinematics. It is based on a fast
evaluation and rejection of a set of candidate configurations.
The main contributions are: a utility function to rank the views
and an evaluation strategy implemented as a series of filters.
Given that the candidate views are configurations, motion
planning is solved using a rapidly-exploring random tree. The
system is experimentally evaluated in simulation, contrasting it
with previous work. We also present experiments with a real
mobile manipulator robot, demonstrating the effectiveness of
our method.

I. INTRODUCTION

Three-dimensional (3D) models from real objects have
several applications in robotics. For example, collision de-
tection, object recognition, pose estimation, etc. Therefore,
a mobile robot must have the ability of building 3D models
from the objects in its environment for interacting with them
further. The task of building a 3D model of an object is
known as automated 3D object reconstruction [1]. It is a
cycling process of observing and deciding where to see next.
First, a range sensor is placed by the robot at certain location
where a scan is taken. Then, if there are scans taken from
previous iterations, the new one is transformed to a global
reference frame and registered with previous scans. After
that, the robot has to compute the next sensor pose which
increases the reconstructed surface based on the available
information (called next-best-view). The reconstruction is
finished when a termination criterion is satisfied.

The problem addressed in this paper is to plan the next-
best-view (NBV) in order to reconstruct an object using
a mobile manipulator robot with an “eye-in-hand” sensor.
In this work, the NBV is a robot configuration that sees
(covers) the greatest amount of unknown area while several
constraints are satisfied (detailed in III-A). To find the
minimum set that covers an area has been demonstrated to be
NP-Hard [2]. Therefore, the main challenge is to iteratively
determine a set of NBV configurations that collectively cover
the object, and a set of paths to reach them in a short
processing time.

In [3], we proposed a utility function for a free-flyer
robot. In [4], we proposed a hierarchical ray tracing for
fast visibility calculation. In contrast, in this work, our main

Fig. 1. The proposed method is able to plan each robot configuration
in order to reconstruct a real object. In our experiments we use a mobile
manipulator of 8 degrees of freedom to reconstruct a chair. A Kinect sensor
was mounted on the robot’s end effector.

contribution is a fast novel method to determining the NBV
with a mobile manipulator robot. We propose a new a utility
function, implemented by a series of filters, that efficiently
finds the NBV. Our approach contrasts with related work
where the candidates are generated in the workspace and
inverse kinematics is required reach them. The drawback
of those methods is that the robot might not be physically
able to reach a planned view (e.g. to observe the top of a
given object). We directly generate views in the configuration
space avoiding inverse kinematics calculation and taking into
account only feasible views.

The proposed approach provides an effective and fast
method for a mobile manipulator to build 3D models of
unknown objects. Effective means that a large percentage
of the object surface is reconstructed, in our experiments,
it is in the order of 95%. Fast means that the processing
time to plan the NBV and a path to reach it takes typically
less than a minute. We present different experimental results.
In simulation, several complex objects are reconstructed. We
validate the effectiveness of our utility function, comparing it
versus information gain. The proposed utility function covers
the same surface’s percentage in a shorter processing time.
We also present experimental results with a real mobile
manipulator robot (see Fig. 1) with 8 degrees of freedom
(DOF), showing the effectiveness of the method to deal with
real objects.

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6934-0/14/$31.00 ©2014 IEEE 4227

II. RELATED WORK

Since the 80’s the next-best-view (NBV) problem has been
addressed. For a detailed review of classic methods see [1].
According to [1], our algorithm is volumetric and search
based, so we will mainly review similar methods in this
section. The work of Connolly [5] was one of the first in
this field, it represents the object with an octree and deter-
mines the NBV with one of two approaches. The first one
determines the NBV as the sum of normals from unknown
voxels. The second method, called planetary, determines the
NBV by testing views from a set around the object.

Foissotte et al. [6] propose an optimization algorithm to
maximize the amount of unknown data in the camera’s field
of view (FOV). However, optimization methods can easily
fall into local minima.

In our previous work [3], we have proposed a search over
set of views around the object and a utility function which
measures surface, quality and distance. A limitation of that
approach is that the predefined set of pointing views might
not always feasible, i.e., the robot can be in collision or the
sensor can be occluded. Krainin et al. [7] proposed a method
in which the robot grasps the object and moves it inside the
camera’s FOV. However, the robot might not have the ability
to grasp and move the object.

Few works have considered both, the problem of finding
good views, and the problem of obtaining the paths to reach
them. Torabi and Gupta [8] address both problems, but
differently to the approach proposed in this work. In that
work, the authors plan a NBV in the workspace and then
they use inverse kinematics to obtain a configuration that
matches the desired sensor location in the workspace. In
this work, we select sensing configurations directly in the
configuration space and we plan the controls to reach them,
also we take into account the length of the collision free path.
A short path is better in terms of spatial uncertainty and it
spends less robot’s energy. Another work that addresses both
problems is the one presented by Kriegel et al. in [9]. The
authors combine two approaches for determining the NBV, a
surface based and a volumetric method. First, they compute
a set of candidate paths over the triangular mesh border, then
they evaluate the goodness on the volumetric representation.
Two important differences with our approach are: (i) Kriegel
et al. propose the use of information gain (IG) to evaluate
views, while in this work, the unknown surface is measured
to evaluate views, (ii) in this work we consider a mobile
manipulator while in [9], the authors only consider a robot
arm.

III. PRELIMINARIES

A. Next-best-view constraints

The set of candidate views used to perform the next-best-
view search is denoted by V = {v0, v1 . . . vm}. Each view
is a tuple of the form: vi = (qi, xi, g) where qi is the robot
configuration, xi is the sensor pose xi ∈ R

3×SO(3), and g

is the utility of the view. Our goal is to select a view v ∈ V

with the following characteristics:

Fig. 2. Partial Model of the scene. To the left is the reconstruction scene. To
the right is the partial model. The robot is represented by a triangular mesh.
Unknown voxels are painted in yellow and occupied voxels are painted in
blue (best seen in color).

1) New information. The NBV configuration must see
unknown surfaces to completely observe the object.

2) Positioning constraint. The NBV must be collision free
with the environment and the object.

3) Sensing constraint. Surfaces to be seen must be in the
camera’s field of view and depth of view. Also, the
angle formed between the sensor’s orientation and the
surface normal must be smaller that a certain angle
defined by the vision angle [10].

4) Registration constraint. The positioning error of the
mobile robot causes that the current scan does not
match with previous scans. Therefore, a registration
step is required [11]. The NBV should guarantee that
the scan will be registered.

5) Cost of the robot’s motion. In a mobile manipulator,
moving each degree of freedom (DOF) has a different
cost, e.g., to move the arm instead of the base con-
sumes less energy and causes lower positioning error.
Therefore, a path where the degrees of freedom with
the larger costs move less is desirable.

B. Working assumptions

We take the following assumptions: i) the environment is
known and it is represented by a 3D triangular mesh, ii) the
position and maximum size of the object is known a priori
to the robot and iii) the object is inside an object bounding
box (OBB) marked as unknown volume.

IV. PARTIAL MODEL

A. Probabilistic occupancy map

The partial model stores the information about the recon-
struction scene, including the object and the environment. It
shows what spaces have been sensed and what spaces remain
unknown. In addition is also used detect collisions between
the robot and the environment.

We use a probabilistic occupancy map based on the
octomap structure [12], which is an octree with probabilistic
occupancy estimation. See figure 2. We stress the fact that
we use a probabilistic octree, because it is able to deal with
noise on the sensor readings. From now on we refer to a
probabilistic occupancy map as octree. Depending on the
probability of been occupied, we classify each voxel with
one of three possible labels: i) occupied, which represents
surface points measured by the range sensor, ii) free, which

4228

(a) Uniform ray trac-
ing. All sensor rays are
traced in the octree.

(b) Rays traced in a
coarse octree.

(c) Ray tracing in a
finer octree only for
touched voxels.

Fig. 3. Examples of uniform ray tracing and hierarchical ray tracing.

represents free space and iii) unknown, whose space has not
been seen by the sensor. Each label has a defined probability
interval. In our implementation the unknown voxel label has
the interval [0.45, 0.55]. To use an interval for unknown
voxels, instead of a fixed probability of 0.5, increases the
confidence of the occupied or empty volumes of the resultant
octree.

In order to evaluate new information, sensing and registra-
tion constraints of a candidate view, we perform a visibility
computation over the octree. Usually, this task is achieved
with a uniform ray tracing, it traces a number of rays inside
the map simulating a range sensor (Fig. 3(a)). However,
such process can be highly expensive if the voxels’ size is
small. To reduce the processing time, we use a variant of the
hierarchical ray tracing presented in [4].

B. Hierarchical ray tracing

In [4], we proposed a hierarchical ray tracing (HRT). It
is based on tracing few rays in a rough resolution map;
then, only when occupied voxels are touched by a ray, the
resolution is increased for observing details (see Fig. 3). The
coarsest resolution where the HRT starts is defined by a
resolution parameter (a); when a is equal to 0 a uniform
ray tracing is performed, for a > 0 the ray tracing starts in
a octree resolution with a voxel size of 2a times the original
size. Such strategy typically reduces the processing time
needed to evaluate a view in at least one order of magnitude.
In our previous work we only increase the resolution when
a occupied voxels is touched. In this work, we increase the
resolution when occupied and unknown voxels are touch.
This upgrade allow us to reduce the processing time but
usually keeping the same coverage with the same number
of required views. Section VII-B details several experiments
where there is 60% of processing time reduction with only
a loss of 1% of coverage.

V. NEXT-BEST-VIEW SELECTION

We propose a search based method to compute the NBV.
Fig. 4 shows the flowchart of the proposed method. First,
a set of candidate views is generated, then the views are
evaluated and ranked with a utility function. The NBV is the
one that maximizes the utility. The evaluation of the utility
function for a large set of views can be a highly expensive

Fig. 4. 3D object reconstruction with next-best-view planning. The diagram
shows the whole process of object reconstruction. The processes related with
the NBV computation are filled in gray (see Section V-C for details).

process. To mitigate this problem, we propose an efficient
evaluation scheme, in which if a candidate view does not
pass a filter it is deleted from the set of candidate views.

A. Utility function

The utility function ranks the candidate views according
to their goodness for the reconstruction process. We propose
a utility function as a product of factors:

g(v) = pos(v)· reg(v)· sur(v)· dist(v) (1)

where each factor evaluates a constraint, below we detail
each constraint.

1) Positioning: pos(v) is 1 when a robot configuration
is collision free, and a collision free path from the current
configuration to the evaluated configuration is available;
otherwise it is 0.

2) Registration: To register the new scan, previous works
have proposed to assure a minimum amount of overlap [4]
or consider all causes of failure [13]. A minimum overlap
is a necessary but not sufficient condition to guarantee
registration. However, it requires a small processing time. On
the other hand, to measure all causes of failure guarantee a
successful registration but is very expensive (as described in
[14]). Therefore, in this work, we propose a simple factor that
is fast for evaluation, reg(v). It is 1 if a minimum percent
of overlap with previous surfaces exist, and 0 otherwise. See
equation (2).

reg(v) =

1 if
oco(v)

oco(v) + uno(v)
> h

0 otherwise
(2)

where oco(v) indicates the amount of occupied voxels that
are touched by the sensor and lie inside the object bounding
box (OBB), uno(v) is the amount of unknown voxels in the
OBB, and h is a threshold (in our experiments in the real
robot this threshold is set to 55%). This factor allows us to

4229

deal with a big amount of views and has been tested in the
experiments with a real robot with good results.

3) New surface: sur(v) evaluates a view depending on
how much surface from the unknown volume is seen, i.e.
the amount of visible unknown voxels. Such function returns
values between 1 and 0. It is 1 when v sees all the unknown
voxels in the OBB, see equation (3).

sur(v) =
uno(v)

untotal

(3)

where untotal is the total amount of unknown voxels inside
the OBB.

4) Distance: Candidate views are also evaluated accord-
ing to their distance to the current robot configuration. The
function is shown in eq. (4):

dist(qn) =
1

1 + ρ(q0, qn)
(4)

where ρ is the summation of the weighted Euclidean distance
between the nodes of the path P = {q0, q1...qn} between the
current robot configuration q0 and the candidate configura-
tion qn, as defined in equation (5).

ρ(q0, qn) =
n
∑

i=1

√

√

√

√

m
∑

j=1

wj(qi(a1, aj, am)− qi−1(a1, aj , am))2

(5)
where aj is the j-th degree of freedom, wj is a weight
assigned that degree of freedom, and m is the number of
degrees of freedom.

Unlike our previous approach, where a distance in the
workspace was defined [3], this distance measures the path
followed by the robot, which in most of the cases is not a
straight line, i.e., the robot has to avoid obstacles or needs
a trajectory different to a straight line due to non-holonomic
constraints.

B. Candidate views

In this work, we directly generate views in the robot’s
configuration space. For each iteration a set of random
samples using a uniformly distribution is generated. Then
they are filtered though the evaluation strategy. Robot’s
configuration space could be very vast and many samples
could be needed to get useful samples. However, our first
filter is to check if the sensor points to the object, a constant
time process that fast discards views. In our experiments, for
each iteration, 10,000 random samples are generated. Usually
for each 10,000 views few hundreds of views are useful. Only
the useful views are kept for further evaluation.

C. Evaluation strategy

In order to evaluate the candidates efficiently we perform
the evaluation trough several filters. If a candidate does not
pass a filter it is deleted from the candidate view set. Fig.
4 shows how the filters are applied. First, we discard views
if the sensor director’s rays does not intersect a sphere that
encapsulates the object. Then, we test the candidates with

the positioning factor. This verifies for collisions between
the candidate configuration and the environment (represented
by an octree, in which occupied and unknown voxels are
considered as obstacles). Then, we compute visibility with
hierarchical ray tracing, as explained in section IV-B. After
that, registration and surface factors are evaluated. Then, a
subset of candidates is sent to the motion planner, the planner
tries to find a trajectory to each candidate. If no solution was
found a new subset is sent. Finally, the weighted length of
the path is considered.

In the previous evaluation process, the processing time for
finding collision free paths for several configurations might
be too large, in particular if some of those are not reachable.
An alternative is to estimate the distance as a straight line in
the configuration space. Then, this estimation could be used
to rank the set of views before motion planning and only the
best one is given as goal to the RRT planner. If the selected
configuration cannot be reached, the second best is given as
a goal to the RRT, and so on. In the simulation experiments
we compare both alternatives.

D. Stop Criterion

Establishing a good stop criterion for object reconstruction
is a challenging problem. Previous works have proposed
several criteria based on the partial model of the object [8],
[9]. However, to consider only the object is not enough,
i.e., the robot configuration can be in collision with the
environment or an obstacle is blocking the way. In this work,
the process is finished if the surface factor is lower than a
threshold, or no path was found for any of the candidate
views.

VI. MOTION PLANNING

The Rapidly Exploring Random Trees method (RRT) is a
data structure and algorithm that is designed for efficiently
searching no convex high-dimensional configurations spaces
[15], [16]. RRT can be considered as a Monte Carlo way
of biasing search into largest Voronoi regions. RRT and
related methods have been used in a variety of applications,
for instance motion planning for humanoid robots [17], or
to plan navigation routes for a Mars rover that take into
account dynamics [18]. In [19], a sensor-based RRT, called
SRT, is used for exploration of 2D environments. In [20],
the authors have extended RRT and other sampling-based
motion planning algorithms to find optimal paths.

In this work, we adapt the RRT to plan robotic paths for
building 3-D models of unknown objects. We use the RRT-
EXT-EXT variant, which grows two balanced trees, one from
the initial configuration and one from the goal.

VII. EXPERIMENTS

In this section, we present experiments both in simulation
and with a real robot. First, we validate our utility function
comparing it with a state of the art utility function [9].
Second, we measure the processing time gain that we can
achieve when the hierarchical ray tracing is used. Third,
we show the effectiveness of the method by reconstructing

4230

(a) Bunny (b) Teapot (c) Dragon

Fig. 5. Synthetic objects used for testing.

several complex objects. Fourth, we experimentally compare
the two different ways to select the views for the motion
planner. Fifth, the reconstruction of a office chair with a real
robot is described, in order to show the effectiveness of the
method in a real case.

Simulation experiments are performed in a scene where
the objects are placed over a table; the object bounding box is
over the table, the simulated sensor is a time of flight camera.
The robot is the same as our real robot with 8 degrees of
freedom (Fig. 1). Three complex objects have been tested, the
Stanford Bunny, a Dragon and a Teapot, see figure 5. For the
simulation experiments we have fixed a voxel resolution of
2 cm. The percentage of covered surface is computed as the
ratio of correspondent points in the built model over the total
number of points in the ground truth model. A point in the
built 3-D model finds a correspondence in the ground truth
model if it is closer than a threshold (3 mm). Average results
are calculated after repeating the reconstruction 5 times.

A. Utility function validation

In this work, we estimate the goodness of a view mea-
suring three main factors: i) unknown surface (amount of
unknown voxels), ii) overlap and iii) c-space path distance.
We call this utility function combined utility (CU). Another
way to estimate the goodness is computing the Information
Gain (IG) of a scan [9]. In this experiment we compare CU
versus IG. The comparison was done by reconstructing 5
times the Bunny object using CU, and 5 times using IG.

Figures 6 and 7 show the average surface coverage and
average unknown volume, respectively. In this experiment,
IG at initial iterations gets a higher coverage than CU.
This happens, because IG only takes into account the new
information that is expected to see. Unlike CU that takes into
account overlap and distance to reach a view configuration.
After several scans both utilities converge to the same cov-
erage. Thus, after several scans our utility function reaches
the same coverage than IG, but assures overlap and measures
the cost of the path (distance traveled).

Processing time for evaluating both function is quite sim-
ilar. In our implementation, to evaluate CU for all candidate
views takes an average time of 428 s., in contrast, IG
factor takes 484 s., that is 13% more than CU. It is worth
to say that, the evaluation processing time of CU can be
significant reduced using the hierarchical tray tracing. To
the best of our knowledge there is no speed up technique
for IG computation. Next section specifies the time required
for evaluating a single view using HRT.

0 2 4 6 8 10 12
30

40

50

60

70

80

90

100

Iteration

%
 C

ov
er

ag
e

IG
CU

Fig. 6. Comparison of the average surface coverage using information
gain (IG) and unknown surface (CU). Both methods converge to the same
coverage. Note that coverage does not reach 100% given that the base of
the object is occluded by the table.

0 2 4 6 8 10 12
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Iteration

U
nk

no
w

n
vo

lu
m

e
(m

ts
3)

IG
CU

Fig. 7. Comparison of the unknown volume in the octree using information
gain (IG) and unknown surface (CU). Both methods leave the same unknown
volume in the octree.

B. Speed up of the utility function evaluation

The proposed Hierarchical Ray Tracing (HRT) reduces
the visibility computation time, depending on the resolution
parameter (section IV-B). We have tested different resolution
parameters for the reconstruction of the Bunny object. The
results of the required processing time are shown in table
I. The first column shows the resolution parameter a used
for the reconstruction. Remember that a equal to zero is
equivalent to a uniform ray tracing. The second column
shows the average time required to evaluate a single view
that points to the object. The third column shows the voxel
size at the roughest resolution, in which HRT starts. The
fourth column shows the coverage percentage after 12 scans
of the Bunny. A reduction of 60% of the processing time is
gained with a = 1. For higher resolution parameters there is
a further reduction in processing time, until a = 4. Larger
resolution parameters do not imply time reduction, given
that the overhead of the ray tracing structure increases the
processing time.

Using the HRT allow us to evaluate a large set of views in
a short time, making possible that even a naive set of random

4231

(a) Initial robot configuration. (b) First five next-best-views com-
puted to scan the object.

(c) Octree at a given iteration. (d) Updated octree after scan.

Fig. 8. Illustrations from different stages of the reconstruction of the Bunny
object. Unknown voxels are shown in orange, occupied voxels belonging to
the object are displayed in blue and the occupied voxels belonging to the
known environment are displayed in gray (best seen in color).

Fig. 9. Final representations (point clouds) from the reconstructed 3D
synthetic objects.

views could be useful to determine the NBV. A drawback of
this method is that there is no finner ray tracing for obstacles
outside the bounding box. Therefore, the best performance
of the HRT is when the object has a clear space around it.

TABLE I

VIEW EVALUATION TIME WITH HIERARCHICAL RAY TRACING.

Res. param. Time (s) Voxel size % Coverage
0 0.185 0.02 m 97.66
1 0.063 0.04 m 96.35
2 0.035 0.16 m 96.26
3 0.024 0.32 m 96.25

C. Reconstruction of complex objects

In this experiment, we test the method using the Bunny,
the Dragon and the Teapot. We present quantitative results
to evaluate the performance and efficiency of the proposed
approach. Fig. 8 depicts several stages in the reconstruction
of the Bunny. Fig. 9 shows the final representation of the
reconstructed objects. We use a resolution parameter a = 2
and 4 goals were sent to the motion planner.

Table II presents average results for the reconstruction
of the objects in terms of the number of views needed
to reconstruct the 3-D model, the visibility computation

time (Vis.), the motion planning processing time (M.P.)
and the percentage of covered surface. The results show
that the method is able to plan each NBV for 3D object
reconstruction with a mobile manipulator with eight DOF.

TABLE II

RECONSTRUCTION RESULTS FOR EACH OBJECT.

Object Views Vis. M.P. Coverage.
Teapot 12 48.92 s 79.05 s 93.90 %
Bunny 12 33.81 s 114.07 s 95.51 %
Dragon 12 32.45 s 95.60 s 87.26 %

D. Evaluation strategies

In this experiment, we compare the two evaluation strate-
gies described in Section V-C, they differ on how many goals
are sent to the RRT. These strategies are related with the
navigation distance estimation. In the experiment we also
compare the performance of the method if no navigation
distance is used. Table III presents, average results for the
reconstruction of the Bunny object for each strategy in terms
of the visibility processing time (Vis.), the motion planning
processing time (M.P.), the percentage of coverage and the
distance traveled to visit all the sensing configurations. The
compared strategies are: no navigation distance factor, single
goal (distance is estimated as a straight line in the configura-
tion space) and subset of n goals (distance is calculated with
equation (5) and n goals are sent to the Motion Planner).
The results show that, in general, the traveled distance is
decreased whether a navigation factor is used, also, they
show that the strategy of sending a subset of goals to the
RRT covers more surface with a shorter path with respect
to one single goal. However, such strategy requires more
processing time.

TABLE III

RECONSTRUCTION RESULTS FOR EACH STRATEGY.

Strategy Vis. M.P. Coverage Dist.
No distance 33.85 s 40.21 s 96.21 % 89.24
Single goal 35.68 s 15.81 s 95.40 % 72.26
Subset of 5 goals 32.89 s 117.53 s 97.23 % 72.31
Subset of 10 goals 35.90 s 182.87 s 96.32 % 62.45

E. Real case reconstruction

This experiment performs the reconstruction of an office
chair with a Microsoft Kinect sensor mounted on a mobile
manipulator. See Figure 2. The objective is to show exper-
imentally that the method can deal with a real environment
in acceptable processing times. The implemented registration
process uses Iterative Closest Point Algorithm (ICP) [11], the
registration factor was set to 55% and the size of the voxels
was 3 cm, the HRT resolution parameter was set to 2.

The proposed method provides a reliable and fast solution
for finding the NBV according to the robot capabilities. Fig.
10 shows the acquired model of the chair. The object was
seen from different locations and most of the surface was
reconstructed. Table IV shows the average times for each

4232

iteration of the reconstruction. Average times are the mean
of the spent time per iteration.

TABLE IV

RESULTS OF THE REAL RECONSTRUCTION.

Number of scans 11
Traveled distance 76.06
Visibility evaluation 10.74 s
Motion planning 8.22 s
Octree update 6.61 s

Fig. 10. Qualitative comparison of two views of the reconstructed object
versus the real object. Almost all surface was seen, except the low part of
the seat where the robot cannot reach due to the size of the arm.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a method for next-best-view planning
for 3D object reconstruction. This is one of the first methods
that determines the NBV directly in the configuration space,
following a methodology in which a set of candidate views is
directly generated in the configuration space, and later only
a subset of these views is kept by filtering the original set.
The method proposes a utility function that integrates several
relevant aspects of the problem and an efficient strategy
to evaluate the candidate views. This method avoids the
problems of inverse kinematics and unreachable poses.

We compare the proposed approach with related works
both qualitatively and quantitatively. Qualitatively, this ap-
proach measures the goodness of the path in terms of
unknown surface, overlap and the cost of each degree of
freedom and also performs an efficient evaluation of the
candidate views. Quantitatively, this method achieves the
same coverage but with smaller processing time compared
with previous works. In our experiments we have used a
mobile manipulator of 8 DOF with an eye-in-hand sensor.
To our knowledge, this is one of the first works in which a
method to reconstruct a 3-D object is implemented in a real
mobile manipulator robot.

As future work, we want to deal with spatial uncertainty,
which decreases the real goodness of a planned view or
causes collision between the robot and the object.

REFERENCES

[1] W. R. Scott, G. Roth, and J.-F. Rivest, “View planning for automated
three-dimensional object reconstruction and inspection,” ACM Com-
put. Surv., vol. 35, pp. 64–96, March 2003.

[2] J. O’Rourke, Art Gallery Theorems and Algorithms. Oxford Univer-
sity Press, 1987.

[3] J. I. Vasquez, E. Lopez-Damian, and L. E. Sucar, “View Planning for
3D Object Reconstruction,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS09), 2009, pp. 4015–4020.

[4] J. I. Vasquez, L. E. Sucar, and R. Murrieta-Cid, “Hierarchical Ray
Tracing for Fast Volumetric Next-Best-View Planning,” in Tenth
Canadian Conference on Computer and Robot Vision 2013, 2013.

[5] C. Connolly, “The determination of next best views,” in IEEE Interna-
tional Conference on Robotics and Automation 1985, ICRA85, vol. 2,
1985, pp. 432–435.

[6] T. Foissotte, O. Stasse, A. Escande, P.-B. Wieber, and A. Kheddar,
“A two-steps next-best-view algorithm for autonomous 3d object
modeling by a humanoid robot,” in Proceedings of the 2009 IEEE
international conference on Robotics and Automation, ser. ICRA’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 1078–1083.

[7] M. Krainin, B. Curless, and D. Fox, “Autonomous generation of com-
plete 3d object models using next best view manipulation planning,”
in ICRA, 2011, pp. 5031–5037.

[8] L. Torabi and K. Gupta, “An autonomous six-dof eye-in-hand system
for in situ 3d object modeling,” The International Journal of Robotics
Research, vol. 31, no. 1, pp. 82–100, 2012.

[9] S. Kriegel, C. Rink, T. Bodenmuller, A. Narr, M. Suppa, and
G. Hirzinger, “Next-best-scan planning for autonomous 3d modeling,”
in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, Oct., pp. 2850–2856.

[10] S. Chen, Y. Li, J. Zhang, and W. Wang, Active Sensor Planning for
Multiview Vision Tasks. Springer-Verlag, 2008.

[11] P. Besl and N. McKay, “A method for registration of 3-d shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
pp. 239–256, 1992.

[12] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems,” in Proc. of the ICRA 2010 Work-
shop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, Anchorage, AK, USA, May 2010.

[13] K. Low and A. Lastra, “An adaptive hierarchical next-best-view
algorithm for 3d reconstruction of indoor scenes,” Proceedings of 14th
Pacific Conference on Computer Graphics and Applications (Pacific
Graphics, Tech. Rep., 2006.

[14] K.-L. Low and A. Lastra, “Predetermination of icp registration errors
and its application to view planning,” in Proceedings of the Interna-
tional Conference on 3D Digital Imaging and Modeling, 2007, pp.
73–80.

[15] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[16] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[17] J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue,
“Motion planning for humanoid robots,” in ISRR, 2003, pp. 365–374.

[18] C. Urmson and R. Simmons, “Approaches for heuristically biasing rrt
growth,” in IEEE/RSJ IROS 2003, October 2003.

[19] G. Oriolo, M. Vendittelli, L. Freda, and G. Troso, “The srt method:
Randomized strategies for exploration,” in IEEE International Confer-
ence on Robotics and Automation (ICRA-01), 2001, pp. 4688–4694.

[20] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, June 2011.

4233

