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view/state for three-dimensional
object reconstruction
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Abstract
Three-dimensional models from real objects have many applications in robotics. To automatically build a three-dimensional
model from an object, it is essential to determine where to place the range sensor in order to completely observe the object.
However, the view (position and orientation) of the sensor is not sufficient, given that its corresponding robot state needs to
be calculated. Additionally, a collision-free trajectory to reach that state is required. In this article, we directly find the state of
the robot whose corresponding sensor view observes the object. This method does not require to calculate the inverse
kinematics of the robot. Unlike previous approaches, the proposed method guides the search with a tree structure based on
a rapidly exploring random tree overcoming previous sampling techniques. In addition, we propose an information metric
that improves the reconstruction performance of previous information metrics.
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Introduction

Three-dimensional (3-D) models from real objects have

many applications in robotics, for example, manipulation,

motion planning, object recognition, and so on. To auto-

matically build a 3-D model from an object, it is essential

to determine where to place the range sensor in order to

completely observe the object. This problem is known as

view planning1 and it has been an active research area for

three decades now. It is worth to say that, during the last

5 years, it has increased its importance due to the

decreased price of range sensors and positioning systems

like mobile robots or drones.

Previous works have addressed the problem of comput-

ing the next best view (NBV) which is the sensor position

and orientation that increases the amount of reconstructed

surface and satisfies the sensor constraints. Alternatively,

the NBV has been defined as the sensor pose that decreases

the uncertainty of the model representation.2 Some of the

reported NBV methods use the surface to synthesize the

NBV,3,4 select the NBV from a set of candidate views,5,6 or
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use unsupervised learning.7 A more detailed review of

recent NBV methods is provided by Chen et al.8 and Kar-

aszewski et al.9 Besides the advances in NBV planning, the

NBV is not sufficient in the cases where the positioning

system has a different configuration space with respect to

the view space (defined by six degrees of freedom; three

for position and three for orientation). For example, our

mobile manipulator has eight degrees of freedom. There-

fore, the planned NBV needs to be transformed to the

robot configuration by inverse kinematics.10 The inverse

kinematics approach has the disadvantage that some sen-

sor poses could not have a matching robot configuration

or even if the robot configuration exists, it could not be

reached by the robot, for example, an obstacle could be

blocking the path.

The problem that we address in the article is, to compute

the NBV/state (NBVS) which is a robot state whose corre-

sponding sensor view increases the object surface and satis-

fies the robot positioning.11 Unlike the NBV approach, the

state of the robot is directly computed and inverse kine-

matics is avoided. In the previous article,12 a method for

computing the NBVS was proposed. In that work, random

samples are generated and evaluated, then the best samples

are goals to be reached by a motion planner. In this work,

we are improving the work of Vasquez-Gomez et al.11 by

presenting a method that guides the search of the NBVS by

growing a tree structure. The growing process is similar to

the way that a rapidly exploring random tree (RRT)13

expands in the state space. The tree is rooted at the current

robot state and it expands in the state space, each time that a

new vertex is added to the tree, it is evaluated by an NBV

metric. At the end, the NBVS is the vertex with the highest

evaluation (Figure 1). In addition, we propose an informa-

tion metric, called frustum information gain (FIG), to eval-

uate how much surface could be observed. This approach

has several advantages with respect to the method reported

by Vasquez et al.12: (i) for each vertex that is evaluated a

path exist, (ii) the distance to the current robot state is

known, (iii) as the tree grows, the probability of finding

the optimal NBVS increases exponentially, demonstrated

by LaValle and Kuffner,13 and (iv) the frustum informa-

tion metric avoids the multiple voxel counting presented

by previous metrics. We provide a comparison of the pro-

posed object reconstruction tree (ORT) versus the previ-

ous approach of random sampling (RS), and the

experiments show that the ORT method has a higher sur-

face coverage. Furthermore, we provide a comparison of

the proposed metric against the state-of-the-art metrics. In

the experiments, the proposed metric increases the

object’s surface faster than reported metrics.

Related work

View planning comprises the problems that require to

determine the best sensor pose for 3-D reconstruction or

inspection. The reconstruction is characterized by the

restricted or absent knowledge about the object’s shape, while

the inspection makes use of a previously build 3-D model.

View planning is part of a more general area called active

vision,14 where not only the pose is computed but also the

intentional sensing includes sensor calibration, light intensity

computation, among other parameters that are needed.

Several view planning techniques for object reconstruc-

tion have been proposed in the last three decades. They can

be classified into three groups: surface based, search based,

and hybrid approaches. Surface-based techniques attempt to

synthesize the NBV using a geometric analysis of the

observed surface. The early works use the occlusions gener-

ated by the sensor or the object to guide the NBV.15,16 New

surface-based methods are using unsupervised learning to

estimate the best sensor pose.7 The search-based methods

have evolved from generating view spheres over determinis-

tic volumetric representations17 to optimization18 and prob-

abilistic representations.19 Hybrid approaches combine both

ideas by synthesizing candidates and evaluate them with a

utility metric.10 The reader can find a thorough review of

view planning methods in the following surveys.1,9,14,20

Some methods go beyond the NBV calculation and

determine the robot state that matches the sensor pose Tor-

abi and Gupta,10 combines inverse kinematics with a prob-

abilistic road map (PRM), Kriegel et al.,2 uses an RRT to

get possible paths, and Monica and Aleotti21 uses optimal

motion planning implemented in the MoveIt! ROS stack.

However they do not compute directly the robot state. On

the other hand, Vasquez-Gomez et al.11 proposed a method

for NBVS planning, which directly computes the robot

state, and the method is based on uniformly sampling the

state space and connecting each of the best samples with an

RRT; unlike that approach, in this article, a unique tree is

grown, while each added vertex is evaluated.

Figure 1. ORT grows from the current state and each of the
vertices is tested with a utility function. The figure shows in white
the corresponding sensor positions for each vertex of the tree.
Red points show the best-evaluated view/states. ORT: object
reconstruction tree.
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The presented ORT bases the reconstruction over a ran-

dom tree and measures the gain with an information metric.

With respect to the first characteristic, there are some

approaches that also base the exploration over a random

tree structure. The sensor-based random tree (SRT)22

explores a two-dimensional unknown environment by

growing a data structure based on the RRT13; the SRT

grows as new areas of the environment are discovered, it

adds to each node of the tree the status of the environment

by defining “local safe regions.” Unlike our approach, the

SRT grows and perceives the environment at the same time

and does not search for the best sensor perception; such

search is the objective of our work. Torabi et al.23 propose

a method that discovers the free configuration space using a

PRM; it differs from our work where the exploration is

based on an RRT and we want to discover the surface of

an object. In a subsequent work,10 Torabi and Gupta per-

form the reconstruction of an object; however, the deter-

mination of the NBV is based on edges of the object point

cloud and inverse kinematics is used to find the correspond-

ing robot state. Bircher et al.24 propose a receding horizon

NBV planner for exploring the environments based on

expanding a tree inside free voxels. It evaluates the nodes

by counting the visible unmapped voxels; in addition, it

weights the gain depending on the distance with respect to

the current vehicle state. Unlike our approach, the receding

horizon NBV planner moves the vehicle only one edge of the

tree instead of reaching the best-evaluated node; such strategy

is not adequate for object reconstruction given that we are

dealing with a non-holonomic robot with many degrees of

freedom; therefore, sensing at each movement of the robot

will provide unnecessary information about the environment.

With respect to the information metric, Isler et al.25 pro-

pose several information gain-based metrics; in this article,

we have implemented one of their metrics and have com-

pared both information metrics. Isler et al.25 mention that

the robot interface, in charge of the robot motion and

inverse kinematics, should provide the promising state can-

didates; however, there are no details on how it is done.

Contributions

The contributions of the work are summarized as follows:

� A method for NBVS planning based on a tree struc-

ture is presented.

� A new information metric called FIG is proposed.

� The coverage increment, observation cost, and

reconstruction efficiency metrics are proposed as a

way to measure the performance of the NBVS

methods.

The ORT

Assumptions and concepts

The workspace,W, is a 3-D Euclidean space,W ¼ R3. The

object is the entity to be modeled,W obj � W. It is assumed

that the object shape is unknown but it is enclosed in an

object bounding box, W box � W, so that W obj � W box.

The unknown region is the space that hides the object sur-

faces until a scan is made in that region. Let W unk denote

the unknown region. At the beginning of the reconstruction,

W unk ¼ W box.

A range sensor, R, is able to acquire a 2 1
2
-D image from

the object and environment, that is, a set of 3-D points with

respect to the sensor’s reference frame. It is assumed that

the sensor has a perspective geometry, namely, all the sen-

sor rays that pass through the image plane have a common

origin, R ¼ frij0 � i < n; ri ¼ ½xi; yi; zi�T , where xi, yi, and

zi are work space coordinates and n is the amount of rays.

The partial model, M, stores the incremental information

about the reconstructed surface. In this work, we use a

probabilistic occupancy map which was implemented over

the octomap octree structure.19 In this representation, each

voxel has an associated probability of being occupied.

Depending on the probability of being occupied, we clas-

sify each voxel with one of four possible classes: (i) occu-

pied, which represents surface points measured by the

range sensor; (ii) free, which represents free; (iii) unknown,

whose space has not been seen by the sensor; and (iv)

visible unknown, which are unknown voxels that are adja-

cent to a free voxel (Figure 2). Each class has a defined

probability interval that can be adjusted according to the

needs. The default values are ½0:45; 0:55� for the unknown

voxels, less than 0.45 for the free voxels, and larger than

0.55 for the occupied voxels.

General workflow

In general, the 3-D reconstruction of an object is an itera-

tive process of sensing and deciding where to move and

see next. Algorithm 1 resumes the workflow which is

described below.

The reconstruction requires the object bounding box,

W box, and the initial state, x init, from where the object is

Algorithm 1. 3-D object reconstruction method. It receives the
initial robot state, xinit, and the object bounding box, Wbox, then it
reconstructs the object and returns the object point cloud Pobj.
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visible. Based on W box, the partial model, M , is initialized

by setting all the voxels inside M as unknown. Then, the

robot moves to the given state and an observation is made.

The observed point cloud (z) is registered to the incremen-

tal point cloud of the object, P obj, using the iterative clo-

sest point algorithm.26 During the registration, z is aligned

and P obj is increased. Next, the aligned point cloud, z0,
updates the partial model. Then, the next robot state is

planned with the ORT. If the ORT returns a valid state

and the stop criterion has not been satisfied then the pro-

cess is repeated.

ORT construction

To compute the NBVS, we propose the ORT. The method

is based on the RRT. The original RRT method is an algo-

rithm that is designed for efficiently searching non-convex

high-dimensional configuration or state spaces13; it grows a

tree structure in the collision-free space, each vertex repre-

sents a possible state, and each edge represents the control

that makes the robot move between vertices. RRT can be

considered as a Monte Carlo way of biasing search into

largest Voronoi regions. RRT and derived methods have

been used in a variety of applications, for instance, motion

planning for humanoid robots.27

The ORT grows in the state space in the same way

that an RRT does, but instead of trying to reach a goal

state, the ORT grows until K iteration is met. During the

growing, each added vertex is tested with a utility func-

tion. At the end, the NBVS is the vertex with the highest

evaluation. Algorithm 2 resumes the ORT method. In

detail, the ORT grows from an initial state x crrnt which

is the current robot state. Then, a random state, x rand, is

generated, line 3. The extend procedure (Algorithm 3)

grows the tree in the direction of x rand; if the extension

operation is successful, the utility, g, of the new vertex

is returned. The utility is calculated according to the

evaluation described in section “View/state evaluation.”

If the utility g is higher than the previous evaluated

vertices then x new is kept as the NBVS (x best).

We have selected the RRT to guide the search for sev-

eral reasons. It rapidly extends in the state space and with

enough vertices it can reach any state (within a certain gap

and for reachable states). It allows us to determine the

NBVS directly in the state space. We are sure that the

candidate states are collision free and reachable given that

they are demonstrated properties of the RRT.13 In addition,

we can easily calculate the distance from the current state

using the tree path.

View/state evaluation

The utility function ranks the candidate states according to

their goodness for the reconstruction process. Formally, let

g : X ! R be the utility function. We use the utility func-

tion proposed by Vasquez et al., which is a product of four

factors, see equation

gðxÞ ¼ pðxÞ � rðxÞ � dðxÞ � IðxÞ ð1Þ

Each factor evaluates a particular constraint of the prob-

lem and they are explained below. We implement this func-

tion because it allows us to evaluate the factors in cascade,

making the evaluation faster. Furthermore, we are propos-

ing a new information metric.

Positioning

pðxÞ is 1 when the robot state is collision free, and a collision-

free path from the current state to the evaluated state is avail-

able; otherwise it is 0. This factor has been written in equation

(1) to keep the notation described in the previous articles.

However, notice that it is no longer needed since the ORT

verifies collision after the extension process.

Registration

To register the new scan, previous works have proposed to

assure a minimum amount of overlap or consider all causes

of failure.28 In this work, we use the registration factor

proposed by Vasquez et al., where rðxÞ is 1 if a minimum

percentage of overlap with previous surfaces exists, and 0

otherwise. Such percentage is calculated by dividing the

number of occupied voxels per the sum of occupied voxels

plus the number of visible unknown voxels (VUVs).

Algorithm 3. Extend procedure. It grows the tree, T, toward a
random state, x, and returns a new vertex xnew and its
corresponding evaluation g.

Algorithm 2. ORT. It receives the current robot state, xcrrnt,
and returns the NBVS, xbest.
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Distance metric

The distance factor, dðxÞ, assesses a state depending on

how far it is from the current robot state. The inclusion

of this factor has given evidence that it helps to decrease

the total traveled distance of the reconstruction and helps to

decrease the position uncertainty.11 Some examples of dis-

tance factors are an orthodromic distance for free fliers,5 a

cost that measures the robot path,12 or a decrement relative

to the cost.25 It is worth to say that dðxÞ requires to be tuned

depending on the robot platform and user needs. During the

experiments, this factor was set to 1 to reduce the number

of addressed variables. A comparison between distance

metrics is left for future work.

Information metric

The information metric, IðxÞ, is a function that receives a

state and returns a numeric value according to how much

new relevant information about the object can be acquired.

In this section, we describe a new information metric,

called FIG, alongside several reported metrics that are used

in the experiments section.

A necessary step for the calculation of the information

metric is the ray tracing. It retrieves from the partial model

the set of voxels that will be observed by the sensor; in

other words, it is a simulation of the scan inside the prob-

abilistic octree. As a result, for each ray, r, of the sensor, R,

a set of voxels Mr is obtained. See the work of Amanatides

and Woo29 for more details on ray tracing.

Frustum information gain. The FIG is a variant of the infor-

mation gain metric used by Kriegel et al.2 and Isler et al.25

This approach is based on the asseveration that the infor-

mation contained in each voxel i can be measured by its

entropy,2 see equation

IðiÞ ¼
X

i2f ðxÞ
�pðiÞ lnðpðiÞÞ � ð1� pðiÞÞ lnð1� pðiÞÞ ð2Þ

where pðiÞ is the occupancy probability for the voxel i.

The entropy of a voxel, equation (2), is higher when the

probability of been occupied is close to 0.5, and it is lower

when the probability tends to 0 or 1. Namely, the voxel has

more information when it is unknown. Therefore, the FIG

sums all the information that is contained in the set of unknown

voxels that lie inside the sensor frustum, see equation

If ðxÞ ¼
X

8iji2f ðxÞ^i2Mu

IðiÞ ð3Þ

where f ðxÞ is the set of voxels that are touched by the ray

tracing

f ðxÞ ¼ [
8r2Rx

Mr ð4Þ

and Mu is the set of unknown voxels.

Figure 3 shows an example of the voxels that contribute

to the FIG. Unlike Kriegel’s metric, FIG integrates the

entropy for each voxel inside the sensors frustum but

avoids multiple integration caused by ray tracing,

Scan information gain. The metric, proposed by Kriegel

et al.,2 calculates the information gain for all voxels touched

by the rays of the sensor, see equation (5). Unlike the FIG, in

this method, each ray contributes to the computation even if

the voxels are touched more than one time (see Figure 4)

IsðxÞ ¼
X
8rj2Rx

X
8i2Mrj

IðiÞ ð5Þ

Visible unknown voxels. This approach counts the VUVs, see

equation (6). According to the study by Vasquez-Gomez

et al.,11 the VUVs are the unknown voxels that are first

touched by the ray tracing. In the study by Vasquez-

Gomez et al.,5 the same type of voxels is called occplane

(the contraction of occlusion plane) and they are defined as

unknown voxels that are adjacent to a free voxel

IuðxÞ ¼
X

i2f ðxÞ
IoðiÞ ð6Þ

So that

IoðiÞ ¼
1 i is a visible unknown voxel

0 i otherwise

�
ð7Þ

Rear side voxel. This metric counts the number of voxels

behind a seen surface expecting that such voxels will be

part of the object, see equation (8). This metric was pro-

posed by Isler et al.25 and it shows a surface coverage

Figure 2. Voxel labels. Occupied voxels are marked in blue,
unknown voxels in yellow, and VUVs in pink. VUV: visible
unknown voxel.
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advantage with respect to other metrics. See the work of

Isler et al.25 for more details.

IrðxÞ ¼
X
8rj2Rx

X
8i2Mrj

IbðiÞ ð8Þ

where

IbðiÞ ¼
1 i is a rear side voxel

0 i otherwise

�
ð9Þ

Stop criterion

There are two questions related to the stop criterion: (i)

when the ORT should stop growing? and (ii) when the

reconstruction should be stopped? In this article, we answer

the former question by setting a maximum number of itera-

tions, k. However, an alternative is to have an estimate of

the NBVS goodness and then to stop the ORT when the

evaluation of the added vertex, x new, is close to the estima-

tion. Such estimation can be obtained with a synthesis

method.3 The latter question is more difficult to answer.

It is possible to know when the object is complete,10 in that

case, the reconstruction is stopped. However, if there is no

path to the NBVS, the algorithm can run forever given that

the RRT is a probabilistic complete algorithm but it cannot

detect an unreachable goal.13

Experiments

We present several experiments that analyze the proposed

tree-based search method. The questions that we want to

answer are how does the amount of ORT vertices affect the

reconstruction coverage? is the ORT better than the RS

proposed in a previous approach? What information metric

is best suited for the ORT?

The experiments were made using view planning library

which is available as an open source under BSD license

(https://github.com/irvingvasquez/vpl). Please see an

example of the experiments at the online video: https://

youtu.be/zLpubkJc_bc.

Performance metrics

� Surface coverage. It is computed as the ratio of cor-

respondent points over the total number of points in

the ground truth model; a correspondent point is a

ground truth point closer than a threshold (3 mm) to

a built model point.11

� Coverage increment. The coverage increment is the

surface coverage difference between two consecu-

tive scans

Dc ¼ ci � ci�1 ð10Þ

� Observation cost. It quantifies the applied resources

to complete an iteration of the reconstruction. To

span all the different processes in one single metric,

we use the processing time. So that

Dt ¼ t plan þ t mov þ t update ð11Þ

where t plan is the lapse of time to compute the

NBVS, t mov the lapse to reach the NBVS, and t update

the lapse to take the scan, register the point cloud,

and update the octomap.

� Reconstruction efficiency. It calculates the rate of

change in coverage with respect to the cost, namely,

the amount of surface that is increased per unit of time.

z ¼ Dc=Dt ð12Þ

Reconstruction scene configuration

The reconstruction scene is composed of the object, in the

center of the scene, and a mobile manipulator robot with an eye

in hand sensor (see Figure 5). The mobile manipulator robot has

eight degrees of freedom, three in the differential drive base (A

MobileRobots Patrol Bot) and five in the arm (Neuronics

Katana). The sensor is a time-of-flight camera with 176 �
174 points. The voxel resolution for all the experiments is 2 cm.

Effect of the ORT size on the coverage

The objective of this experiment is to observe the impact

that the tree size (k vertices) has on the surface coverage. In

addition, we want to identify an adequate k threshold that

shows a good trade-off between coverage and computa-

tional cost. So, we have reconstructed an object 10 times

for five different values of k; k ¼ 2:5� 103; 5� 103;

Figure 3. Example of FIG. The figure shows in green, the voxels
that contribute to the FIG. Each touched voxel contributes only
one time to the metric. FIG: frustum information gain.
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10� 103; 20� 103; 40� 103. Notice that the amount of

vertices is doubled each time.

The object to be reconstructed is the Stanford bunny30

which has been placed on a table (Figure 5). The informa-

tion metric used in this experiment was VUV. The stop

criterion of the reconstruction is 25 iterations or when none

of the vertices provides new information. Distance factor

was set to 1 to decrease the variables of the experiment.

NBVS computation times per iterations were 176 s, 192 s,

220 s, 564 s, and 1364 s, respectively.

First, we analyze the surface coverage. Figure 6 displays

the reconstruction coverage. It shows only the first 15 itera-

tions, because in some cases (with a large k), the reconstruc-

tion ends before the 25th iteration. We observe that as the

number of vertices is increased, the reconstruction effective-

ness, in terms of coverage, is also increased. However, the

experiment suggests that such effectiveness approaches to a

limit, noticing that the coverage using 40� 103 vertices is

similar to the coverage using 20� 103 even that the number

of vertices is doubled. We also found that the length of the

trajectories to the NBVS increases as the amount of vertices

increases (see Figure 7); the reason for this fact is that with a

larger k, a better NBVS is found; however, it is usually

further with respect to the current robot state.

Figure 4. Multiple contribution of the same voxel. SIG metric
adds for each ray that is traced, causing that the voxels nearest to
the sensor will be counted many times. In the figure, as the voxel
is counted multiple times, it increased its green saturation. SIG:
scan information gain.
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Figure 6. Mean surface coverage that is reached using different
amounts of vertices (k) in the ORT. We observe that as the
number of vertices is increased, the effectiveness of the ORT, in
terms of reconstruction coverage, is increased. ORT: object
reconstruction tree.
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Figure 7. Mean length of the trajectories to the NBVS using
different amounts of vertices (k) in the ORT. The experiment
shows that usually the length of the trajectory to the NBVS is
larger as the ORT grows, given that it usually finds the NBVS in a
further state. NBVS: next best view/state; ORT: object recon-
struction tree.

Figure 5. Reconstruction scene. (a) Initial scene. (b) Octree after
the first scan.
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Second, we analyze the reconstruction efficiency (see

Figure 8). We notice that a small or too large k provides a

poor efficiency. This phenomenon is due to the fact that small

trees have a short processing time but poor coverage, due to

the short expansion of the tree (see Figure 9(a)). On the other

hand, a large tree provides good coverage but it will consume

large processing times (see the tree in Figure 9(e)). So there is

a trade-off between coverage and processing time. In this

experiment, 10� 103 vertices show a good trade-off.

Additionally, we have found that in early stages of the

reconstruction, the NBVS is usually close to the current

robot state; see in Figure 9 that even when the number of

vertices is increased, the best-evaluated poses are close to

the current robot state. So, to improve the reconstruction

efficiency, we recommend a small tree in early iterations.

On the other hand, at the latest iterations, a large tree may

be needed given that the NBVS could be far from the

current robot state.

During the experiments, we have observed that while

the tree is expanding in the state space, in the work space,

the poses of the sensor are not been distributed uniformly

(see the snapshots in Figure 9). This phenomenon is caused

by the redundancy of the system.

ORT versus RS

In the previous work,12 an NBVS planning method based on

RS was proposed. In this experiment, we compare the ORT

with that approach. The main difference between approaches

is that while the RS makes a uniform sampling of the state

space and tries to connect the best-evaluated states, the ORT

evaluates the vertices that are added to the tree. In this

experiment, the number of samples for RS was 20� 103,

and the value for k, the tree size, was also 20� 103. Ten

reconstructions per approach were done. The object recon-

structed was the bunny. The information metric was VUV.

The stop criterion was 25 scans and the distance factor was

set to 1 to decrease the variables of the experiment.

The results, condensed in Figure 10, show that the ORT

beats the performance of RS. The reason for this phenomenon

is that the ORT is adding states that are relatively close to the

current state; such states are promising because likely they

will observe some new surface but surely they will satisfy the

registration constraint. On the other hand, the RS could pro-

vide states that are better in terms of information but they

could not satisfy the registration constraint since they could

be too far from the current robot state; furthermore, such

samples cannot be always reached with the RRT. In the study

by Vasquez et al.,12 a similar performance of the ORT was

obtained but 100� 103 samples were required.
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Figure 8. Reconstruction efficiency. The experiment provides
evidence that, at the initial iterations, investing more time in
searching a better NBVS could not be the best deal, given that the
coverage efficiency is decreased. NBVS: next best view/state.

Figure 9. Projection of the end-effector poses for each vertex in
the ORT. The red points are the poses with higher evaluation. (a)
ORT with 2.5 � 103 vertices, (b) ORT with 5 � 103 vertices, (c)
ORT with 10 � 103 vertices, (d) ORT with 20� 103 vertices, and
(e) ORT with 40� 103 vertices. ORT: object reconstruction tree.
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Information metrics comparison

In this experiment, we compare the performance of the

proposed FIG against several state-of-the-art metrics. The

objective is to get evidence of what metric is best suited for

the ORT. In this experiment, the bunny object was recon-

structed using an ORT of 20� 103 nodes. Distance factor

was set to 1 to decrease the variables of the experiment. The

information factor of the utility function was replaced by

each metric described in section “Information metric.” Ten

reconstructions were run for each metric. Figure 11 shows

the surface coverage for each metric. Figure 12 shows the

remaining unknown volume inside the object bounding

box.

The experiments show that FIG and VUV metrics have

better performance over the scan information gain (SIG)

and rear side voxel (RSV) metrics. This phenomenon is due

to the fact that the former metrics “counts” over unrepeated

touched voxels, unlike the latter metrics that could count

one single voxel multiple times, comparing equation

(3) versus equation (5). Therefore with SIG and RSV

metrics, the robot tends to get the sensor close to the

unknown volume because this behavior gets better evalua-

tions but some voxels are counted many times for different

rays of the ray tracing (see Figure 4). The situation for SIG

and RSV metrics gets worse because when the sensor is too

close to the unknown volume, where it is more difficult to

the ORT to get out from that state (it can easily collide with

the object or table). On the other hand, FIG and VUV

metrics tend to put more voxels inside the sensor frustum;

this behavior provokes a higher surface coverage. With

respect to the remaining unknown volume, RSV metric

shows a poor performance given that, in some cases, clus-

ters of unknown volume are not seen by the sensor during

the reconstruction, given that, some of those clusters do not

have occupied voxels and by definition they do not contain

rear side voxels (see the Online Supplementary Material).

The difference between metrics found in this experiment

has not been reported in previous articles,11,25 because the

set of evaluated views is usually restricted, for example, a

convenient distance to the object could be fixed during the

view/states generation. In this article, the ORT is in charge

of generating such view/states.
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Figure 10. Comparison of the ORT versus RS. Both methods
were set with 20� 103 samples. ORT beats the RS for the
reconstruction of the bunny object, see the text for more details.
ORT: object reconstruction tree; RS: random sampling.
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Experiment analysis

The experiments provide evidence that the ORT is capable

of reconstructing an unknown object. In addition, the

method has shown a better performance against an RS

scheme for the same number of samples (vertices). We also

have found that in the early iterations of the reconstruction,

a large tree that spans the state space and finds a better

evaluated NBVS is not necessarily the best, given that the

reconstruction efficiency is compromised. Therefore, we

recommend that in early iterations, a small tree will be

grown; it will provide in a short computation time an

NBVS that is close to the current robot state, improving

the reconstruction efficiency. On the other hand, the pro-

posed FIG metric has shown a better performance with

respect to the state-of-the-art metrics. In the experiment,

we have observed that FIG metric tends to cover bigger

unknown volumes; in consequence, the object is recon-

structed faster. A current drawback of the whole method

is the large computation time, given that each vertex of

the tree is evaluated and we are using a detailed voxel

resolution; however, this issue can be addressed using

some strategies like hierarchical ray tracing, parallel

processing, or reconfigurable hardware implementations.

Finally, we remark that this method is better suited for

robots with many degrees of freedom whose inverse

kinematics is not trivial; otherwise, surface-based meth-

ods could perform better.

Future research directions are (i) to adjust the ORT

growing depending on the partial model state. We believe

that in early iterations, only a small tree is needed to find a

good NBVS, given that the unknown voxels can be reached

even with a small sensor movement, while for the last

iterations, a large tree should be required and (ii) to bias

the ORT exploration in order to explore the view space

instead of exploring the state space.

Conclusions and future work

The ORT method for computing the NBVS for 3-D object

reconstruction was presented. The ORT explores the

robot’s state space using a tree structure; each vertex that

is added to the tree is evaluated depending on how much it

contributes to the reconstruction. The vertex with the high-

est evaluation is selected as the next view/state. The

method is able to compute the NBVS and its corresponding

collision-free trajectory directly in the state space avoiding

inverse kinematics calculation. Furthermore, we have pre-

sented a new information metric, called FIG. The FIG

avoids the multiple counting of voxels that is made by

previous metrics. The experiments shown that the method

is capable of reconstructing an arbitrary object even with

the use of a non-holonomic robot of eight degrees of free-

dom. The experiments also shown that the proposed infor-

mation metric improves the reconstruction performance,

given that, by not making multiple counting, the sensor’s

frustum is filled with a bigger amount of unknown voxels.

A drawback of the method is that it requires high computa-

tional resources when for very fine resolutions, however,

parallel programming or hierarchical ray tracing can be

used to reduce the computation time.

In a future work, we will extend the ORT to optimal

motion planning and uncertainty during the execution of

the planned trajectories. In addition, we would like to

investigate strategies to bias the ORT exploration to the

view space instead of exploring the state space.
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