TYPE A DISTRIBUTIONS:
INFINITELY DIVISIBLE DISTRIBUTIONS
RELATED TO ARCSINE DENSITY

Makoto Maejima,1 Víctor Pérez-Abreu 2,3 and Ken-iti Sato4

ABSTRACT. Two transformations \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) of Lévy measures on \(\mathbb{R}^d \) based on the arcsine density are studied and their relation to general Upsilon transformations is considered. The domains of definition of \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) are determined and it is shown that they have the same range. Infinitely divisible distributions on \(\mathbb{R}^d \) with Lévy measures being in the common range are called type A distributions and expressed as the law of a stochastic integral

\[
\int_0^1 \cos(2^{-1} \pi t) \, dX_t
\]

with respect to Lévy process \(\{X_t\} \). This new class includes as a proper subclass the Jurek class of distributions. It is shown that generalized type G distributions are the image of type A distributions under a mapping defined by an appropriate stochastic integral. \(\mathcal{A}_2 \) is identified as an Upsilon transformation, while \(\mathcal{A}_1 \) is shown to be not.

1. INTRODUCTION

Let \(I(\mathbb{R}^d) \) denote the class of all infinitely divisible distributions on \(\mathbb{R}^d \). For \(\mu \in I(\mathbb{R}^d) \), we use the Lévy-Khintchine representation of its characteristic function \(\hat{\mu}(z) \) given by

\[
\hat{\mu}(z) = \exp \left\{-\frac{1}{2} \langle \Sigma z, z \rangle + i \langle \gamma, z \rangle \right\}
+ \int_{\mathbb{R}^d} \left(e^{i(x,z)} - 1 \right) \frac{i(x,z)}{1 + |x|^2} \nu(dx)
\]

where \(\Sigma \) is a symmetric nonnegative-definite \(d \times d \) matrix, \(\gamma \in \mathbb{R}^d \) and \(\nu \) is a measure on \(\mathbb{R}^d \) (called the Lévy measure) satisfying \(\nu(\{0\}) = 0 \) and \(\int_{\mathbb{R}^d} (1 \wedge |x|^2) \nu(dx) < \infty \). The triplet \((\Sigma, \nu, \gamma) \) is called the Lévy-Khintchine triplet of \(\mu \in I(\mathbb{R}^d) \). Let \(\mathfrak{M}_L(\mathbb{R}^d) \)

\begin{itemize}
 \item [1] Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Yokohama 223-8522, Japan
 \item [2] Department of Probability and Statistics, Centro de Investigación en Matemáticas, CIMAT, Apdo. Postal 402, Guanajuato, Gto. 36000, Mexico
 \item [3] Most of this work was done while the author visited Keio University in Japan. He gratefully acknowledges the hospitality and financial support during his stay
 \item [4] Hachiman-yama 1101-5-103, Tenpaku-ku, Nagoya 468-0074, Japan
\end{itemize}
denote the class of Lévy measures of \(\mu \in I(\mathbb{R}^d) \). The class of Lévy measures \(\nu \) on \(\mathbb{R}^d \) satisfying \(\nu(\{0\}) = 0 \) and \(\int_{\mathbb{R}^d} (1 \wedge |x|) \nu(dx) < \infty \) is denoted by \(\mathcal{M}_1(\mathbb{R}^d) \). Sometimes we write \(\mathcal{M}_2(\mathbb{R}^d) = \mathcal{M}_L(\mathbb{R}^d) \). A measure \(\nu \) on \((0, \infty) \) is also called a Lévy measure if it satisfies \(\int_{(0, \infty)} (1 \wedge x^2) \nu(dx) < \infty \), and denote by \(\mathcal{M}_L((0, \infty)) \) the class of all Lévy measures on \((0, \infty) \).

Let
\[
a(x; s) = \begin{cases}
\pi^{-1}(s - x^2)^{-1/2}, & |x| < s^{1/2}, \\
0, & \text{otherwise},
\end{cases}
\]

which is the density of the symmetric arcsine law with parameter \(s > 0 \). For a Lévy measure \(\rho \in \mathcal{M}_L((0, \infty)) \), define
\[
\ell(x) = \int_{\mathbb{R}^d_+} a(x; s) \rho(ds), \quad x \in \mathbb{R}.
\]

In \([1]\), a distribution such that its Lévy measure is either zero or has a density \(\ell \) of the form (1.2) is called a type A distribution on \(\mathbb{R} \). It is a one-dimensional symmetric distribution. Let \(Z \) be a standard normal random variable and \(V \) a positive infinitely divisible random variable independent of \(Z \). The distribution of the one-dimensional random variable \(V^{1/2}Z \) is infinitely divisible and is called of type \(G \). It is also shown in \([1]\) that an infinitely divisible distribution \(\tilde{\mu} \) on \(\mathbb{R} \) is of type \(G \) if and only if there exists a type \(A \) distribution \(\mu \) on \(\mathbb{R} \) with the following stochastic integral mapping representation
\[
\tilde{\mu} = \mathcal{L}\left(\int_0^{1/2} \left(\log \frac{1}{t} \right)^{1/2} dX_t^{(\mu)} \right).
\]

Here and in what follows, \(\mathcal{L} \) means “the law of” and \(\{X_t^{(\mu)}\} \) means a Lévy process on \(\mathbb{R}^d \) whose distribution at time 1 is \(\mu \in I(\mathbb{R}^d) \). (In (1.3), \(d = 1 \).)

In this paper, we study more about type \(A \) (not necessarily symmetric) distributions on \(\mathbb{R}^d \). The organization of this paper is the following.

Section 2 considers two arcsine transformations \(A_1 \) and \(A_2 \) of Lévy measures on \(\mathbb{R}^d \) based on (1.1) and a reparametrization of this density of the arcsine law. It is shown that the domains of the transformations \(A_1 \) and \(A_2 \) are \(\mathcal{M}_1(\mathbb{R}^d) \) and \(\mathcal{M}_2(\mathbb{R}^d) \), respectively, but they are identical modulo some \((p) \)-transformation. We see that both transformations are one-to-one and that they have the same range \(\mathcal{R}(A_k) \). It is shown that this range contains as a proper subclass the Jurek class \(U(\mathbb{R}^d) \) of distributions on \(\mathbb{R}^d \) studied in \([6], [9]\). \(U(\mathbb{R}^d) \) includes several known classes of multivariate distributions characterized by the radial part of their Lévy measures, such as
the Goldie-Steutel-Bondesson class $B(\mathbb{R}^d)$, the class of selfdecomposable distributions $L(\mathbb{R}^d)$ and the Thorin class $T(\mathbb{R}^d)$, see [2]. Recently, other bigger classes than the Jurek class have been discussed in the study of extension of selfdecomposability, see [7] and [14].

Section 3 deals with the class $A(\mathbb{R}^d)$ of type A distributions on \mathbb{R}^d defined as those infinitely divisible distributions on \mathbb{R}^d which Lévy measure ν belongs to $\mathcal{R}(A_k)$. Some probabilistic interpretations are considered and the relation to the class $G(\mathbb{R}^d)$ of generalized type G distributions on \mathbb{R}^d introduced in [9] is studied. It is shown that $A(\mathbb{R}^d) = \Phi_{\cos}(I(\mathbb{R}^d))$, where Φ_{\cos} is the stochastic integral mapping

$$\Phi_{\cos}(\mu) = \mathcal{L} \left(\int_0^1 \cos(2^{-1}\pi t) dX_t(\mu) \right), \quad \mu \in I(\mathbb{R}^d).$$

It is also shown that the class of Lévy measure in $G(\mathbb{R}^d)$ is the image of the class of Lévy measures in $B(\mathbb{R}^d) \cap \mathcal{M}_1(\mathbb{R}^d)$ under A_1. In order to prove this, and as a result of independent interest, a new arcsine representation of completely monotone functions is first obtained. In addition, the class $G(\mathbb{R}^d)$ is described as the image of $A(\mathbb{R}^d)$ under the stochastic integral mapping (1.3), $d \geq 1$, including the multivariate and non-symmetric cases. For doing this, we first have to prove that A_2 is an Upsilon transformation in the sense of [4]. However, we see that, remarkably, A_1 is not an Upsilon transformation and it is not commuting with a specific Upsilon transformation, which is different from other cases considered so far. Finally, Section 4 contains examples of A_1 and A_2 transformations of Lévy measures where the modified Bessel function K_0 plays an important role.

2. Two arcsine transformations A_1 and A_2 on \mathbb{R}^d

2.1. Definitions and domains. Besides the arcsine density (1.1), we consider two one-sided arcsine densities with different parameters $s > 0$ and s^2 as follows:

$$a_1(r; s) = \begin{cases} 2\pi^{-1}(s - r^2)^{-1/2}, & 0 < r < s^{1/2}, \\ 0, & \text{otherwise}, \end{cases}$$

and

$$a_2(r; s) = \begin{cases} 2\pi^{-1}(s^2 - r^2)^{-1/2}, & 0 < r < s, \\ 0, & \text{otherwise}. \end{cases}$$

Then we consider two arcsine transformations A_1 and A_2 of measures on \mathbb{R}^d based on these two one-sided arcsine densities.
\textbf{Definition 2.1.} Let \(\nu \) be a measure on \(\mathbb{R}^d \) satisfying \(\nu(\{0\}) = 0 \). Then, for \(k = 1, 2 \), define the \textit{arcsine transformation} \(A_k \) of \(\nu \) by

\[
(2.1) \quad A_k(\nu)(B) = \int_{\mathbb{R}^d \setminus \{0\}} \nu(dx) \int_0^\infty a_k(r; |x|)1_B \left(\frac{x}{|x|} \right) \, dr, \quad B \in \mathcal{B}(\mathbb{R}^d).
\]

The domain \(\mathcal{D}(A_k) \) is the class of measures \(\nu \) on \(\mathbb{R}^d \) such that \(\nu(\{0\}) = 0 \) and the right-hand side of (2.1) is a Lévy measure in \(\mathcal{M}_L(\mathbb{R}^d) \). The range is

\[
\mathcal{R}(A_k) = \{ A_k(\nu) : \nu \in \mathcal{D}(A_k) \}.
\]

We have the following result about domains of \(A_1 \) and \(A_2 \).

\textbf{Theorem 2.2.} The domains of \(A_k \) are as follows:

\[
\mathcal{D}(A_k) = \mathcal{M}^k(\mathbb{R}^d), \quad k = 1, 2.
\]

\textit{Proof.} We write \(c = 2\pi^{-1} \). First, let us show that \(\mathcal{D}(A_k) \subset \mathcal{M}^k(\mathbb{R}^d) \). Suppose that \(\nu \in \mathcal{D}(A_k) \). Write \(\tilde{\nu}_k = A_k(\nu) \). Then

\[
(2.2) \quad \tilde{\nu}_k(B) = \int_{\mathbb{R}^d \setminus \{0\}} \nu(dx) \int_0^{||x||/2} c(||x||^k - r^2)^{-1/2}1_B \left(\frac{x}{|x|} \right) \, dr.
\]

Hence, for all nonnegative measurable functions \(f \) on \(\mathbb{R}^d \setminus \{0\} \),

\[
\int_{\mathbb{R}^d \setminus \{0\}} f(x)\tilde{\nu}_k(dx) = \int_{\mathbb{R}^d \setminus \{0\}} \nu(dx) \int_0^{||x||/2} c(||x||^k - r^2)^{-1/2} f \left(\frac{x}{|x|} \right) \, dr.
\]

In particular,

\[
(2.3) \quad \int_{\mathbb{R}^d} (1 \wedge ||x||^2)\tilde{\nu}_k(dx) = \int_{\mathbb{R}^d} \nu(dx) \int_0^{||x||^2/2} (||x||^k - r^2)^{-1/2}(1 \wedge r^2) \, dr.
\]

Since \(\int (1 \wedge ||x||^2)\tilde{\nu}_k(dx) < \infty \), we see that

\[
\infty > c \int_{\mathbb{R}^d} \nu(dx) \int_0^1 (1 - u^2)^{-1/2}(1 \wedge (||x||^2u^2)) \, du
\]

\[
\geq c \int_{\mathbb{R}^d} (1 \wedge ||x||^k)\nu(dx) \int_0^1 (1 - u^2)^{-1/2} u \, du.
\]

Hence \(\nu \in \mathcal{M}^{k}(\mathbb{R}^d) \).

Next let us show that \(\mathcal{M}^{k}(\mathbb{R}^d) \subset \mathcal{D}(A_k) \). Suppose that \(\nu \in \mathcal{M}^{k}(\mathbb{R}^d) \). Let \(\tilde{\nu}_k(B) \) denote the right-hand side of (2.1). Then \(\tilde{\nu}_k \) is a measure on \(\mathbb{R}^d \) with \(\tilde{\nu}_k(\{0\}) = 0 \) and (2.2) and (2.3) hold. Hence

\[
\int_{\mathbb{R}^d} (1 \wedge ||x||^2)\tilde{\nu}_k(dx) = c \int_{\mathbb{R}^d} \nu(dx) \int_0^1 (1 - u^2)^{-1/2}(1 \wedge (||x||^2u^2)) \, du
\]
\[
\leq c \int_{\mathbb{R}^d} (1 \wedge |x|^k) \nu(dx) \int_0^1 (1 - u^2)^{-1/2} du < \infty.
\]

This shows that \(\nu \in \mathcal{D}(\mathcal{A}_k) \).

In order to study the relation between \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \), we use the following transformation of measures.

Definition 2.3. Let \(p > 0 \). For any measure \(\rho \) on \((0, \infty)\), define a measure \(\rho^{(p)} \) on \((0, \infty)\) by

\[
\rho^{(p)}(E) = \int_{(0, \infty)} 1_E(s^p) \rho(ds), \quad E \in \mathcal{B}((0, \infty)).
\]

More generally, for any measure \(\nu \) on \(\mathbb{R}^d\) with \(\nu(\{0\}) = 0 \), define a measure \(\nu^{(p)} \) on \(\mathbb{R}^d\) by

\[
\nu^{(p)}(B) = \int_{\mathbb{R}^d \setminus \{0\}} 1_B \left(\frac{|x|^p}{|x|} \right) \nu(dx), \quad B \in \mathcal{B}(\mathbb{R}^d).
\]

We call the mapping from \(\nu \) to \(\nu^{(p)} \) \((p) \)-transformation.

The following result is the polar decomposition of a Lévy measure in \(\mathfrak{M}_L(\mathbb{R}^d) \), (see [2], [10]). Here we include the case \(\nu = 0 \). It is a basic tool to study multivariate infinitely divisible distributions.

Proposition 2.4. Let \(\nu \in \mathfrak{M}_L(\mathbb{R}^d) \). Then there exists a measure \(\lambda \) on the unit sphere \(\mathbb{S} = \{ \xi \in \mathbb{R}^d : |\xi| = 1 \} \) with \(0 \leq \lambda(\mathbb{S}) \leq \infty \) and a family \(\{ \nu_\xi : \xi \in \mathbb{S} \} \) of measures on \((0, \infty)\) such that \(\nu_\xi(E) \) is measurable in \(\xi \) for each \(E \in \mathcal{B}((0, \infty)) \), \(0 < \nu_{\xi(0, \infty)} \leq \infty \) for each \(\xi \in \mathbb{S} \), and

\[
\nu(B) = \int_{\mathbb{S}} \lambda(d\xi) \int_0^\infty 1_B(r\xi) \nu_\xi(dr), \quad B \in \mathcal{B}(\mathbb{R}^d).
\]

\(\nu_\xi \) is called the radial component of \(\nu \). Here \(\lambda \) and \(\{ \nu_\xi \} \) are uniquely determined by \(\nu \) in the following sense: if \((\lambda, \nu_\xi) \) and \((\lambda', \nu'_\xi) \) both have the properties above, then there is a measurable function \(c(\xi) \) on \(\mathbb{S} \) such that

\[
0 < c(\xi) < \infty,
\]

\[
\lambda'(d\xi) = c(\xi) \lambda(d\xi),
\]

\[
c(\xi) \nu'_\xi(dr) = \nu_\xi(dr) \quad \text{for } \lambda\text{-a. e. } \xi.
\]

If \(\nu \in \mathfrak{M}_L(\mathbb{R}^d) \) has a polar decomposition \((\lambda, \nu_\xi) \), then

\[
\nu^{(p)}(B) = \int_{\mathbb{S}} \lambda(d\xi) \int_0^\infty 1_B(r\xi) \nu_\xi^{(p)}(dr), \quad B \in \mathcal{B}(\mathbb{R}^d).
\]
If $\tilde{\nu} = \nu^{(p)}$, then $\nu = \tilde{\nu}^{(1/p)}$. For any nonnegative measurable function $f(x)$ on \mathbb{R}^d, (2.4)
\int_{\mathbb{R}^d} f(x)\nu^{(p)}(dx) = \int_{\mathbb{R}^d \setminus \{0\}} f(|x|^{p-1}x)\nu(dx).

The two arcsine transformations are identical modulo some (p)-transformations.

Proposition 2.5. $\nu \in \mathcal{M}_2^2(\mathbb{R}^d)$ if and only if $\nu^{(2)} \in \mathcal{M}_1^1(\mathbb{R}^d)$, and in this case $A_2(\nu) = A_1(\nu^{(2)})$.

Also $\nu \in \mathcal{M}_1^1(\mathbb{R}^d)$ if and only if $\nu^{(1/2)} \in \mathcal{M}_2^2(\mathbb{R}^d)$, and in this case $A_1(\nu) = A_2(\nu^{(1/2)})$.

Proof. Equivalence of $\nu \in \mathcal{M}_2^2(\mathbb{R}^d)$ and $\nu^{(2)} \in \mathcal{M}_1^1(\mathbb{R}^d)$ follows from (2.4). We have
\begin{align*}
A_1(\nu^{(2)})(B) &= \int_S \lambda(d\xi) \int_0^\infty 1_B(r\xi)dr \int_r^\infty 2\pi^{-1}(s-r)^{-1/2} \nu^{(2)}(ds) \\
&= \int_S \lambda(d\xi) \int_0^\infty 1_B(r\xi)dr \int_r^\infty 2\pi^{-1}(s^2-r^2)^{-1/2} \nu(\xi)(ds) \\
&= A_2(\nu)(B),
\end{align*}

proving the first half. The proof of the second half is similar. \qed

2.2. **One-to-one property.** We next show that the arcsine transformations A_1 and A_2 are one-to-one. In contrast to usual proofs for the one-to-one property by the use of Laplace transform, our proof here has a different flavor.

Let us first prove some lemmas. A measure σ on $(0, \infty)$ is said to be locally finite on $(0, \infty)$ if $\sigma((b, c)) < \infty$ whenever $0 < b < c < \infty$. For a measure ρ on $(0, \infty)$, define
\[A(\rho)(du) = \left(\int_{u,\infty} \pi^{-1/2}(s-u)^{-1/2} \rho(ds) \right) du, \]
if the integral in the right-hand side is the density of a locally finite measure on $(0, \infty)$. This is fractional integral of order 1/2.

Lemma 2.6. If (2.5)
\[\int_{(b,\infty)} s^{-1/2} \rho(ds) < \infty \quad \text{for all } b > 0, \]
then $A(\rho)$ is definable.
Proof. Let $0 < b < c < \infty$. We have
\[
\int_b^c du \int_u^\infty (s-u)^{-1/2} \rho(ds) = \int_b^\infty \rho(ds) \int_b^{c\wedge s} (s-u)^{-1/2}du \\
= \int_b^c \rho(ds) \int_b^s (s-u)^{-1/2}du + \int_c^\infty \rho(ds) \int_b^c (s-u)^{-1/2}du \\
= 2 \int_b^c (s-b)^{1/2} \rho(ds) + 2 \int_c^\infty ((s-b)^{1/2} - (s-c)^{1/2}) \rho(ds),
\]
which is finite, since $(s-b)^{1/2} - (s-c)^{1/2} \sim (c-b)s^{-1/2}$ as $s \to \infty$. \qed

Lemma 2.7. Suppose that $\mathfrak{A}(\rho)$ is definable. Then, for $\alpha > -1$ and $b > 0$,
\[
(2.6) \quad \int_{(b,\infty)} u^\alpha \mathfrak{A}(\rho)(du) \leq C_1 \int_{(b,\infty)} s^{\alpha+1/2} \rho(ds)
\]
and
\[
(2.7) \quad \int_{(0,b]} u^\alpha \mathfrak{A}(\rho)(du) \leq C_2 \left(\int_{(0,b]} s^{\alpha+1/2} \rho(ds) + \int_{(b,\infty)} s^{-1/2} \rho(ds) \right),
\]
where C_1 and C_2 are constants independent of ρ.

Proof. Let $c = \pi^{-1/2}$. We have
\[
\int_{(b,\infty)} u^\alpha \mathfrak{A}(\rho)(du) = c \int_b^\infty u^\alpha du \int_{(u,\infty)} (s-u)^{-1/2} \rho(ds) \\
= c \int_b^\infty \rho(ds) \int_b^s u^\alpha (s-u)^{-1/2}du
\]
and
\[
\int_b^s u^\alpha (s-u)^{-1/2}du = s^{-1/2} \int_b^s u^\alpha (1-s^{-1}u)^{-1/2}du \\
= s^{\alpha+1/2} \int_0^1 v^\alpha (1-v)^{-1/2}dv \sim s^{\alpha+1/2}B(\alpha+1,1/2), \quad s \to \infty.
\]
Hence (2.6) holds. We have
\[
\int_{(0,b]} u^\alpha \mathfrak{A}(\rho)(du) = c \int_0^b u^\alpha du \int_{(u,\infty)} (s-u)^{-1/2} \rho(ds) \\
= c \int_{(0,\infty)} \rho(ds) \int_0^{s\wedge b} u^\alpha (s-u)^{-1/2}du \\
= c \int_{(0,b]} \rho(ds) \int_0^s u^\alpha (s-u)^{-1/2}du + c \int_{(b,\infty)} \rho(ds) \int_0^b u^\alpha (s-u)^{-1/2}du.
\]
Notice that
\[
\int_0^s u^\alpha (s-u)^{-1/2}du = s^{\alpha+1/2}B(\alpha+1,1/2)
\]
and
\[
\int_0^b u^\alpha(s - u)^{-1/2} \, du = s^{-1/2} \int_0^b u^\alpha(1 - u/s)^{-1/2} \, du \\
\leq s^{-1/2} \int_0^b u^\alpha(1 - u/b)^{-1/2} \, du = s^{-1/2} b^{\alpha+1} B(\alpha + 1/2), \quad s > b.
\]
Thus (2.7) holds. □

Lemma 2.8. Suppose that
\[
\rho((b, \infty)) < \infty \quad \text{for all } b > 0.
\]
Then \(\mathbf{A}(\rho)\) and \(\mathbf{A}(\mathbf{A}(\rho))\) are definable and
\[
\mathbf{A}(\mathbf{A}(\rho))(du) = \rho((u, \infty)) \, du,
\]
which implies that \(\rho\) is determined by \(\mathbf{A}(\rho)\) under the condition (2.8).

Proof. Since (2.8) is stronger than (2.5), \(\mathbf{A}(\rho)\) is definable. Using (2.6) of Lemma 2.7, we see from Lemma 2.6 that \(\mathbf{A}(\mathbf{A}(\rho))\) is definable. Next, notice that
\[
\int_0^\infty \pi^{-1/2}(s - u)^{-1/2} \mathbf{A}(\rho)(ds) \\
= \pi^{-1} \int_0^\infty (s - u)^{-1/2} \, ds \int_{(s, \infty)} (v - s)^{-1/2} \rho(dv) \\
= \pi^{-1} \int_{(u, \infty)} \rho(dv) \int_u^v (s - u)^{-1/2} (v - s)^{-1/2} \, ds = \rho((u, \infty)),
\]
because
\[
\int_u^v (s - u)^{-1/2} (v - s)^{-1/2} \, ds = \int_0^1 s^{-1/2} (1 - s)^{-1/2} \, ds = B(1/2, 1/2) = \pi.
\]
Hence (2.9) is true. □

For the proof of the next theorem, we introduce new functions for simplicity. For any measure \(\rho\) on \((0, \infty)\) and for \(k = 1, 2\), let
\[
a_k(\rho)(r) = \int_{(0, \infty)} a_k(r; s) \rho(ds),
\]
admitting the infinite value.

Theorem 2.9. For \(k = 1, 2\), \(A_k\) is one-to-one.

Proof. Case \(k = 1\). Suppose that \(\nu, \nu' \in \mathcal{M}^1_1(\mathbb{R}^d)\) and \(A_1(\nu) = A_1(\nu')\). Let \((\lambda, \nu_\xi)\) and \((\lambda', \nu'_\xi)\) be polar decompositions of \(\nu\) and \(\nu'\), respectively. Then
\[
A_1(\nu)(B) = \int_{\Sigma} \lambda(d\xi) \int_0^\infty 1_B(r\xi) a_1(\nu_\xi)(r) \, dr,
\]
and
\[
\int_0^b u^\alpha(s - u)^{-1/2} \, du = s^{-1/2} \int_0^b u^\alpha(1 - u/s)^{-1/2} \, du \\
\leq s^{-1/2} \int_0^b u^\alpha(1 - u/b)^{-1/2} \, du = s^{-1/2} b^{\alpha+1} B(\alpha + 1/2), \quad s > b.
\]
\[\mathcal{A}_1(\nu')(B) = \int_S \lambda'(d\xi) \int_0^\infty 1_B(r\xi) a_1(\nu'_\xi)(r)dr. \]

Hence it follows from Proposition 2.4 that there is a measurable function \(c(\xi) \) satisfying \(0 < c(\xi) < \infty \) such that \(\lambda'(d\xi) = c(\xi)\lambda(d\xi) \) and \(a_1(\nu'_\xi)(r)dr = c(\xi)^{-1} a_1(\nu_\xi)(r)dr \) for \(\lambda \)-a.e. \(\xi \). Thus

\[
\left(\int_{r^2}^{\infty} (s - r^2)^{-1/2} \nu'_\xi(ds) \right) dr = \left(c(\xi)^{-1} \int_{r^2}^{\infty} (s - r^2)^{-1/2} \nu_\xi(ds) \right) dr.
\]

Using a new variable \(u = r^2 \), we see that

\[
\left(\int_u^{\infty} (s - u)^{-1/2} \nu'_\xi(ds) \right) du = \left(c(\xi)^{-1} \int_u^{\infty} (s - u)^{-1/2} \nu_\xi(ds) \right) du.
\]

Since \(\nu_\xi \) and \(\nu'_\xi \) satisfy (2.8), we obtain \(\nu_\xi = c(\xi)^{-1} \nu'_\xi \) for \(\lambda \)-a.e. \(\xi \) from Lemma 2.8.

It follows that \(\nu = \nu' \).

Case \(k = 2 \). Use Proposition 2.5. Then \(\mathcal{A}_2(\nu) \) equals \(\mathcal{A}_1(\nu^{(2)}) \), which determines \(\nu^{(2)} \) by Case \(k = 1 \), and \(\nu^{(2)} \) determines \(\nu = (\nu^{(2)})^{(1/2)} \).

\[\square \]

2.3. Ranges. We will show some facts concerning the ranges of \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \).

Proposition 2.10. The ranges of \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) are identical:

\[\mathcal{R}(\mathcal{A}_1) = \mathcal{R}(\mathcal{A}_2). \]

Proof. This is a direct consequence of Proposition 2.5. \[\square \]

Let us show some necessary conditions for \(\tilde{\nu} \) to belong to the range.

Proposition 2.11. If \(\tilde{\nu} \) is in the common range of \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \), then \(\tilde{\nu} \) is in \(\mathcal{M}_L(\mathbb{R}^d) \) with a polar decomposition \((\lambda, \ell_\xi(r)dr) \) having the following properties: \(\ell_\xi(r) \) is measurable in \((\xi, r) \) and lower semi-continuous in \(r \in (0, \infty) \), and there is \(b_\xi \in (0, \infty) \) such that \(\ell_\xi(r) > 0 \) for \(r < b_\xi \) and, if \(b_\xi < \infty \), then \(\ell_\xi(r) = 0 \) for \(r \geq b_\xi \).

Proof. Let \(\tilde{\nu} = \mathcal{A}_k(\nu) \) with \(\nu \in \mathcal{M}_L^k(\mathbb{R}^d) \) and \((\lambda, \nu_\xi) \) a polar decomposition of \(\nu \). Then \(\tilde{\nu} \in \mathcal{M}_L(\mathbb{R}^d) \) with polar decomposition \((\lambda, a_k(\nu_\xi)(r)dr) \) from the definition. Recall that

\[a_k(\nu_\xi)(r) = 2\pi^{-1} \int_{r^2/k, \infty} (s^k - r^2)^{-1/2} \nu_\xi(ds). \]

Then our assertion is proved in the same way as Proposition 2.13 of [14]. \[\square \]
2.4. **How big is $\mathcal{R}(A_k)$?** Several well-known and well studied classes of multivariate infinitely divisible distributions are the following. The Jurek class, the class of selfdecomposable distributions, the Goldie-Steutel-Bondesson class, the Thorin class and the class of generalized type G distributions. They are characterized only by the radial component of their Lévy measures with no influence of Σ and γ in the Lévy-Khintchine triplet. Among them, the Jurek class is the biggest. Recently, bigger than the Jurek class have been discussed in the study of extension of selfdecomposability, (see, e.g. [7] and [13]). Then a natural question is how big $\mathcal{R}(A_k)$ is. Let $\mathcal{M}_L^U(\mathbb{R}^d)$ be the class of Lévy measures of distributions in the Jurek class. The radial component ν_ξ of $\nu \in \mathcal{M}_L^U(\mathbb{R}^d)$ satisfies that $\nu_\xi(dr) = \ell_\xi(r)dr, r > 0$, where $\ell_\xi(r)$ is measurable in (ξ, r) and decreasing and right-continuous in $r > 0$. We will show below that $\mathcal{R}(A_k)$ is at least strictly bigger than $\mathcal{M}_L^U(\mathbb{R}^d)$.

Theorem 2.12. We have

$$\mathcal{M}_L^U(\mathbb{R}^d) \subset \mathcal{R}(A_1) = \mathcal{R}(A_2).$$

Proof. Let $\tilde{\nu} \in \mathcal{M}_L^U(\mathbb{R}^d)$. Equivalently, let $\tilde{\nu} \in \mathcal{M}_L(\mathbb{R}^d)$ with a polar decomposition $(\lambda, \ell_\xi(r)dr)$ such that $\ell_\xi(r)$ is measurable in (ξ, r) and decreasing and right-continuous in $r > 0$. Further, we may and do assume that λ is a probability measure and

$$\int_0^{\infty} (1 \land r^2)\ell_\xi(r)dr = c := \int_{\mathbb{R}^d} (1 \land |x|^2)\tilde{\nu}(dx).$$

Let ρ_ξ be a measure on $(0, \infty)$ such that $\rho_\xi((r^2, \infty)) = \ell_\xi(r)$ for $r > 0$ and let $\eta_\xi = A(\rho_\xi)$. Lemma 2.8 says that η_ξ is definable and

$$\rho_\xi((u, \infty)) = \int_{(u, \infty)} \pi^{-1/2}(s - u)^{-1/2}\eta_\xi(ds) \text{ for Lebesgue a.e. } u > 0.$$

Note that $\eta_\xi(E)$ is measurable in ξ for each $E \in B((0, \infty))$. We have, for $B \in B(\mathbb{R}^d)$,

$$\tilde{\nu}(B) = \int_{S} \lambda(d\xi) \int_0^{\infty} 1_B(r\xi)\rho_\xi((r^2, \infty))dr$$

$$= \int_{S} \lambda(d\xi) \int_0^{\infty} 1_B(r\xi)dr \int_{(r^2, \infty)} \pi^{-1/2}(s - r^2)^{-1/2}\eta_\xi(ds)$$

$$= \int_{S} \lambda(d\xi) \int_0^{\infty} 1_B(r\xi)(\pi^{1/2}/2)a_1(\eta_\xi)(r)dr.$$

We claim that

(2.10) $$\int_{S} \lambda(d\xi) \int_0^{\infty} (1 \land u)\eta_\xi(du) < \infty.$$
This will ensure that \((\lambda, (\pi^{1/2}/2)\eta_\xi(dr))\) is a polar decomposition of some \(\nu \in \mathcal{M}_L(\mathbb{R}^d)\) and that \(\tilde{\nu} = A_1(\nu)\). First, notice that
\[
c = \int_0^\infty (1 \wedge r^2)\rho_\xi((r^2, \infty))dr = \frac{1}{2} \int_0^\infty (1 \wedge u)\rho_\xi((u, \infty))u^{-1/2}du
\]
\[
= \frac{1}{2} \int_1^1 u^{1/2}\rho_\xi((u, \infty))du + \frac{1}{2} \int_1^\infty u^{-1/2}\rho_\xi((u, \infty))du
\]
\[
\geq \frac{1}{2}\rho_\xi((1, \infty)) + \frac{1}{2} \int_1^\infty u^{-1/2}\rho_\xi((u, \infty))du.
\]
Then, use (2.6) of Lemma 2.7 with \(\alpha = 0\) to obtain
\[
\int_{(1, \infty)} \eta_\xi(du) = \int_{(1, \infty)} A(\rho_\xi)(du) \leq C_1 \int_{(1, \infty)} s^{1/2}\rho_\xi(ds)
\]
\[
= C_1\rho_\xi((1, \infty)) + \frac{C_1}{2} \int_1^\infty s^{-1/2}\rho_\xi((s, \infty))ds \leq 3cC_1.
\]
Similarly, using (2.7) of Lemma 2.7 with \(\alpha = 1\),
\[
\int_{[0,1]} u \eta_\xi(du) = \int_{[0,1]} u A(\rho_\xi)(du)
\]
\[
\leq C_2 \left(\int_{[0,1]} s^{3/2}\rho_\xi(ds) + \int_{(1, \infty)} s^{-1/2}\rho_\xi(ds) \right)
\]
\[
\leq C_2 \left(\frac{3}{2} \int_{[0,1]} s^{1/2}\rho_\xi((s,1])ds + \int_{(1, \infty)} s^{1/2}\rho_\xi(ds) \right) \leq 6cC_2.
\]
Hence (2.10) is true. It follows that \(\mathcal{M}_L^U(\mathbb{R}^d) \subset \mathcal{R}(A_1)\).

To see the inclusion is strict, let \(\delta_1\) be Dirac measure at 1 and \(\lambda\) a probability measure on \(S\). Consider \(\eta \in \mathcal{R}(A_1)\) defined by
\[
\eta(B) = \int_S \lambda(d\xi) \int_0^\infty 1_B(r\xi)\alpha_1(\delta_1)(r)dr
\]
\[
= \int_S \lambda(d\xi) \int_0^1 1_B(r\xi)2\pi^{-1}(1 - r^2)^{-1/2}dr.
\]
Then \(\eta \not\in \mathcal{M}_L^U(\mathbb{R}^d)\), since the radial component has density strictly increasing on \((0, 1)\).

2.5. \(A_1\) and \(A_2\) as (modified) Upsilon transformations. Barndorff-Nielsen, Rosiński and Thorbjørnsen [4] considered general Upsilon transformations, (see also [3] and [13]). Given a measure \(\tau\) on \((0, \infty)\), a transformation \(\Upsilon_\tau\) from measures on \(\mathbb{R}^d\) into \(\mathcal{M}_L(\mathbb{R}^d)\) is called an Upsilon transformation associated to \(\tau\) (or with dilation measure
Theorem 2.13. Let $k = 1, 2$. Then for $\nu \in \mathcal{M}_k^d(\mathbb{R}^d)$

$$
(2.12) \quad \mathcal{A}_k(\nu)(B) = \int_0^1 \nu^{(k/2)}(u^{-1}B)2\pi^{-1}(1 - u^2)^{-1/2}du, \quad B \in \mathcal{B}(\mathbb{R}^d).
$$

Proof. Let (λ, ν_ξ) be a polar decomposition of $\nu \in \mathcal{M}_k^d(\mathbb{R}^d)$. Then with $c = 2\pi^{-1}$

$$
\mathcal{A}_k(\nu)(B) = c \int_S \lambda(d\xi) \int_0^\infty 1_B(r\xi)dr \int_{(r^2/s^2, \infty)} (s^k - r^2)^{-1/2}\nu_\xi(ds)
$$

$$
= c \int_S \lambda(d\xi) \int_0^\infty \nu_\xi(ds) \int_0^{s^{k/2}} 1_B(r\xi)(s^k - r^2)^{-1/2}dr
$$

$$
= c \int_S \lambda(d\xi) \int_0^\infty \nu_\xi(ds) \int_0^1 1_B(us^{k/2}\xi)(1 - u^2)^{-1/2}du
$$

$$
= c \int_0^1 (1 - u^2)^{-1/2}du \int_S \lambda(d\xi) \int_0^\infty 1_B(us^{k/2}\xi)\nu_\xi(ds)
$$

$$
= c \int_0^1 (1 - u^2)^{-1/2}du \int_{\mathbb{R}^d} \lambda(dx) \int_0^\infty 1_B(ux)\nu^{(k/2)}(dx),
$$

which shows (2.12). \qed

Corollary 2.14. The transformation \mathcal{A}_2 is an Upsilon transformation with dilation measure $\tau(du) = a_1(u; 1)du$. In other words, the expression $\tilde{\nu} = \mathcal{A}_2(\nu)$ for $\nu \in \mathcal{M}_2^d(\mathbb{R}^d)$ is written as $\tilde{\nu}(B) = E[\nu(A^{-1}B)], \quad B \in \mathcal{B}(\mathbb{R}^d)$, where A is a random variable with arcsine density $a_1(u; 1)$.

Remark 2.15. The mapping \mathcal{A}_1 is not an Upsilon transformation for any dilation measure τ. This remarkable result will be proved in Section 3.6, as a byproduct of Theorem 3.7 shown in Section 3.5.
3. Type A distributions on \mathbb{R}^d

3.1. Definition and stochastic integral representation via arcsine transformations.

Definition 3.1. A probability distribution in $I(\mathbb{R}^d)$ is said to be a *type A distribution* on \mathbb{R}^d if its Lévy measure ν belongs to $\mathcal{R}(\mathcal{A}_1) = \mathcal{R}(\mathcal{A}_2)$. There is no restriction on Σ and γ in its Lévy-Khintchine triplet. We denote by $A(\mathbb{R}^d)$ the class of all type A distributions on \mathbb{R}^d.

In the following, we study a probabilistic interpretation of type A distributions, since they have been defined by an analytic way in terms of their Lévy measures above. One probabilistic interpretation is a representation by stochastic integral with respect to Lévy processes. The problem is what the integrand is. We start with this section to answer this question.

Let $T \in (0, \infty)$ and let $f(t)$ be a square integrable function on $[0, T]$. Then the stochastic integral $\int_0^T f(t)dX_t^{(\mu)}$ is defined for any $\mu \in I(\mathbb{R}^d)$ and is infinitely divisible. Define the stochastic integral mapping Φ_f based on f as

$$\Phi_f(\mu) = \mathcal{L}\left(\int_0^T f(t) dX_t^{(\mu)}\right), \quad \mu \in I(\mathbb{R}^d).$$

If $\mu \in I(\mathbb{R}^d)$ has the Lévy-Khintchine triplet (Σ, ν, γ), then $\tilde{\mu} = \Phi_f(\mu)$ has the Lévy-Khintchine triplet $(\tilde{\Sigma}, \tilde{\nu}, \tilde{\gamma})$ expressed as

\begin{align*}
(3.1) \quad \tilde{\Sigma} &= \int_0^T f(t)^2 \Sigma dt, \\
(3.2) \quad \tilde{\nu}(B) &= \int_0^T dt \int_{\mathbb{R}^d} 1_B(f(t)x) \nu(dx), \quad B \in \mathcal{B}(\mathbb{R}^d), \\
(3.3) \quad \tilde{\gamma} &= \int_0^T f(t)ds \left(\gamma + \int_{\mathbb{R}^d} x \left(\frac{1}{1 + |f(t)x|^2} - \frac{1}{1 + |x|^2}\right) \nu(dx)\right).
\end{align*}

(See Proposition 2.17 and Corollary 2.19 of [11] and Proposition 2.6 of [12].)

Let us characterize the class $A(\mathbb{R}^d)$ as the range of a stochastic integral mapping.

Theorem 3.2. Let

\begin{align*}
(3.4) \quad \Phi_{\cos}(\mu) &= \mathcal{L}\left(\int_0^1 \cos(2^{-1}\pi t) dX_t^{(\mu)}\right), \quad \mu \in I(\mathbb{R}^d).
\end{align*}

Then Φ_{\cos} is a one-to-one mapping and

\begin{align*}
(3.5) \quad A(\mathbb{R}^d) = \Phi_{\cos}(I(\mathbb{R}^d)).
\end{align*}
Let \(\mathcal{A}_2 \) and hence, by Corollary 2.14, \(\tilde{\nu}(B) = \int_0^1 \nu(u^{-1}B)2\pi^{-1}(1 - u^2)^{-1/2}du, \quad B \in \mathcal{B}(\mathbb{R}^d) \) with some \(\nu \in \mathcal{M}_L^2(\mathbb{R}^d) \). Let \(s = g(u) = \int_u^1 2\pi^{-1}(1 - v^2)^{-1/2}dv = 2\pi^{-1} \arccos(u) \) for \(0 < u < 1 \). Then \(u = \cos(2^{-1}\pi t) \) for \(0 < t < 1 \). Thus
\[
\tilde{\nu}(B) = -\int_0^1 dg(u) \int_{\mathbb{R}^d} 1_B(ux)\nu(dx) = \int_0^1 dt \int_{\mathbb{R}^d} 1_B(x\cos(2^{-1}\pi t))\nu(dx).
\]
That is, (3.2) is satisfied with \(T = 1 \) and \(f(t) = \cos(2^{-1}\pi t) \). Using \(\nu \), we can find \(\Sigma \) and \(\gamma \) satisfying (3.1) and (3.3). Let \(\mu \) be the distribution in \(I(\mathbb{R}^d) \) with the Lévy-Khintchine triplet \((\Sigma, \nu, \gamma) \). Then \(\tilde{\mu} = \Phi_{\cos}(\mu) \). Hence \(A(\mathbb{R}^d) \subset \Phi_{\cos}(I(\mathbb{R}^d)) \).

Conversely, suppose that \(\tilde{\mu} = \Phi_{\cos}(\mu) \) for some \(\mu \in I(\mathbb{R}^d) \). The Lévy-Khintchine triplets \((\tilde{\Sigma}, \tilde{\nu}, \tilde{\gamma}) \) and \((\Sigma, \nu, \gamma) \) of \(\tilde{\mu} \) and \(\mu \) are related by (3.1)—(3.3) with \(T = 1 \) and \(f(s) = \cos(2^{-1}\pi s) \). Then a similar calculus shows that (3.1) holds. Hence \(\tilde{\nu} \in \mathcal{N}(\mathcal{A}_2) \) and \(\tilde{\mu} \in A(\mathbb{R}^d) \), showing that \(\Phi_{\cos}(I(\mathbb{R}^d)) \subset A(\mathbb{R}^d) \).

The mapping \(\Phi_{\cos} \) is one-to-one, since \(\nu \) is determined by \(\tilde{\nu} \) (Theorem 2.9 with \(k = 2 \)) and \(\Sigma \) and \(\gamma \) are determined by \(\tilde{\Sigma}, \tilde{\gamma}, \) and \(\nu \).

3.2. \(\Upsilon^0 \)-transformation. For later use, we introduce a transformation \(\Upsilon^0 \). Define
\[
\Upsilon^0(\nu)(B) = \int_0^\infty \nu(ux)\,e^{-u}\,du, \quad B \in \mathcal{B}(\mathbb{R}^d).
\]
Let \(\mathcal{M}_L^R(\mathbb{R}^d) \) be the class of Lévy measures of the Goldie-Steutel-Bondesson class \(B(\mathbb{R}^d) \). In [2], it is shown that \(\Upsilon^0(\mathcal{M}_L(\mathbb{R}^d)) = \mathcal{M}_L^R(\mathbb{R}^d) \). This is the transformation of Lévy measures associated with the stochastic integral mapping \(\Upsilon \) from \(I(\mathbb{R}^d) \) into \(I(\mathbb{R}^d) \) and it is known that \(\Upsilon(I(\mathbb{R}^d)) = B(\mathbb{R}^d) \) (see [2]). Both \(\Upsilon^0 \) and \(\Upsilon \) are one-to-one. For \(\nu \in \mathcal{M}_L(\mathbb{R}^d) \) with a polar decomposition \((\lambda, \nu_\xi)\), we have the expression
\[
\Upsilon^0(\nu)(B) = \int \lambda(d\xi) \int_0^\infty 1_B(r\xi) \Upsilon^0(\nu_\xi)(dr), \quad B \in \mathcal{B}(\mathbb{R}^d),
\]
where \(\Upsilon^0 \) in the right-hand side acts on \(\mathcal{M}_L^2((0, \infty)) \).

Proposition 3.3. Let \(\nu \in \mathcal{M}_L(\mathbb{R}^d) \). Then \(\Upsilon^0(\nu) \in \mathcal{M}_L^1(\mathbb{R}^d) \) if and only if \(\nu \in \mathcal{M}_L^1(\mathbb{R}^d) \).

Proof. Notice that
\[
\int_{|x| \leq 1} |x| \Upsilon^0(\nu)(dx) = \int_0^\infty e^{-u}du \int_{|ux| \leq 1} |ux| \nu(dx)
\]
\[
\int_0^\infty ue^{-u}du \int_{|x| \leq 1/u} |x|\nu(dx) = \int_{\mathbb{R}^d} |x|\nu(dx) \int_0^{1/|x|} ue^{-u}du
\]
\[
\leq \int_{|x| \leq 1} |x|\nu(dx) \int_0^\infty ue^{-u}du + \int_{|x| > 1} 2^{-1}|x|^{-1}\nu(dx),
\]
\[
\geq \int_{|x| \leq 1} |x|\nu(dx) \int_0^1 ue^{-u}du,
\]
to see the equivalence. \qed

3.3. A representation of completely monotone functions. In [9], the class of generalized type \(G\) distributions on \(\mathbb{R}^d\), denoted by \(G(\mathbb{R}^d)\), is defined as follows. \(\mu \in G(\mathbb{R}^d)\) if and only if the radial component \(\nu_\xi\) of the Lévy measure of \(\mu\) satisfies
\[
\nu_\xi(dr) = g(\xi^2)rdr, \quad g(\xi^2) \text{ is a completely monotone function on } (0, \infty).
\]
\(\mathcal{ML}_G(\mathbb{R}^d)\) denotes the class of all Lévy measures of \(\mu \in G(\mathbb{R}^d)\). We use the following result when dealing with \(G(\mathbb{R}^d)\). It is a result on the arcsine transformation representation of a function \(g(r^2)\) when \(g\) is completely monotone on \((0, \infty)\).

Proposition 3.4. Let \(g(u)\) be a real-valued measurable function on \((0, \infty)\). Then the following three conditions are equivalent.

(a) The function \(g(u)\) is completely monotone on \((0, \infty)\) and satisfies
\[
\int_0^\infty (1 \wedge r^2)g(r^2)dr < \infty. \tag{3.7}
\]

(b) There exists a completely monotone function \(h(s)\) on \((0, \infty)\) satisfying
\[
\int_0^\infty (1 \wedge s)h(s)ds < \infty \tag{3.8}
\]
such that
\[
g(r^2) = \int_0^\infty a_1(r; s)h(s)ds, \quad r > 0.
\]

(c) There exists a measure \(\rho\) on \((0, \infty)\) satisfying
\[
\int_0^\infty (1 \wedge s)\rho(ds) < \infty
\]
such that
\[
g(r^2) = a_1(\Upsilon_0(\rho))(r), \quad r > 0. \tag{3.9}
\]

Proof. (a) \(\Rightarrow\) (b): From Bernstein’s theorem, there exists a measure \(Q\) on \([0, \infty)\) such that
\[
g(u) = \int_{[0,\infty)} e^{-uv}Q(dv), \quad u > 0. \tag{3.10}
\]
It follows from (3.7) that \(Q(\{0\}) = 0 \), since \(Q(\{0\}) = \lim_{n \to \infty} g(u) \). We need the fact that the one-dimensional Gaussian density \(\phi(x; t) \) of mean 0 and variance \(t \) is the arcsine transform of the exponential distribution with mean \(t > 0 \). More precisely,\[
\phi(x; t) = (2\pi t)^{-1/2} e^{-x^2/(2t)} = \int_0^\infty e^{-s/t} a(x; s) ds, \quad t > 0, \quad x \in \mathbb{R}.
\]
This is the well-known Box-Muller method to generate normal random variables.

Using (3.11), we have
\[
g(r^2) = \int_{(0, \infty)} e^{-r^2v} Q(dv)
\]
\[
= \int_{(0, \infty)} v^{1/2} Q(dv) \int_{r^2/2}^\infty e^{-2sv} 2\pi^{-1/2} (2s - r^2)^{-1/2} ds
\]
\[
= \int_{(0, \infty)} v^{1/2} Q(dv) \int_{r^2/2}^\infty e^{-sv} \pi^{-1/2} (s - r^2)^{-1/2} ds.
\]
\[
= \int_{r^2}^\infty \pi^{-1/2} (s - r^2)^{-1/2} ds \int_{(0, \infty)} e^{-sv} v^{1/2} Q(dv)
\]
\[
= \int_0^\infty a_1(r; s) h(s) ds,
\]
where
\[
h(s) = 2^{-1} \pi^{1/2} \int_{(0, \infty)} e^{-sv} v^{1/2} Q(dv).
\]

Applying Theorem 2.2 for \(d = 1 \), we see (3.8) from (3.7).

(b) \(\Rightarrow \) (c): Since \(h(s) \) is completely monotone satisfying (3.8), there is \(\rho \in M_2(\mathbb{R}) \) such that \(h(s) ds = \Upsilon^0(\rho) \) (see Theorem A of [2]). Since \(\Upsilon^0(\rho) \) is concentrated on \((0, \infty)\), \(\rho \) is concentrated on \((0, \infty)\). Using Proposition 3.3 we see that \(\int_{(0, 1]} s \rho(ds) < \infty \).

(c) \(\Rightarrow \) (a): It follows from Proposition 3.3 that \(\int_{(0, 1]} \Upsilon^0(\rho)(ds) < \infty \). Hence it follows from (3.9) that \(g(r^2) \) satisfies (3.7) (use Theorem 2.2 for \(d = 1 \)). Finally let us prove that \(g(u) \) is completely monotone. There is a completely monotone function \(h(s) \) such that \(\Upsilon^0(\rho)(ds) = h(s) ds \) (see Theorem A of [2] again). Hence from Bernstein’s theorem we can find a measure \(R \) on \([0, \infty)\) such that
\[
h(s) = \int_{(0, \infty)} e^{-sv} R(dv), \quad s > 0.
\]
We have \(R(\{0\}) = 0 \) since \(\int_1^\infty h(s) ds < \infty \). Thus
\[
g(r^2) = \int_0^\infty a_1(r; s) h(s) ds = \int_{r^2}^\infty 2\pi^{-1} (s - r^2)^{-1/2} ds \int_{(0, \infty)} e^{-sv} R(dv)
\]
\[
= \int_{(0, \infty)} R(dv) \int_{r^2}^{\infty} 2\pi^{-1}(s - r^2)^{-1/2}e^{-sv}ds
\]
\[
= \int_{(0, \infty)} e^{-r^2v}2\pi^{-1/2}v^{-1/2}R(dv),
\]
where the last equality is from the same calculus as in the proof that (a) \(\Rightarrow\) (b). Now we see that \(g(u)\) is completely monotone. \(\square\)

3.4. A representation of \(G(\mathbb{R}^d)\) in terms of \(A_1\). We now give an alternative representation for Lévy measures of distributions in \(G(\mathbb{R}^d)\).

Theorem 3.5. Let \(\tilde{\mu}\) be an infinitely divisible distribution on \(\mathbb{R}^d\) with the Lévy-Khintchine triplet \((\tilde{\Sigma}, \tilde{\nu}, \tilde{\gamma})\). Then the following three conditions are equivalent.

(a) \(\tilde{\mu} \in G(\mathbb{R}^d)\).

(b) \(\tilde{\nu} = A_1(\nu)\) with some \(\nu \in \mathcal{M}_B^\rho(\mathbb{R}^d) \cap \mathcal{M}_L^1(\mathbb{R}^d)\).

(c) \(\tilde{\nu} = A_1(\Upsilon_0(\rho))\) with some \(\rho \in \mathcal{M}_L^1(\mathbb{R}^d)\).

In condition (b) or (c), the representation of \(\tilde{\nu}\) by \(\nu\) or \(\rho\) is unique.

Proof. (a) \(\Rightarrow\) (b): By definition of \(G(\mathbb{R}^d)\), the Lévy measure \(\tilde{\nu}\) of \(\tilde{\mu}\) has polar decomposition \((\lambda, g_\xi(r^2)dr)\) where \(g_\xi(u)\) is measurable in \((\xi, u)\) and completely monotone in \(u > 0\). Hence, by Proposition 3.4, for each \(\xi\) we can find a completely monotone function \(\ell_\xi(s)\) such that \(\int_0^\infty (1 \wedge s)\ell_\xi(s)ds < \infty\) and

\[
g_\xi(r^2) = \int_0^\infty a_1(r; s)\ell_\xi(s)ds, \quad r > 0.
\]

The measure \(Q_\xi\) in the representation (3.10) of \(g_\xi(u)\) has the property that \(Q_\xi(E)\) is measurable in \(\xi\) for every Borel set \(E\) in \([0, \infty)\) (see Remark 3.2 of [2]). Hence, for any nonnegative function \(f(s, v)\) measurable in \((s, v)\), \(\int_0^\infty f(s, v)Q_\xi(dv)\) is measurable in \((\xi, s)\). Hence the function \(h_\xi(s)\) defined as in (3.12) is measurable in \((\xi, s)\). Thus we have

\[
\tilde{\nu}(B) = \int_{\mathbb{S}} \lambda(d\xi) \int_0^\infty 1_B(r\xi)dr \int_0^\infty a_1(r; s)h_\xi(s)ds.
\]

Now, an argument similar to the proof of Theorem 2.2 shows that

\[
\int_{\mathbb{S}} \lambda(d\xi) \int_0^\infty (1 \wedge s)h_\xi(s)ds < \infty.
\]

Thus, letting \(\nu\) denote the Lévy measure with polar decomposition \((\lambda, h_\xi(s)ds)\), we see that \(\tilde{\nu} = A_1(\nu)\) and \(\nu \in \mathcal{M}_B^\rho(\mathbb{R}^d) \cap \mathcal{M}_L^1(\mathbb{R}^d)\).
(b) ⇒ (c): It follows from \(\nu \in \mathcal{M}_L^B(\mathbb{R}^d) \) that \(\nu = \Upsilon^0(\rho) \) for some unique \(\rho \in \mathcal{M}_L^B(\mathbb{R}^d) \) (Theorem A of [2]). Since \(\nu \in \mathcal{M}_L^1(\mathbb{R}^d) \), we have \(\rho \in \mathcal{M}_L^1(\mathbb{R}^d) \) from Proposition 3.3.

(c) ⇒ (a): It follows from \(\rho \in \mathcal{M}_L^1(\mathbb{R}^d) \) that \(\Upsilon^0(\rho) \in \mathcal{M}_L^1(\mathbb{R}^d) \) (Proposition 3.3). Let \((\lambda, \nu_\xi)\) be polar decomposition of \(\nu = \Upsilon^0(\rho) \). Then \(\nu_\xi(ds) = \ell_\xi(s)ds \) where \(\ell_\xi(s) \) is measurable in \((\xi, s)\) and completely monotone in \(s > 0 \). Define \(g_\xi(u) \) by

\[
g_\xi(r^2) = \int_0^\infty a_1(r^2; s, s)\ell_\xi(s)ds.
\]

Then \(g_\xi(u) \) is measurable in \((\xi, u)\). It follows from Proposition 3.4 that \(g_\xi(u) \) is completely monotone in \(u > 0 \). Hence \(\tilde{\nu} \in \mathcal{M}_L^{\tilde{G}}(\mathbb{R}^d) \) and \(\tilde{\mu} \in G(\mathbb{R}^d) \).

3.5. \(G(\mathbb{R}^d) \) as image of \(A(\mathbb{R}^d) \) under a stochastic integral mapping. Following [8], we define the transformation \(\Upsilon_{\alpha, \beta}(\nu) \) for \(\alpha < 2 \) and \(0 < \beta \leq 2 \). For a measure \(\nu \) on \(\mathbb{R}^d \) with \(\nu(\{0\}) = 0 \) define

\[
\Upsilon_{\alpha, \beta}(\nu)(B) = \int_0^\infty \nu(s^{-1}B)\beta s^{-\alpha-1}e^{-s^\alpha}ds, \quad B \in \mathcal{B}(\mathbb{R}^d),
\]

whenever the right-hand side gives a measure in \(\mathcal{M}_L(\mathbb{R}^d) \). This definition is different from that of [8] in the constant factor \(\beta \). A special case with \(\beta = 1 \) coincides with the transformation of Lévy measures in the stochastic integral mapping \(\Psi_\alpha \) studied by Sato [12]. Of particular interest in this work is the mapping \(\Upsilon_{-2, 2} \). Notice that \(\Upsilon_{-1, 1} = \Upsilon^0 \).

Proposition 3.6. \(\Upsilon_{-2, 2}(\nu) \) is definable if and only if \(\nu \in \mathcal{M}_L(\mathbb{R}^d) \). The mapping \(\Upsilon_{-2, 2} \) is one-to-one.

Proof. Let \(\tilde{\nu}(B) = \int_0^\infty \nu(s^{-1}B)2se^{-s^2}ds \). Then

\[
\int_{\mathbb{R}^d} f(x)\tilde{\nu}(dx) = \int_0^\infty 2se^{-s^2}ds \int_{\mathbb{R}^d} f(sx)\nu(dx)
\]

for all nonnegative measurable functions \(f \). Hence

\[
\int_{\mathbb{R}^d} (1 \land |x|^2)\tilde{\nu}(dx) = \int_0^\infty 2se^{-s^2}ds \int_{\mathbb{R}^d} (1 \land |sx|^2)\nu(dx)
\]

\[
= \int_0^\infty 2se^{-s^2}ds \left(\int_{|x| \leq 1/s} |sx|^2\nu(dx) + \int_{|x| > 1/s} \nu(dx) \right)
\]

\[
= \int_{\mathbb{R}^d} |x|^2\nu(dx) \int_0^{1/|x|} 2s^3e^{-s^2}ds + \int_{\mathbb{R}^d} \nu(dx) \int_{1/|x|}^\infty 2se^{-s^2}ds.
\]

18
Observe that \(\int_0^{1/|x|} 2s^3e^{-s^2}ds \) is convergent as \(|x| \downarrow 0\) and \(\sim 2^{-1}|x|^{-4}\) as \(|x| \to \infty\) and \(\int_{1/|x|}^{\infty} 2se^{-s^2}ds \) is \(\sim e^{-1/|x|^2}\) as \(|x| \downarrow 0\) and convergent as \(|x| \to \infty\). Then we see that \(\int_{\mathbb{R}^d}(1 \wedge |x|^2)\tilde{\nu}(dx)\) is finite if and only if \(\int_{\mathbb{R}^d}(1 \wedge |x|^2)\nu(dx)\) is finite. To prove that \(\Upsilon_{-2,2}\) is one-to-one, make a similar argument to the proof of Proposition 4.1 of \cite{[12]}. \(\square\)

The following result is needed in showing the characterization of \(G(\mathbb{R}^d)\) in terms of type \(A\) distributions. However, it also shows that \(\mathcal{A}_1\) and \(\Upsilon^0\) are not commutative, while \(\mathcal{A}_2\) and \(\Upsilon^0\) are commutative, both being Upsilon transformations with domain equal to \(\mathfrak{M}_L(\mathbb{R}^d)\).

Theorem 3.7. It holds that

\[\Upsilon_{-2,2}(\mathcal{A}_1(\rho)) = \mathcal{A}_1(\Upsilon^0(\rho)) \quad \text{for } \rho \in \mathfrak{M}_L^1(\mathbb{R}^d). \]

Proof. Suppose that \(\rho \in \mathfrak{M}_L^1(\mathbb{R}^d)\) with polar decomposition \((\lambda, \rho_\xi)\). Let \(\nu = \mathcal{A}_1(\rho)\) and \(\tilde{\nu} = \Upsilon_{-2,2}(\nu)\). Then \(\nu\) has polar decomposition \((\lambda, \nu_\xi)\) with \(\nu_\xi(ds) = a_1(\rho_\xi)(s)ds\). From Theorem 2.6 (ii) in \cite{[8]}, \(\tilde{\nu}\) has polar decomposition \((\lambda, \tilde{\nu}_\xi)\) given by

\[\tilde{\nu}_\xi(dr) = rg_\xi(r^2)dr \]

with

\[g_\xi(r^2) = 2 \int_0^\infty s^{-2}e^{-r^2/s^2}\nu_\xi(ds). \]

Using (3.13) and (3.14) we have

\[
rg_\xi(r^2) = 2r \int_0^\infty e^{-r^2/s^2}s^{-2}a_1(\rho_\xi)(s)ds \\
= \int_0^\infty e^{-t}(-t/2)a_1(\rho_\xi)(t^{-1/2})dt \\
= \int_0^\infty e^{-t}dt \int_0^\infty a_1(t^{-1/2}; s)\rho_\xi(ds) \\
= \int_0^\infty e^{-t}dt \int_0^\infty a_1(r; ts)\rho_\xi(ds) \\
= \int_0^\infty a_1(r; u)\Upsilon^0(\rho_\xi)(du),
\]

since

\[
\int_0^\infty f(u)\Upsilon^0(\rho_\xi)(du) = \int_0^\infty e^{-t}dt \int_0^\infty f(ts)\rho_\xi(ds)
\]

for every nonnegative measurable function \(f\). It follows that

\[\tilde{\nu}(B) = \int_S \lambda(d\xi) \int_0^\infty 1_B(r\xi)a_1(\Upsilon^0(\rho_\xi))(dr), \quad B \in \mathcal{B}(\mathbb{R}^d). \]
Using (3.6), we see that \(\tilde{\nu} = A_1(\Upsilon^0(\rho)) \).

The following result shows that \(G(\mathbb{R}^d) \) is the class of distributions of stochastic integrals with respect Lévy processes with type A distribution at time 1. This is a multivariate and not necessarily symmetric generalization of (1.3).

Theorem 3.8. Let

\[
\Psi_{-2,2}(\mu) = \mathcal{L} \left(\int_0^1 \left(\log \frac{1}{t} \right)^{1/2} dX_t^{(\mu)} \right), \quad \mu \in I(\mathbb{R}^d).
\]

Then \(\Psi_{-2,2} \) is one-to-one and

\[
G(\mathbb{R}^d) = \Psi_{-2,2}(A(\mathbb{R}^d)) = \Psi_{-2,2}(\overline{\text{Phi}}_\text{cos}(I(\mathbb{R}^d))),(3.15)
\]

where \(\overline{\text{Phi}}_\text{cos} \) is defined by (3.4). In other words, for any \(\tilde{\mu} \in G(\mathbb{R}^d) \) there exists a Lévy process \(\{X_t^{(\mu)} : t \geq 0\} \) with type A distribution \(\mu \) at time 1 such that

\[
\tilde{\mu} = \mathcal{L} \left(\int_0^1 \left(\log t^{-1} \right)^{1/2} dX_t^{(\mu)} \right).
\]

Proof. Let \(g(t) = \int_t^{\infty} 2ue^{-u^2} du = e^{-t^2} \). Then the inverse function of \(g \) is \(f(t) = (\log t^{-1})^{1/2} \) which is square-integrable on \((0, 1)\). Thus, \(\Psi_{-2,2}(\mu) \) is definable for all \(\mu \). Suppose that \(\tilde{\mu} \in G(\mathbb{R}^d) \) with triplet \((\tilde{\Sigma}, \tilde{\nu}, \tilde{\gamma})\). Then it follows from Theorems 3.5 and 3.7 that

\[
\tilde{\nu} = A_1(\Upsilon^0(\rho)) = \Upsilon_{-2,2}(A_1(\rho))
\]

for some \(\rho \in \mathcal{M}_1^0(\mathbb{R}^d) \). Let \(\nu = A_1(\rho) \). Since \(\nu = \Upsilon_{-2,2}(\nu) \), we have (3.2) for the function \(f(s) = (\log s^{-1})^{1/2} \) and \(T = 1 \). Choose \(\Sigma \) and \(\gamma \) satisfying (3.1) and (3.3). Let \(\mu \in I(\mathbb{R}^d) \) having triplet \((\Sigma, \nu, \gamma)\). Then \(\mu \in A(\mathbb{R}^d) \) and \(\tilde{\mu} = \Psi_{-2,2}(\mu) \). Conversely, we can see that if \(\mu \in A(\mathbb{R}^d) \), then \(\Psi_{-2,2}(\mu) \in G(\mathbb{R}^d) \). Thus the first equality in (3.15) is proved. The second equality follows from (3.5) of Theorem 3.2. The one-to-one property of \(\Psi_{-2,2} \) follows from that of \(\Upsilon_{-2,2} \) in Proposition 3.6. \(\square \)

Remark 3.9. (a) The two representations of \(\tilde{\mu} \in G(\mathbb{R}^d) \) in Theorems 3.5 and 3.8 are related in the following way. Theorem 3.8 shows that \(\tilde{\mu} \in G(\mathbb{R}^d) \) if and only if \(\tilde{\mu} = \Upsilon_{-2,2}(\overline{\text{Phi}_\text{cos}}(\mu)) \) for some \(\mu \in I(\mathbb{R}^d) \). This \(\mu \) has Lévy measure \(\rho^{(1/2)} \) if \(\rho \) is the Lévy measure in the representation of \(\tilde{\mu} \) in Theorem 3.5 (c). For the proof, use Proposition 2.5, Theorems 3.2 and 3.7.

(b) We have another representation of the class \(G(\mathbb{R}^d) \). We introduce the mapping \(\mathcal{G} \) as follows. Let \(h(t) = \int_t^{\infty} e^{-u^2} du, t > 0 \), and denote its inverse function by \(h^*(s) \).
For $\mu \in I(\mathbb{R}^d)$, we define

$$G(\mu) = \mathcal{L}\left(\int_0^{\sqrt{\pi}/2} h^*(s) dX^{(\mu)}_s\right).$$

It is known that $G(\mathbb{R}^d) = G(I(\mathbb{R}^d))$, see Theorem 2.4 (5) in [9]. This suggests us that G is decomposed into

\begin{equation}
G = \Psi_2 \circ \Phi_{\cos} = \Phi_{\cos} \circ \Psi_2
\end{equation}

with the same domain $I(\mathbb{R}^d)$, where \circ means composition of mappings. This is verified as follows. By Corollary 2.14, A_2 is an Upsilon transformation and A_2 corresponds to Φ_{\cos} (see (3.5)). Also, $\Upsilon_{-2,2}$ corresponds to the Upsilon transformation with the dilation measure $\tau(dx) = x^2 e^{-x^2} dx$. By Proposition 4.1 in [4], we have the second equality in (3.17).

3.6. A_1 is not an Upsilon transformation. By Theorem 3.7, we obtain the following remarkable result.

Theorem 3.10. The transformation A_1 is not an Upsilon transformation Υ_τ for any dilation measure τ.

Proof. Suppose that there is a measure τ on $(0, \infty)$ such that

$$A_1(\rho)(B) = \int_0^\infty \rho(u^{-1}B)\tau(du) \quad \text{for } B \in \mathcal{M}_1^1(\mathbb{R}^d).$$

Then, we can show that

$$A_1(\Upsilon^0(\rho)) = \Upsilon^0(A_1(\rho)) \quad \text{for } \rho \in \mathcal{M}_1^1(\mathbb{R}^d).$$

Indeed, for any nonnegative measurable function f

$$\int_{\mathbb{R}^d} f(x) A_1(\rho)(dx) = \int_0^\infty \tau(du) \int_{\mathbb{R}^d} f(ux)\rho(dx),$$

$$\int_{\mathbb{R}^d} f(y) \Upsilon^0(\rho)(dy) = \int_0^\infty e^{-v}dv \int_{\mathbb{R}^d} f(vy)\rho(dy),$$

and

$$A_1(\Upsilon^0(\rho))(B) = \int_0^\infty \tau(du) \int_0^\infty e^{-v}dv \int_{\mathbb{R}^d} 1_B(uvx)\rho(dx) = \Upsilon^0(A_1(\rho))(B).$$

Then, it follows from Theorem 3.7 that

$$\Upsilon_{-2,2}(A_1(\rho)) = \Upsilon^0(A_1(\rho)) \quad \text{for } \rho \in \mathcal{M}_1^1(\mathbb{R}^d).$$
Let \(\tilde{\rho} = A_1(\rho) \). If \(\int_{\mathbb{R}^d} |x| \rho(dx) < \infty \), then

\[
\int_{\mathbb{R}^d} x Y^0(\tilde{\rho})(dx) = \int_0^\infty e^{-u} du \int_{\mathbb{R}^d} u x \tilde{\rho}(dx) = \int_{\mathbb{R}^d} x \tilde{\rho}(dx)
\]

and

\[
\int_{\mathbb{R}^d} x Y_{-2,2}(\tilde{\rho})(dx) = \int_0^\infty 2ue^{-u^2} du \int_{\mathbb{R}^d} u x \tilde{\rho}(dx) \\
= \int_0^\infty 2u^2e^{-u^2} du \int_{\mathbb{R}^d} x \tilde{\rho}(dx) = 2^{-1} \pi^{1/2} \int_{\mathbb{R}^d} x \tilde{\rho}(dx).
\]

Hence \(Y_{-2,2}(\tilde{\rho}) \neq Y^0(\tilde{\rho}) \) whenever \(\int_{\mathbb{R}^d} x \tilde{\rho}(dx) \neq 0 \) (for example, choose \(\rho = \delta_{e_1}, e_1 = (1,0,...,0) \)). This is a contradiction. Hence the measure \(\tau \) does not exist. \(\square \)

4. Examples

We conclude this paper with examples for Theorems 3.5 and 3.7, where the modified Bessel function \(K_0 \) plays an important role in the Lévy measure of infinitely divisible distributions. We only consider the one-dimensional case of Lévy measures concentrated on \((0, \infty)\). Multivariate extensions are possible by using the polar decomposition.

By the well-known formula for the modified Bessel functions we have

\[
K_0(x) = \frac{1}{2} \int_0^\infty e^{-t-x^2/(4t)} t^{-1/2} dt, \quad x > 0.
\]

An alternative expression is

\[
K_0(x) = \int_1^\infty (t^2 - 1)^{-1/2} e^{-xt} dt, \quad x > 0,
\]

see (3.387.3) in [5, pp 350]. It follows that \(K_0(x) \) is completely monotone on \((0, \infty)\) and that \(\int_0^\infty K_0(x) dx = \pi/2 \).

The Laplace transform of \(K_0 \) in \(x > 0 \) is

\[
\varphi_{K_0}(s) := \int_0^\infty e^{-sx} K_0(x) dx = \begin{cases}
(1 - s^2)^{-1/2} \arccos(s), & 0 < s < 1 \\
1, & s = 1 \\
(1 - s^2)^{-1/2} \log(s + (s^2 - 1)^{1/2}), & s > 1,
\end{cases}
\]

see (6.611.9) in [5, pp 695].

The following is an example of \(\nu \) and \(\tilde{\nu} \) in Theorem 3.5(b).
Example 4.1. Let
\[\tilde{\nu}(dx) = K_0(x)1_{(0,\infty)}(x)dx \]
and
\[(4.3) \quad \nu(dx) = 4^{-1/2}x^{-1/2}e^{-x/2}1_{(0,\infty)}(x)dx. \]
Then \(\nu \in \mathcal{M}_B^B(\mathbb{R}) \cap \mathcal{M}_L^1(\mathbb{R}) \), and \(\tilde{\nu} = A_1(\nu) \in \mathcal{M}_G^G(\mathbb{R}) \).

The proof is as follows. Since the function \(x^{-1/2}e^{-x/2} \) is completely monotone on \((0,\infty)\) and \(\int_0^1 x\nu(dx) < \infty \), we have \(\nu \in \mathcal{M}_B^B(\mathbb{R}) \cap \mathcal{M}_L^1(\mathbb{R}) \). Theorem 2.13, with \(k = 1 \), gives that for \(B \in \mathcal{B}(\mathbb{R}) \)
\[A_1(\nu)(B) = \int_0^1 \nu^{(1/2)}(u^1B)2\pi^{-1}(1-u^2)^{-1/2}du \]
\[= \int_0^1 2\pi^{-1}(1-u^2)^{-1/2}du \int_0^\infty 1_{u^{-1}B}(s^{1/2})\nu(ds) \]
\[= \int_0^1 2^{-1}(1-u^2)^{-1/2}du \int_0^\infty 1_B(uss^{1/2})e^{-s^{1/2}}ds \]
\[= \int_0^1 (1-u^2)^{-1/2}du \int_0^\infty 1_B(r)e^{-r^2/2}dr \]
\[= \int_0^\infty 1_B(r)dr \int_1^\infty (y^2-1)^{-1/2}e^{-ry}dy \]
\[= \int_0^\infty 1_B(r)K_0(r)dr = \tilde{\nu}(B). \]

The fact that \(\tilde{\nu} \in \mathcal{M}_G^G(\mathbb{R}) \) can also be shown directly, since \(K_0(x^{1/2}) \) is again completely monotone in \(x \in (0,\infty) \).

It follows from \(\tilde{\nu} \in \mathcal{M}_G^G(\mathbb{R}) \) that \(\tilde{\nu} \) is the Lévy measure of some generalized type \(G \) distribution \(\tilde{\mu} \) on \(\mathbb{R} \). Using (4.2), we find that this \(\tilde{\mu} \) is supported on \([0,\infty)\) if and only if it has Laplace transform
\[\int_{[0,\infty)} e^{-sx}\tilde{\mu}(dx) = \exp\left\{-\gamma_0s + \varphi_{K_0}(s) - 2^{-1}\pi\right\} \]
for some \(\gamma_0 \geq 0 \).

Remark 4.2. \(A_1(\nu) \) in Example 4.1 actually belongs to a smaller class \(\mathcal{M}_L^B(\mathbb{R}) \). Therefore, in connection to Theorem 3.5, it might be interesting to find a necessary and sufficient condition on \(\nu \) for that \(\tilde{\mu} \in B(\mathbb{R}^d) \). The \(\nu \) in Example 4.1 also belongs to a smaller class than \(\mathcal{M}_B^B(\mathbb{R}) \cap \mathcal{M}_L^1(\mathbb{R}) \). It belongs to the class of Lévy measures of distributions in \(\mathcal{R}(\Psi_{-1/2}) \) studied in Theorem 4.2 of [12].

23
We now give an example of \(\rho \) in Theorem 3.5 (c).

Example 4.3. Consider the following Lévy measure in \(\mathfrak{M}_B^0(\mathbb{R}) \):

\[
\rho(dx) = 4^{-1/2}x^{-1/2}e^{-x/4}1_{(0,\infty)}(x)dx.
\]

Then \(\nu \) in (4.3) satisfies \(\nu = \Upsilon_0(\rho) \).

To prove this, we compute the Upsilon transformation \(\Upsilon_0 \) of \(\rho \) as follows:

\[
\Upsilon_0(\rho)(dx) = \int_0^\infty \rho(u^{-1}dx)e^{-u}du
\]

\[
= 4^{-1/2}x^{-1/2} \left(\int_0^\infty u^{-1/2}e^{-u-x/(4u)}du \right) dx.
\]

By formula (3.475.15) in [5], pp 369, we have

\[
\int_0^\infty u^{-1/2}e^{-u-x/(4u)}du = \pi^{1/2}e^{-x/2}.
\]

Hence, \(\Upsilon_0(dx) = 4^{-1/2}x^{-1/2}e^{-x/4} dx \) and from (4.3) we have \(\nu = \Upsilon_0(\rho) \).

Since \(A_1(\nu) = A_1(\Upsilon_0(\rho)) = \Upsilon_{-2,2}(A_1(\rho)) \) by Theorem 3.7, \(A_1(\rho) \) is also of interest.

Example 4.4. Let \(\rho \) be as in (4.4). Then

\[
A_1(\rho)(dx) = 2^{-1}x^{-1/2}e^{-x^2/8}K_0(x^2/8)1_{(0,\infty)}(x)dx.
\]

The proof is as follows. We have

\[
A_1(\rho)(B) = \int_0^1 \rho^{(1/2)}(u^{-1}B)2\pi^{-1}(1-u^2)^{-1/2}du
\]

\[
= \int_0^1 2\pi^{-1}(1-u^2)^{-1/2}du \int_0^\infty 1_{u^{-1}B}(s^{1/2})\rho(ds)
\]

\[
= 2^{-1/2} \int_0^1 (1-u^2)^{-1/2}du \int_0^\infty 1_{u^{-1}B}(s^{1/2})s^{-1/2}e^{-s/4}ds
\]

\[
= \pi^{-1/2} \int_0^\infty 1_{B}(r)dr \int_0^1 u^{-1}(1-u^2)^{-1/2}e^{-r^2/(4u^2)}du
\]

\[
= 2^{-1/2} \int_0^\infty 1_{B}(r)dr \int_1^\infty y^{-1/2}(y-1)^{-1/2}e^{-r^2/4y}dy.
\]

Use (3.383.3) in [5], pp 347 to obtain

\[
\int_1^\infty y^{-1/2}(y-1)^{-1/2}e^{-r^2/4y}dy = e^{-r^2/8}K_0(r^2/8).
\]

Thus we obtain (4.3).
Remark 4.5. The ρ in (4.4) also belongs to $\mathcal{M}_B^p(\mathbb{R}) \cap \mathcal{M}_L^1(\mathbb{R})$. Therefore $\mathcal{A}_1(\rho)$ itself is another example of the Lévy measure of a generalized type G distribution on \mathbb{R}.

References