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Abstract

We prove the universal asymptotically almost sure non-singularity of general Ginibre and
Wigner ensembles of random matrices when the distribution of the entries are independent
but not necessarily identically distributed and may depend on the size of the matrix. These
models include adjacency matrices of random graphs and also sparse, generalized, universal
and banded random matrices. We find universal rates of convergence and precise estimates
for the probability of singularity which depend only on the size of the biggest jump of the
distribution functions governing the entries of the matrix and not on the range of values of the
random entries. Moreover, no moment assumptions are made about the distributions governing
the entries. Our proofs are based on a concentration function inequality due to Kolmogorov,
Rogozin and Kesten, which allows us to improve universal rates of convergence for the Wigner
case when the distribution of the entries do not depend on the size of the matrix.

Key terms: Adjacency matrix of random graphs, banded random matrix, decoupling, con-
centration function, generalized Wigner ensemble, Littlewood-Offord inequality, Kolmogorov-

Rogozin inequality, nondegenerate distribution, sparse random matrix.

1 Introduction and main results

Let A, = ( fz‘(?)) be an n X n random matrix where each entry fgl) follows a distribution Fi(f),

1 <i,57 < n. The study of the non-singularity of such matrices has mainly been considered when

Fl.(f”) = F and for two ensembles of random matrices, the Ginibre and Wigner. We will use the
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following terminology: An n x n random matrix G, = (&) is called a Ginibre matrix if

1<i,j<n
&ij» 1,J = 1,...,n are independent random variables, and an n x n random symmetric matrix
W, = (&j)lﬁi,jﬁn is called Wigner matrix if &; = &, 4,7 = 1,...,nand &;, 1 <7 < j < n
are independent random variables. We will not assume that the distributions of the entries have
moments.

The singularity of these matrices is trivial if the distributions of ;; are degenerate. The non-
singularity is also straightforward if the entries have continuous distributions. The interesting
situation occurs when some of the entries have distributions with jumps. Singularity of such
matrices is a highly non trivial problem.

The study of the non-singularity of Ginibre matrices goes back to the pioneering work by
J. Komlés. In [15] he considers a Ginibre random matrices GB(n,1/2), whose entries are i.i.d.
Bernoulli random variables, taking values 0 or 1 with probability 1/2 each. Using a very clever
‘growing rank analysis’ together with the Littlewood-Offord inequality Komlds proved that
P {rank(GB(n,1/2)) < n} = o(1) as n — co. Bollobds [3] presents the concept of ‘strong rank’ and
together with the Littlewood-Offord inequality obtains an unpublished result due to Komlos, wviz.
P {rank(GB(n,1/2)) < n} = O(n~2) as n — co. Komlds [16] was also the first in considering the
singularity of Ginibre matrices whose entries are i.i.d. random variables with a common arbitrary
non-degenerate distribution, proving that the probability that such an n x n matrix is singular
has order o(1) as n — oo. This result was improved by Kahn, Komlés and Szemerédi [12] in the
case of Ginibre matrices whose entries are i.i.d. taking values —1 or 1 with probability 1/2 each,
showing that the probability of singularity is bounded above by 6" for § = .999. The value of 8
has been improved by Tao and Vu [24], [25] to § = 3/4 + o(1) and by Bourgain, Vu and Wood [5]
to § = 1/v/2 + o(1). Slinko [21] considered Ginibre random matrices whose entries have the same
uniform distribution taking values in a finite set, proving also that the probability of singularity is
O(n~1/?) as n — oo.

The aim of this paper is to understand the asymptotic non-singularity of more general Ginibre
and Wigner ensembles. We are interested in finding universality results with respect to general
distributions of the entries and also when these distributions depend on the size of the matrix.

As a first step in this direction, the results in [3], [21] were generalized by Bruneau and Ger-
minet [4] to Ginibre random matrices whose entries follow different independent non-degenerate
distributions Fj; which do not change with the size of the matrix. Their result gives a universal

rate of convergence of n=1/2 as follows:



Theorem 1. [}/ Let G,, be an n x n Ginibre matriz with independent entries &;; satisfying the
following property H : there exists p € (0,1/2) such that for any i,j =1,...,n, P{fij > xj]'} > p

T then

and P {&-j < l';j} > p for some real numbers x;; < x;,

P{rank(Gy) < n} < C/\/B,(1 — p)n, (1)

where the constant C is universal (coming from the Littlewood-Offord inequality) and f3, is an

implicit constant 0 < B, < 1 which goes to zero as p — 1.

Remark 1. a) The above theorem is proved in [4] using ideas of strong rank of [3], together with a
Bernoulli representation theorem for the distribution of a random variable and the Littlewood-Offord
inequality.

b) We point out that it is possible to express (1) in terms of the size of the biggest jump of the
distribution functions governing the entries. Indeed, this follows using a strong rank analysis and
the Kolmogorov-Rogozin concentration inequality. This inequality, stated in Section 2, will be used
repeatedly in this work. Returning to (1), taking k = maxi<; j<np sup,cgr P{&; = x}, the size of the

biggest jump of Fyj, 1,5 =1,...,n, for 0 > K < 1 we have

Cy

VLA = rk)n’

where the constant Cy is the universal coming from Kolmogorov-Rogozins inequality.

P {rank(G,) < n} <

c) We observe that the constants 3, and 3], are not universal ~they might depend on the distri-
butions Fj;.

d) These two results highlight the fact that the non-singularity of Ginibre matriz depends only
on p or, equivalently, the size of the biggest jump k. In other words, the universal property of a
random matrixz being non-singular depends neither on the range of values taken by the entries nor

on other properties of their distribution except the size of the biggest jump.

As for Wigner random matrices, the study of their singularity was initiated by Costello, Tao

and Vu [8] inspired by the work of Komlés [15].

Theorem 2. [8] Let W,, = (&) be an n x n Wigner matriz whose upper diagonal entries &; are
independent random variables with common Bernoulli distribution on {0,1} with parameter 1/2.
Then, as n — oo,

P {rank(W,,)) < n} = O(n~Y/8+%),



for any positive constant «, the implicit constant in O(-) depending on «.

Remark 2. a) The proof of the above theorem in [8] required developing a quadratic Littlewood-
Offord inequality. A possible generalization to distributions other than Bernoulli was also indicated
in [8].

b) Theorem 3.b below gives a better universal rate of convergence n=Y4%e for any Wigner
random matriz W,, = (&;) with independent entries which need not be identical. While the off-

diagonal entries need to be non-degenerate, the diagonal entries could be degenerate.

More recently, the Wigner matrix has been studied when the entries satisfy some restrictions.
Nguyen [17] considered a Wigner matrix W,, with entries taking values —1 or 1 with probability 1,/2
each, subject to the condition that each row has exactly n/2 entries which are zero. He showed that
the probability of W), being singular is O(n~), for any positive constant C, the implicit constant
in O(-) depending on C. Also recently, Vershynin [26] has considered the case of a Wigner matrix
W,, whose entries satisfy the following property: the above-diagonal entries are independent and
identically distributed with zero mean, unit variance and subgaussian, while the diagonal entries
satisfy &; < K/n for some K. He showed that the probability of W,, being singular is bounded
above by 2exp(—n¢), where ¢ depends only on the subgaussian distribution and on K.

One of the goals of this paper is to study the non-singularity of Ginibre and Wigner matrices
(n)

when the distributions of the entries F; )

depend on the matrix size. This kind of random matrices
appear in the study of random graphs [6], sparse matrices [7], [9] and some other models that have
recently been extensively considered like the so-called generalized, universal and banded Wigner
ensembles [10], [22] among other works. See also the non i.i.d. Wigner case in, for example, [2, pp
26].

One difficulty that arises in this situation is to find adequate asymptotic estimates of the
probability of the singularity being zero where the involved constants in the rate of convergence
do not depend on the distributions of the entries. We overcome this difficulty using a universal

concentration inequality due to Kesten [14] which we express in terms of the size of the jumps of

the distribution functions.

1.1 Main results We now consider Ginibre and Wigner matrix ensembles G%n) = <§ (n)

1
, where the distribution function Fi(]n)

>1§i,j§n’

governing ffjn) is allowed to change

and W’r(Ln) = (é;))lgmgn

with the size of the matrix.



One of our main conclusions is the non-singularity of the above Ginibre and Wigner ensembles.
More specifically, given a collection of non-degenerate distribution functions { ¥, i(jn) ci,j>1, n>1}
and a subsequence {m,, : n > 1} we study the singularity of the m,, x m,, matrix with independent

)

entries 5,(!;) being governed by the distribution function F,gln for every 1 < k,1 < m,,. Let us

denote by k, the biggest jump of the distribution functions Fi(f), 1 <4,5 < my, e, if k;; =
supger P{&}'; = z}, then

— "e 3
Kn 1%?%”{%1,3} (3)

We give a sufficient condition for m,, = n in terms of the sequence of biggest jumps (kn),,>-

Theorem 3. (Universality of non-singularity of Ginibre and Wigner ensembles) With the notation
as above, let GS«n) and WT@) be the r X r Ginibre and Wigner matrices respectively, each with entries
52(3), 1<i<j<r. Assume that k, < k € [0,1) for alln

a) Asn — 0o

P {mnk;(GgL")) < n} =0 <n71/2> (4)
where the implicit constant in O(-) depends on k.

b) For any € € (0,1)
P {mnk(Wén)) < n} =0 (n_(l_a)/4> , (5)

where the implicit constant in O(-) depends on € and k.

Remark 3. a) The proof of Lemma 6 in section 3, where Theorem 3.a is given, highlights the
fact that the probability that a Ginibre matriz has small rank is small. This is due only to the
independence of entries.

b) The bound n='/**t in (5) improves the rate n='/8% in Theorem 2 of Costello, Tao and Vu
18]
We now turn to Theorem 3. A natural question is to understand what happens when x,, — 1.

Proposition 1. Let k,, € [0,1] there is a Ginibre matriz G, of size my, whose entries have the

same distribution, such that the biggest jump of Gy, s kn and
P{G., has full rank } -1 n — oo.

In the following examples we can see that if k,, — 1 at some appropite rate, we can have different

behavior for the probability of singularity.



Let GB(n,p) and W B(n,p) denote the n x n Ginibre and Wigner matrices whose entries have
Bernoulli distribution on {0,1} with parameter p. Let ZGB,, (ZW B,,) be the event that the first
row of GB(n,1/n), (WB(n,1/n)) contains only zeros, then

1\" 1\"
n n
hence
el < li_)m P {rank (GB (n,1/n)) < n},
el < h_)m P {rank (W B (n,1/n)) < n}.
However, if a € (0,1) there is a constant C,, > 0
P {rank (W B (n,n%/n)) < n} < n~ %, (6)

In the Ginibre case it is not clear what happens in the case kK = n®/n, but if v € (0,1)
P{rank (GB (n,n%/n)) > yn} -1 as n — oo. (7)

Furthermore, as an application of the Wigner case, we obtain an estimation of the probability
that the adjacency matrix of a sparse random graph (not necessarily an Erdos-Rényi graph) is non-
singular. Costello and Vu [6] have analyzed the adjacency matrices of sparse Erdés-Rényi graphs,
where each entry is equal to 1 with the same probability p(n) which tends to 0 as n goes to infinity
(see also Costello and Vu [7] where a generalization of [6] is considered in which each entry takes the
value ¢ € C with probability p and zero with probability 1 —p, and the diagonal entries are possibly
non-zero). It is proved in [6] that when cln(n)/n < p(n) < 1/2, ¢ > 1/2, then with probability
1—-O((Inln(n))~/4), the rank of the adjacency matrix equals the number of non-isolated vertices.
Now we consider the following model extension of Erdos-Rényi graphs, where vertices i and j are
linked with a probability that depends on ¢ and j and the number of vertices. Furthermore, the
rate of convergence is an improvement of the one given in [6] for cInn/n® < p(n) < 1/2 with ¢ > 0

and € (0,1). From the proof of Theorem 3.b in section 4, if k, = 1 — p(n), we have as n — oo

in
Rn

i 2 1/4 _ B2\ 1/4
< Ko < (1 —¢(Inn/n”)) 0
Kn (1 — Kp) nl=¢(1 — ky,) nt=c=Flnn




ife+p8<1.

Proposition 2. Let {p;; € (0,1) : i,j = 1,2,...} be a double sequence of positive numbers with
Py, = mini<i<j<n{pij} € [clnn/nB,1/2], ¢ > 0, and e + B < 1, €, € (0,1), then there is a
random graph with n vertices such that the vertex i is linked with the vertex j with probability p;;,

1<i<j<n, and if A, is the adjacency matriz, we have as n — o
P {rank(A,) < n} < Cn~0=s=A/4, (8)

for some constant C > 0.

Remark 4. a) In many applications of random matrices one considers ensembles of the form
G%n) = aglGn and Wén) = a;an where a, — o0 as n — 0o and the non-degenerate distributions
of the entries of G, and W, do not depend on matriz size n. In this case k, = k < 1 for alln > 1, if
the distribution is not degenerated. However the ensembles Gﬁ}‘) and W,,(Ln) are asymptotically almost
surely non-singular. In fact, this holds for any sequence a,, — oo and the rate of convergence to zero
of the probability of singularity is not affected by the rate of convergence of a, if the distributions
of the entries have discrete support.

b) The case a, = 1/+/n is the set-up of problems of random matrices appearing in the study of
the asymptotic spectral distributions [1], [2], geometric functional analysis [23], [18] and restricted
isometries [20], among others.

c¢) Finally, the results in the Ginibre case have a straightforward extension to non-square n X m

random matrices whose entries are independent random variables and have distributions with jumps.

2 Preliminaries on Concentration Inequalities

In this section we present the Kolmogorov-Rogozin concentration inequalities that we use for the
proofs of our main results on non-singularity. We express these inequalities in terms of the size of
biggest jump of the non-degenerate distribution functions.

The Lévy concentration function Q(&; \) of a random variable £ is defined by

Q&N =supP{€€ [z, z+ A}, A>0.
z€ER

Let &1,&,... be independent random variables and S, = Y " ;&. An expression that relates



the concentration function of S,, to the concentration functions of the summands &; was given by

Kolmogorov-Rogozin; see [13].

Lemma 1 (Kolmogorov-Rogozin Inequality). There exists a universal constant C' such that for

any independent random variables &1, ...,&, and any real numbers 0 < A1,..., A\, < L, one has
n -1/2
Q(Sn; L) < CL {Z M- Q(X; Am} :
i=1
Kesten [14] obtained the following refinement of the above inequality.

Lemma 2. For the constant C' of the Kolmogorov-Rogozin inequality and any independent random

variables €1, ...,&,, and real numbers 0 < A1,..., A\, < 2L, one has

Q(Sn;L) < 4- 21/2(1 + QC)LZ?ﬂ AL = Q& \)] Q(fva).
{0 2211 - Qe a1y

For the study of non-singularity of random matrices, one has to find an estimate of the probabil-
ity that a polynomial of independent random variables equals a real number. In the case of Ginibre
and Wigner matrices the polynomial are of degree one and two respectively. Our first goal is to
write Kesten inequality in terms of the size of the biggest jump and then obtain the corresponding
linear and quadratic concentration inequalities.

We first discuss the relation between the size of the biggest jump of a non-degenerate distribution
F and its corresponding Lévy concentration function. Let Dp be the set of discontinuities of F
and k its biggest jump, i.e., k = sup,cp P {£ = 2} where £ has distribution function F.

We note the following:

1. There exists z, € R such that P{{ = z,} = k.

2. Let p; = P{{ =u;}, i € N, then ) .5 p; <1, ie, for all € > 0 there exists N(¢) € N such
that >, pi <eforalln > N(e).

3. If F is a discrete distribution (ZiEN p; = 1) and x, is not an accumulation point of Dg, there
exists 7 > 0 with

supP{¢ € [z,z + 61|} = k.
zeR

Otherwise, if I is not discrete or x is an accumulation point of D, there exists some A > 0,



which may be taken as small as desired, such that, for A fixed, there is § > 0 with

supP{¢ € [z, 2+ 6]} =+ A< 1.
zeR

We define ka, for A € (0,1) fixed, by ka := & if F is discrete and z, is not an accumulation

point of D and otherwise, kA := kK + A. So, we have that there is § > 0 such that

ilelgﬁ”{ﬁé [z,2 4+ 0]} = KA. 9)

4. We fix A € (0,1) and § > 0 that satisfies (9). If a € R with |a| > 1, then

supP{a € [x,z + 0]} < KA.
zeR

Indeed, if sup,cp P {a€ € [z, + ]} > kA, then there exists some z* € R such that
P{af € [z*,2* + d]} > ka, but

6> |ag — a*| = a

*
5_; )

T*
> 8- —
a

which is a contradiction to the definition of kKA. So, we have that

Q(BE,8) < ra for 6] > 1.

Now let &1,...,&, be independent random variables with distribution functions Fi,..., Fj,
respectively. For each &; we consider x(7),ka (i) < 1 defined as above. We first prove the following

concentration inequality in terms of the biggest jumps of the distribution functions.

Lemma 3 (Linear Concentration Inequality). Let &1, ...,&, be independent random variables with
non-degenerate distributions Fi, ..., F,, respectively, and let o, . . ., oy, be real numbers with o; # 0,

i=1,...,n. Then

ot =2 b o[ (L= A()ra () )
sup P & =xp =0 ,
ek {E } <{Z?1 NG

where the implicit constant in O(-) does not depend on F;, i =1,...,n.

Proof. Let a = minj<;<, {|a;|} and § = minj<;<, {d;}, where §; > 0 satisfies ka (i) = Q(&;, 0:),



i=1,...,n. We have for x € R

P{anai@ :x} ﬂ{f)‘jfi = Z} ﬂ{ia;& =x’},
=1 =1 =1

where «;/a = o/, and z/a = 2/. Now,

]P’{Zoz;& = x’} < supIP’{Zaé& € [?J:Z/‘f'd]}
i=1 i=1

yeR
<4. 21/2(1 +9C) Yo (1 —k(i)ka(d)

{0 - ra@)y**

the last expression following from Lemma 2. |

Remark 5. a) If ka(i) < k < 1 for all 4,

b) Lemma 3 holds when r many of the random wvariables &1, ...,&, are degenerate for some
1 <r < n, in this situation n is changed by n — r. Contribution to the bound of the concentration

inequality is provided only by the non-degenerate random variables.

In order to prove the so-called Quadratic Concentration Inequality, we recall the decoupling

argument.

Lemma 4 (Decoupling). Let X € R™ and Y € R™ be independent random variables, with
my +mg =n, and let ¢ : R™ — R be a Borel function. Let X' be a variable independent of X and

Y, but having the same distribution as X. For any interval I of R, we have
P*{p(X,Y) eI} <P{p(X,Y) eI, p(X"Y)€eI}.

A quadratic Littlewood-Offord inequality for independent {0,1}-Bernoulli random variables
with probability 1/2 was proved in [8]. The result below is for independent random variables not

necessarily identically distributed and without any assumption on their moments.

Lemma 5 (Quadratic Concentration Inequality). Let &1, ...,&, be independent random variables

with non-degenerate distributions F,. .., Fy, respectively, and (c¢ij)i<ij<n be a symmetric n x n

10



array of constants. Suppose S1 Sy is a partition of {1,2,...,n} such that for each j € Sy, the set
Nj :={i € S :¢ # 0} is non-empty. Let

p=o{,.. bt = D> ciybig

1<i,j<n
be the quadratic form whose coefficients are c;;. Then

1/2

2jep(1 = w(j))rall)

+  sup
DCSz|D|2|S|/2 {ZjeD [1- KA(J')]}W

en. (1 —R(i)Ra(i
fpmn-o| | Ly Zien L= ROs(0)
ies \ {Sien, 1 - Fali))}

where, for & an independent copy of &, ®(i) and Ra(i) are the jumps associated with & — &, and
k(j) and KA (j) are the jumps associated with &;. The implicit constant in O(-) does not depend on

Fi,i:L...,n.

Proof. Let 6 = minj<;<p {0;} where ¢; > 0 satisfies ka(i) = Q(&,0:), i =1,...,n. If x € R,
we have

P{p=a} <P{pez,z+/2]}.
Write I = [z,2+0/2, X = (& :i € S1), Y = (& : i € S2) and X' = (€ : i € Sy), with X’

independent of X and Y, but having the same distribution as X. By Lemma 4,

P {p(X,Y) €I} <P{p(X,Y) € I,p(X'Y) € I}

<P{p(X,Y) - (X" Y) € [-6/2,6/2]}.

We can rewrite p(X,Y) — p(X',Y) as

(P(X7Y)_§0(X/7Y):g(XvX/)+2Z€j Zcij (gz_ ;)

JES> €S

=g(X,X")+2) " &m,
JES2

where g(X, X') = >, ;e ¢ij(&&5 — §&5) and nj = 37,5 cij (& — &)

11



Let ¢ be the number of 7; which are equal to zero. If J = [—§/2,6/2], we have

P{o(XY) —p(X"Y) € T} SP{@O(X,Y) — (X Y) e (< |S22|}

o)

Since ¢ = Zj652 1(,,=0}, using Lemma 3, we have

zmo}zp{z% ;>o}

JES> JES2 iEN.
e, (1= F(0)Fa i)
- Z 0 : — = 3/2
ise \{Zien, 1 - Fali)]}

Y

where (i) and Ra(4) are the jumps associated with & — &/. By Markov’s inequality, we obtain

152| 2 >ien, (1= E(0)Ra(d)
’ {C i } : ’SQ ‘SQ| Jgs; {ZzGN]- [1— EA(i)]}S/Z

For M := {j € Sy : n; # 0}, we note that (i) M is a random set which depends only on X, X'
and (ii) |M| > |Sa|/2 whenever ¢ < |Ss|/2. Thus for a given realisation x, 2’ of X, X’ respectively,

we have

IP’{cp(x,Y)— (', Y) EJ‘§<’ 2'} P{zzgjn]ej’ g<52}
JES2

where J' = [—g(x,2') — §/2, —g(z,2") + §/2], then by Kolmogorov-Rogozin’s inequality

ZjEM($7aj/)(1 - H(.]))K’A(J)
3/2
{Zierttoan 1 = k()]

IP{(p(a:,Y)— o2, Y) eJ)<<|SQ|} 0

12



where M (x,2’) is the set M obtained for the realisation x, 2’ of X, X'. So

IP{ — EJ‘<<|S2|}
IE( (XY eJ‘g<‘SQ| XX})

. Y ep(1 = 5()kald)
DCS2.|D|>|S:|/2 {ZjeD [1- HA(j)]}3/2

Y iep( = 5()kalj)

DCSQ,ID\>|52\/2 {Z]ED [1- “A(j)]}sm

Hence
1/2
1 ien, (L —=5(2))RaA (i (1 —k(7))ra(y
plomn—o| | Ly [Semomm® ) o S sieal)
|Sa| cS {Z [1—Fa(i / DCS2,|D|>]S2|/2 1— i /
j ien, [L—Fa(i)] >jen L= ra(i)]
|
Remark 6. a) If ka(i) < k <1 for all i, |S1| = |Sa| = n/2 and |N;| > n'=¢ for all j and e > 0,
1/2
K
Plo=2}=0| | —/—m————
{p =} = H)gnl_gl
b) Lemma 5 holds when s many of the random variables &1,...,&, are degenerate for some

1 < s < n, in this situation n is changed by n — s. Contribution to the bound of the concentration

inequality is only provided by the non-degenerated random variables.

3 Proofs in the Ginibre case

We start with an extension of a result by Slinko [21] who worked the case of a discrete uniform
distribution with parameter 1/¢q with ¢ € Z*. Throughtout this section all our random variables
satisfy

supP{X =z} <ra(X) <k <L
z€eR

Lemma 6. Let k <m and let A € R™*¥ be a (deterministic) matriz with rank(A) = k. If b € R™

13



s a random vector whose entries are independent random variables. Then
P {rank(A,b) = k} < s™F.
Proof. Since rank(A) = k, we can break [A b] in the following way

Ay, by,

Am—k: bm—k:

where A, € RE¥k A e Rm=K)xk e R and b, € R™*. We note A, is an invertible
matrix. We have there exists a random matrix A € R¥ such that AyA = b, and A, A = byy_p,

then A, Ay by = bp—k. So

= E{P{An_rA; bk = b, |Am—rA; by }}

< Hm—k:

— bl

the last line is due to the independence of every entry in b, . |

Lemma 7. Let k < m and let A € R™* be a random matriz (whose entries are independent

random variables). Then

P{rank(A) < k} < 1 N gmek,
— K

Proof. We note that if A = [aq|---|ak], a; € R™ i =1,...,k, then

P{rank(A) =k} = P{a; ¢ {0}, a2 ¢ span{ai},...,a; ¢ span{ay,az,...,ax_1}}
k

= P{ai ¢ {03} []P{E:}
i=2
where we use the notation span{-} for the space generated for some vectors and

E; = {a; ¢ span{ay,as,...,a;—1}|a1 ¢ {0},a2 ¢ span{a1},...,a,—1 ¢ span{ay,as,...,a;—2}}.

14



Hence by Corollary 6 and the Weierstrass product inequality

k—1 k—1
K
P{rank(A) =k} > [ -x™") =1~ me= ] mek
{rank(A) } Z':0( A i:On e

|

We consider the following concept used by Komlés [3]. Let S = {v1,...,v,} be a set of
vectors. Let us define the strong rank of S, denoted sr(S), to be n if S is a set of vectors linearly
independent; and k if any k£ of the v;’s are linearly independent but some k + 1 of the vectors are
linearly dependent. For a matrix A we denote the strong rank of the system of columns and the

strong rank of the system of rows by sr.(A) and sr.(A), respectively.

Remark 7. (a) Let A be an m x n random matriz with all entries being independent random

variables. It follows immediately from Lemma 7, than

K m—k

P {sro(A) < k} < (Z)

1—x
(b) For every k and 0 < o < 1 there exists f > 0 which satisfies

h(B)

logy Kk

+08<a<l, (10)

where h(z) = —xlogy(x) — (1 — ) logy(1 — z) is the entropy function. Indeed, let

_ M=)
~logk

9()

and since the function g is a continuous and g(0) = 0, so there exists a positive number 3 > 0 such
that g(f) < a < 1.
c) We note from (a) and (b) that if m = |an] and k = [pn], then

)

" R clan|=[Bn] B on(h(B)—(a—p)logs(x)) R g—nm
P{rank(A) < [pn]} < <[ﬂ1ﬂ>1/€ﬁ < 171412 < 171%2

where we use (é;) < 2"MPB) and v, is a postive constant which depends on k.

Lemma 8. Let vy,vy,...,vx € R™ be (deterministic) linearly independent vectors. Let B =

[vi|...|vk] and sc,(B) = s. Then for a random vector a € R™, whose entries are independent

15



random variables,

P {rank(vi,ve, ..., vk, a) =k} < O™ Fs™1/2,

Proof. Let by, bo, ..., b, are the rows of B. Without loss of generality we assume that b1, b2, ..., by

are linearly independent and that all other rows are linear combination of them. We have

k

> 87 = b0
=1

forr=k+1,...,m. As sc,(B) = s, at least s of the coefficients BY) e ﬂ,(:) are nNONzero.

Now, since we consider the event [rank(vy,va, ..., v, a) = k|, we have

k
E ajvj =a
Jj=1

for some aj ..., ag, all non-zero. In particular Z?:l QjUk41,j = Qk41, Where agyq is the (k + 1)-th

entry of a. But

i=1 i=1

k k k k k k
(k+1 (k+1 k+1)
arir =D agverny = ooy [ DB ey | =378 D ey | =D 85
j=1 j=1 j=1 i=1

From the above and the independence of entries of a

k
P {rank(v,ve,...,vx,a) =k} < P{Zﬁy)ai =ap,r=k+ 1,...,m}
=1

k
= ]E{]P{Zﬁi(r)ai:ar,r:k+1,...,m|al,...,ak}}

=1
k m—1 l

= E{P{Z,@fm)al :am|a1,...,ak} P{Zﬁf)al :al|a1,...
=1 I=k+1 =1

k
< E {ﬁm_k_llP’ {Z Bi(m)ai =ap|ai,... ,ak}}
=1
k
= gmE-lp {Z BMa; = am}

i=1
< Oy kg2,

the last line is due to Kolomogorov-Rogozin Inequality. |

16



Proof of Theorem 3.a. Let a € (0,1) and $ > 0 as in the equation (10) and let ng = |an].
Let B be the ng x n matrix whose columns are the first ng columns of G,,.

Since
P{rank(G,,) = n} = P{rank(G,,) = n, sr,(B) < pn} + P{rank(G,,) = n, sr.(B) > pn},

by Lemma 7 and Remark 8, we have

P{rank(G, H (1 — C1(Bn) 1/214') >1- 101 (Bn)~ 12,

which proves Theorem 3.a. u
Proof of Proposition 1. Let I} a distribution function whose biggest jump is k1, we take
m, = 1 and 01 = k1/2, then P{G,,, has full rank } > 1 — ;. Now, let F,, a distribution function
whose biggest jump is k,, by the Lemma 2 in [16] there is m,, > m,_1 and §, < 1/n < forn > 1
such that
P{G,,, has full rank } >1—4,

where the entries of Gy, have the same distribution and §,, = 0 as n — oo. n

4 Proofs in the Wigner case

Following the terminology introduced in Costello, Tao and Vu [8], given n vectors {vi,...,v,}, a
linear combination of the v;’s is a vector v = Z?:1 c;v;, where the ¢; are real numbers. We say that
a linear combination vanishes if v is the zero vector. A vanishing linear combination has degree k
if exactly k£ among the ¢; are nonzero.

A singular n x n matrix is called normal if its row vectors do not admit a non-trivial vanishing
linear combination with degree less than n'~¢ for a given ¢ € (0,1). Otherwise it is said that
the matrix is abnormal. Furthermore, a row of an n X n non-singular matrix is called good if its
exclusion leads to an (n — 1) X n matrix whose column vectors admit a non-trivial vanishing linear
combination with degree at least n!~¢ (in fact, there is exactly one such combination as the rank of
this (n — 1) x n matrix is n — 1). A row is said to be bad otherwise. Finally, an n x n non-singular
matrix A is perfect if every row in A is good row. If a non-singular matrix is not perfect, it is called
imperfect.

For the proof of Theorem 3.b, we first present three lemmas which generalize results in [8] for

17



Wigner matrices W,, = (&;;) with independent entries which need not be identically distributed
and the appropriate estimates in these new cases are found in terms of the size of the biggest jump
of the distribution functions governing the entries under the hypothesis ka(i) < k£ < 1. We also
obtain a better rate of convergence which is universal. The proofs we give follow ideas in [8] but

also take into account the size of the biggest jump.

Lemma 9. Let € € (0,1), then for all n large
P{W,, is singular and abnormal} < gt 0)/2 (11)

and

P {W,, is non-singular and imperfect} < (T2, (12)

Proof. If W, is singular and abnormal the rows vectors of W,, admit a non-trivial vanishing
linear combination with degree at most N :=n'~¢. For i = 1,..., N, we have that if i = 1, there
is a row of W, that contains only zeros, and if ¢ > 1, the i-th row is a linear combination of the
first i — 1 rows of W,, that are linearly independent. We denote by D(n,i) this last event and by
T;—1 the upper triangular part of W,, until the row ¢ — 1 (included). The linear dependence of the
i-th row of W, with the ¢ — 1 rows of W,, is determined only by its last n — ¢ + 1 entries. Then by

the stochastic independence of T;_; with the last n — i + 1 entries of the row ¢

P {W, is singular and abnormal} < i (?)P{D(n,i)} < ivg <?>E{P{D(n, ) Tio1}}

=1

N
< Z nNKn7N+1 _ Nanﬁ;niNJrl,
i=1
and for all n large,
P {W,, is singular and abnormal} < r1MTT) < a(non! T

Now, we consider the case when W,, is non-singular and imperfect. We can suppose that the
last row of W,, is the bad row. The (n — 1) X n-matrix obtained has rank n — 1, hence there is
a unique column that admit a non-trivial vanishing linear combination with degree at most n'=¢,

then the last n — k — 1 of this column is completely determined by its k first entries and k linear

independent columns, for 1 < k < n'~¢. Since we can choose this bad row, we have as above for n

18



large

P {W,, is non-singular and imperfect} < nki(rl-(=DI7) o L3 mnt=e)

Lemma 10. Let A be a deterministic n X n singular normal matrix, then

]P’{rank(Wn+1) - Tank(Wn) <2 |Wn = A} = 0: (M) '

Proof. Since r := rank(A) < n, without loss of generality it is possible to suppose that the
first 7 rows of A are linearly independent. If vy, ..., v, are the first rows of A, then v, = Y ;| ov;,
and as A is normal, the numbers of coefficients in this linear combination is at least n'==. If it
does not hold that &, = >, @&, where & are entries of the last column of W1, by symmetry

of Wy41 we have rank(Wp,41) = rank(A) + 2. Hence

P {rank(W,,4+1) —rank(W,,) < 2|W,, = A} <P {fn = Zaiéz}
i=1

o <,§> |
nl(1 - k)3

The last expression follows from Lemma 3. |

Lemma 11. Let A be a deterministic n X n non-singular perfect symmetric matriz, then

1/2
S
nt=e(1 — K,)3]

Proof. If rank(W,,41) = n, then det(W,, 1) = 0, and we have

P{rank(W, 1) =n|W, = A} = O.

n n
0 = det(Wyy1) = (det A)éura + D> &,
i=1 j=1
where §; are entries of the last column of W), 1 and its transpose, and c;; are cofactors of A. Since
A is perfect, when we eliminate the i-th row of A, the columns of the matrix thus obtained admit a
vanishing linear combination of degree at least n!~%. When the column j is selected, where j is the
index of a non-zero coefficient in this linear combination, we obtain an (n—1) x (n— 1) non-singular

matrix. Since there are at least n' ~¢ indices 7 such that there are at least n' ¢ indices j with cij # 0.
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Taking the partion of {1,2,...,n} as S} = {1,2,...,|n/2]|} and Sy = {1,2,...,n} — 57, by Remark
6

P {rank(Wy41) =n|[W, = A} <P (det A1+ > > iy =0
i=1 j=1

=E [P (det A)épq1 + Z Z ¢ij&i&; = 0] &

i=1 j=1

1/2
=E| O, .k
nl=e(1 — KJ)?’]

1/2
(wieel)
nl—a(l _ li)3

Now we consider the discrete stochastic process

0 if rank(W,,) = n

X, =
(H,l/g)n—rank(Wn) if rank(W,,) < n,

for which we can prove the following result.

Proposition 3.

1/2
E(X,) = 0. I —
nlfs(l _ I{)?’

Proof. For j =0,...,n, write A; = {rank(W,,) =n — j} and let 1+~ = x~/%. We have

n

E(Xa) =) (1+9)/P{4;}

= Z(l +7)’P{A;, W, normal} + S,
j=1

where
n

S = Z(l + )P {A;, W, abnormal} .
j=1

20



By Lemma 9,
n
Sl < Z(l + ,y)jﬁ(n—nl—e)/g
j=1

< ROTTORN (1 4 )l
j=1

1— (Hfl/S)n+1

(n—nl=9)/2
- 1—kTUS
— OpBn—an'=9)/8
for some constant C' > 0.
So .
E(X,) = Z(l +7)’P{A;, W, normal} + O, </<c(3”_4"175)/8) . (13)

j=1
On the other hand,
E(Xpnt1) = S2 + S5+ Sy + S5,

where

Sy = E (Xp41 | Ao, Wy, perfect) P{Ag, W,, perfect}

S3 = E (Xp+1 | Ao, Wy, imperfect ) P {Ag, W,, imperfect}

Sy = ZE (Xn+1]4;, W, normal ) P{A;, W,, normal}
j=1

Sy = ZE (X1 |Aj, W, abnormal ) P {A;, W,, abnormal} .
j=1

By Lemma 11 and rank(W,,) =n

Sy < (K~ Y8 =" PLrank(W, 1) = n|W, is perfect and non-singular }

1/2
K
—o. | |—f
: nt=¢(1 — /{)3]

On the other hand, Lemma 9 and definition of X, 41 give

Sy < (BT — 0 ((g(enmantT/E)
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Using again Lemma 9 and definition of A;
S5 < Z 1/8 1, (n—n1=%)/2 _ 0. <&(3n—4n1*f)/8> '

If rank(W,,) = n — j then rank(W,41) is equal to n — j + 2 or n — j since W41 is a symmetric

matrix. By Lemma 10 and for n sufficiently large

E (Xn+1|Aj, W, normal) = (1 4 ) M P{rank(W,,11) = rank(W,,) |W,, normal and singular }

+ (1)t
= (1+~) <(1 +9)" '+ 0, (nlslzl — m)3>)
< a(l+9)

for some o < 1.

Then we have

n

E(Xn41) =Y (14 7)P{4;, W, normal} + Oc (f(x,n)),

j=1
where
gn—%rﬂ*E K 1/2
K
K,n) =
f( ) H(l _ H) [ nl—g(l _ Ii)?’]
Using (13)
E(Xnt1) < 0E(Xy) + O (f(k,n))
o)
E(Xnt1) < o"E(X1) + Oc (f(k,n)) -
This proves the proposition. |
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Proof of Theorem 3.b. By Markov’s inequality,

P {rank(W,) <n} =P{X,, > 1}

< E(Xn)

1/2
= 0. H)S] , (14)

nl=¢(1 -k

where we have used Proposition 3. |
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