Probabilidad

Agosto-diciembre 2010

Tarea No. 5

Fecha de entrega: jueves 14 de octubre del 2010 a las 11 horas

- 1. Encuentre la fgp de las siguientes distribuciones discretas
 - (a) Para $\lambda > 0$

$$p_k = [e^{-\lambda}/(1 - e^{-\lambda})] \frac{\lambda^k}{k!}, \quad k = 1, 2, \dots$$

(b) Para N entero positivo, 0 y <math>q = 1 - p

$$p_k = pq^k(1 - q^{N+1})^{-1}, \quad k = 0, 1, 2, ..., N.$$

- 2. Sea X una variable aleatoria con valores enteros no negativos y fgp ϕ . Sean a y b enteros no negativos. Encuentre la fgp de aX + b.
- 3. Sea X una variable aleatoria con distribución discreta $(p_k)_{k=0,1,\dots}$ y fgp ϕ . Suponga que $\mathbb{E}(X)=1$.
 - (a) Pruebe que $q_j = \mathbb{P}(X > j), j = 0, 1, 2....$ es una distribución discreta.
 - (b) Considere la fgp

$$\psi(t) = \sum_{j=0}^{\infty} t q_j.$$

Pruebe que

$$\psi(t) = \frac{1 - \phi(t)}{1 - t} \text{ para } |t| < 1.$$

- (c) Encuentre ψ en el caso en que ϕ es la fgp de una distribución de Poisson de parámetro $\lambda > 0$.
- 4. Sea N una variable aleatoria con distribución de Poisson con media $\lambda > 0$, independiente de la sucesión de variables aleatorias independientes X_1, X_2, \dots con la misma distribución logarítmica de parámetro 0 . Sea

$$Y = \sum_{i=1}^{N} X_i.$$

Encuentre la distribución de la variable aleatoria discreta Y.