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investigación, por los apoyos de todo tipo que me fueron proporcionados a lo largo de mis

estudios de licenciatura, y por la oportunidad de continuar mi formación con estudios de

posgrado.

También a la Universidad de Tennessee por la oportunidad de presentar parte de este

proyecto en las 47th Barrett Lectures en Knoxville en el año 2017, y por el apoyo económico
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Introduction

Due to numerous applications, manifold learning has recently received considerable attention;

see, for example, Ibañez et al. [19] or Zhu et al. [28]. The basic idea is as follows: given

a Point Cloud of Data (PCD) sampled from a manifold in an ambient space Rd, infer the

underlying manifold [3].

The converse issue of simulating or drawing samples from a probability distribution on

a manifold is also relevant in several problems in statistical and topological inference [10],

in comparing algorithms used in the calculation of persistent homology [24], [26], or in

evaluating MCMC methods on manifolds [8].

However, there are applications where spaces that are not manifolds arise; one example

occurs in the cyclooctane energy landscape [22], which was found to have the structure of

the union of a sphere with a Klein bottle intersecting in two rings. Stratified spaces make

up a family with less restrictions than manifolds but with enough structure to allow relevant

results to be used. Recently, Bendich et al.[2], used Topological Data Analysis (TDA) to

understand musical audio data with this kind of space. In addition, from the theoretical point

of view, Gómez-Larrañaga, González-Acuña and Heil [17] recently analyzed a particular case

consisting of stratified surfaces.

The purpose of this undergraduate thesis is to study methods to simulate random vari-

ables with different distributions that have support on a stratified space and to provide

examples of PCD using these techniques.

In 2013, Diaconis et al. [10] proposed a method to sample parametrized manifolds and

included an example of the uniform distribution of the 2-Torus embedded in R3. Their

method is based on the area formula and the Hausdorff measure [13].

We introduce simulation methods for random variables on parametrized manifolds with
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probability distributions different to the uniform distribution. We consider two general cases.

We call the first one the independent case, where we sample each parameter independently

from the others. For the second case, we sample from the domain using copulas and random

matrices theory, which model dependence between the parameters.

The particular stratified spaces that we work with are also rectifiable sets (for which

the area formula is valid). Because they are piece-wise manifolds, we are able to provide

a rich family of examples of PCD, such as data that exhibit repulsion, regions with higher

concentration, among others.

As an illustration, we provide examples that calculate persistent homology and we con-

duct an empirical analysis of convergence using the stability theorem for persistence dia-

grams.

The organization of this thesis is as follows.

In Chapter 1, we present the preliminaries of measure theory, which allows us to define

a probability distribution on manifolds and stratified spaces. These include a detailed study

of Hausdorff measure, area formula, and different notions of uniformity.

In Chapter 2, we give a brief summary of the context of stratified spaces in the related

literature, presenting the preliminaries, the concept of a stratified space, cs-sets, and basic

examples.

In Chapter 3, we deal with simulation techniques on manifolds and stratified spaces.

Section 3.1 describes the method proposed by Diaconis et al. [10] for simulating PCD with

the uniform distribution on a parametrized manifold. We also review a well-known method

for simulation from the uniform distribution on the n-sphere and the torus. Section 3.2 then

presents the independent and dependent cases (as mentioned above) with illustrations of a

simulated PCD on manifolds. The last section of this chapter will provide simulation methods

on stratified spaces, following an idea suggested in Bendich et al. [3], which basically consists

of a mixture model. Together with the techniques in the previous sections, this allows us to

simulate PCD on stratified spaces from a wide variety of distributions.

Finally, in Chapter 4 we analyze in an empirical fashion the persistent homology obtained

from the Vietoris-Rips filtration on PCD using three spaces: the polar rose, the Klein bottle

and an example with maximal strata of lower dimensions. For the polar rose and the Klein
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bottle, we analyze aspects on convergence when the size of the point cloud increases, aided

by the stability theorem and a concentration inequality proposed by Fasy et al. [12]. In

the third example, we study how the persistent homology changes when varying the weighs

in the mixture model. For this chapter, we assume that the reader is familiar with basic

notions of Topological Data Analysis; otherwise we recommend [11].



Chapter 1

Preliminaries on Probability

The Lebesgue measure extends the concepts of length, area, and volume to a wider collection

of subsets of Rd. There are, however, limitations to this extension. For example, a surface

embeded in R3 will typically have 3-dimensional Lebesgue measure equal to 0. Here, we

are interested in a measure that allows us to capture the 2-dimensional features of this set,

regardless of the ambient space, which is the motivation behind the Hausdorff measure.

A natural question is how to calculate the Hausdorff measure of a set. If the set that we

want to measure happens to be an image under a function f of a subset of Rk, then the area

formula allows us, under certain assumptions, to calculate the Hausdorff measure using the

Lebesgue measure of the domain. This will be possible no matter what the dimension of the

ambient space is.

Section 1.1 will describe the construction of the Hausdorff measure. Section 1.2 will

provide a proof of the area formula. Finally, Section 1.3 will provide some common notions

of uniformity.

The content of Sections 1.1 and 1.2 is mostly based on Section 19 of Billingsley’s [5] book

and Section 2.10.1 of Federer’s [13] book. Section 1.3 is based on Chapter 3 of [6]. This

thesis will use the notation λd for the d-dimensional Lebesgue measure; for the special case

d = 1, we will simply write λ.

4



CHAPTER 1. PRELIMINARIES ON PROBABILITY 5

1.1 Hausdorff Measure

The results for this construction are taken from Federer [13] and Billingsley [5].

1.1.1 Carathéodory’s Construction

This general construction is used to define measures in a metric space, such as the Hausdorff

measure.

Let (X, ρ) be a metric space, F be a family of subsets of X, and ζ : F → [0,∞] be a set

function such that ∅ ∈ F and ζ(∅) = 0.

For each 0 < δ ≤ ∞, we define a set function φδ : 2X → [0,∞] as

φδ(A) = inf
S∈G

∞∑
n=1

ζ(S), (1.1)

where the infimium is taken over all the countable families G ⊂ {S ∈ F : diam(S) ≤ δ}

and A ⊂
⋃
S∈G S. Recall that the infimum of an empty set is defined as ∞. If σ > δ, then

the previous infimum is taken over a smaller family, so φδ does not decrease as δ decreases.

Thus, we can define (for A ⊂ X)

ψ(A) = lim
δ→0+

φδ(A) = sup
δ>0

φδ(A). (1.2)

ψ is called the result of Carathéodory’s construction from ζ on F , and φδ is called the

size δ approximating measure.

We will now prove that ψ and φδ (for every δ > 0) are outer measures.

Proposition 1.1. For every δ > 0, φδ is an outer measure of X.

Proof. Fix δ > 0. It is clear that φδ(A) ∈ [0,∞] for every A ⊂ X, φδ(∅) = 0 and A ⊂ B

implies φδ(A) ≤ φδ(B). We only need to prove that φδ is countably subadditive.

Fix ε > 0. Let {An}∞n=1 be a sequence of subsets of X. If φδ (An) = ∞ for any n, then

clearly φδ (
⋃∞
n=1An) ≤

∑∞
n=1 φδ(An). Now suppose φδ(An) < ∞ for every n. For each An,

there is a cover {Bnk}∞k=1 ⊂ {S ∈ F : diam(S) ≤ δ} such that
∑∞

k=1 ζ(Bnk) < φδ(An)+ε/2n.

Then,

φδ

(
∞⋃
n=1

An

)
≤
∑
n,k

ζ(Bnk) <
∞∑
n=1

φδ(An) + ε.
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This is true for every ε > 0, so the desired inequality follows. �

Proposition 1.2. ψ is an outer measure of X.

Proof. Clearly ψ(A) ∈ [0,∞] for every A ⊂ X. As φδ(∅) = 0 for every δ > 0, we have

ψ(∅) = 0.

Let A ⊂ B be subsets of X. For every δ > 0, we have φδ(A) ≤ φδ(B), so by taking the

limit on both sides, we have

ψ(A) = lim
δ→0+

(A) ≤ lim
δ→0+

(B) = ψ(B).

If A1, A2, . . . are subsets of X, we have for every δ > 0 that,

φδ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

φδ(An) ≤
∞∑
n=1

ψ(An),

so

ψ

(
∞⋃
n=1

An

)
= lim

δ→0+
ψδ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

ψ(An).

Because all conditions are verified, ψ is an outer measure. �

At this point it is worth mentioning that although “Carathéodory’s construction converts

an arbitrary method ζ of estimation on F to a well behaved measure ψ over X” (Federer

[13]), it does not necessarily extend ζ.

Because X has the metric topology induced by ρ, we are interested in measuring Borel

subsets of X. The following theorem gives a sufficient condition for B(X) to be measurable

by an outer measure µ∗.

Theorem 1.1 (Carathéodory’s criterion). Let µ∗ be an outer measure of a metric space

(X, ρ). If µ∗(A ∪ B) = µ∗(A) + µ∗(B) whenever ρ(A,B) > 0, then every set in B(X) is

µ∗-measurable.

Proof. Because the collection of closed subsets of X generate B(X), it suffices to prove that

every closed set is µ∗-measurable; that is, we must prove that for A closed and E arbitrary,

µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac).
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Let B = A ∩ E, C = Ac ∩ E, and for n = 1, 2, . . ., let Cn = {x ∈ C : ρ(x,A) ≥ 1/n}. As

ρ(B,Cn) > 0 for every n, we have

µ∗(E) = µ∗(B ∪ C)

≥ µ∗(B ∪ Cn)

= µ∗(B) + µ∗(Cn) (Carathéodory’s condition)

Then, we only need to prove that µ∗(Cn)→ µ∗(C). Because Cn ↑ C, it is equivalent to prove

that limn µ
∗(Cn) ≥ µ∗(C).

Let Dn = Cn+1 \ Cn. We will prove that ρ(Dn+1, Cn) > 0, whenever they are nonempty.

Let x ∈ Dn+1 = Cn+2 \ Cn+1; that is, x ∈ C and

1

n+ 2
≤ ρ(x,A) <

1

n+ 1
.

If y is such that ρ(y, x) < n−1(n+ 1)−1, we have

ρ(y, a) ≤ ρ(y, x) + ρ(x,A)

<
1

n

1

n+ 1
+

1

n+ 1

=
1

n
− 1

n+ 1
+

1

n+ 1
=

1

n
,

so y /∈ Cn. Therefore, if y ∈ Cn, ρ(x, y) ≥ n−1(n + 1)−1. Because Dn−1 ⊂ Cn, we have

n−1(n + 1)−1 ≤ ρ(Dn+1, Cn) ≤ ρ(Dn+1, Dn−1). By the Carathéodory condition, we get by

induction

µ∗(C2n+1) ≥ µ∗

(
n⋃
k=1

D2k

)
=

n∑
k=1

µ∗(D2k), (1.3)

µ∗(C2n) ≥ µ∗

(
n⋃
k=1

D2k−1

)
=

n∑
k=1

µ∗(D2k−1). (1.4)

By subadditivity,

µ∗(C) ≤ µ∗(C2n) +
∞∑
k=n

µ∗(D2k) +
∞∑

k=n+1

µ∗(D2k−1). (1.5)

If either
∑
µ∗(D2k) or

∑
µ∗(D2k−1) diverge, µ∗(C) ≤ limn µ

∗(Cn) follows from (1.3); other-

wise, it follows from (1.5).

�



CHAPTER 1. PRELIMINARIES ON PROBABILITY 8

1.1.2 Definition and Properties of the Hausdorff Measure

Although we will use the Hausdorff Measure for subsets of Rd, it is defined for a general

metric space.

Let (X, ρ) be a metric space and k be a positive real number. In the Carathéodory

construction consider F = 2X and ζ : F → [0,∞] given by ζ(S) = ck diam(S)k, where

ck is a positive constant, which will be defined later. The approximating outer measures

φδ and resulting outer measure ψ will be denoted by Hk
δ and Hk, respectively. Hk is the

k-dimensional Hausdorff outer measure of X.

Specifically, for δ > 0 and A ⊂ X we have

Hk
δ (A) := inf ck

∑
n

(diamBn)k, (1.6)

where the infimum is taken over all the countable coverings of A by sets Bn with diameters

diamBn = sup{ρ(x, y) : x, y ∈ Bn} less than δ.

As stated in the previous section, we are interested in measuring Borel subsets of X.

We will use the Carathéodory condition to prove that Hk is well defined over B(X). Let

A,B ⊂ X be such that ρ(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B} > 0. Let ε > 0 be such

that ε < ρ(A,B). If A ∪ B ⊂
⋃
Cn and diamCn < ε for all n, then no Cn can intersect

both A and B, so
∑
ck(diamCn)k may be split into the series of those that intersect A and

B, respectively. This shows that it is at least Hk
ε(A) + Hk

ε(B). Therefore, Hk
ε(A ∪ B) ≥

Hk
ε(A) +Hk

ε(B). This is true for every 0 < δ < ε, so taking the limit when δ → 0+ yields

Hk(A ∪B) ≥ Hk(A) +Hk(B). (1.7)

As Hk is an outer measure, the other inequality follows, so Hk(A ∪ B) = Hk(A) +Hk(B).

Thus, Carathéodory’s condition is satisfied and Hk restricted to B(X) is a measure.

We now only need to choose an adequate constant ck. The motivation for defining Hk

is to extend the Lebesgue measure, so it is reasonable to require that Hk and λk agree on

B(Rk). Let Vk be the volume of a ball of radius 1; that is, V1 = 2 and

V2i−1 =
2(2π)i−1

1 · 3 · . . . · (2i− 1)
, V2i =

(2π)i

2 · 4 · . . . · (2i)
.
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More generally, we have

Vk =
Γ
(
1
2

)k
Γ
(
k
2

+ 1
) ,

allowing k to be any positive real number, although we will only consider integer values of

k. We take ck = Vk/2
k the volume of a ball of diameter 1. For this choice of ck, we have the

following result.

Theorem 1.2. If A ∈ B(Rk), then Hk(A) = λk(A).

Before proving this, we make some remarks. The unit cube C = [0, 1]k in Rk can

be covered by nk cubes of side n−1 and diameter
√
kn−1. If n >

√
kε−1, then Hk

ε(C) ≤

ckn
k(k1/2) = ck

√
kk, showing that Hk(C) <∞. If C ⊂

⋃
nBn and diamBn = dn, enclose Bn

in a closed ball Sn of radius dn. Then C ⊂
⋃
n Sn and so 1 = λk(C) ≤

∑
n λ

k(Sn) =
∑

n Vkd
k
n.

Thus, Hk(C) ≥ ck/Vk so Hk(C) is nonzero.

Now, if Hk(C) = K, because λk(C) = 1, then we have Hk(C) = Kλk(C). Consider the

mapping x 7→ θx for a fixed θ > 0. Because this mapping is linear and nonsingular, A ∈

B(Rk) implies θA ∈ B(Rk) and λk(θA) = θkλk(A). We also have that diam(θA) = θk diamA,

so it follows from (1.6) that

Hk(θA) = θkHk(A). (1.8)

Then Hk(A) = Kλk(A) holds for every cube A, and by additivity it holds for rectangles

whose vertices have rational coordinates. Because the family of this kind of rectangles form

a π-system that generates B(Rk), Hk(A) = Kλk(A) holds for every A ∈ B(Rk).

Then, to prove theorem 1.2, we only need to prove K = 1. To do this, we will use two

lemmas.

Lemma 1.1. Suppose that G is a bounded open set in Rk and that ε > 0. Then, there

exists in G a disjoint sequence S1, S2, . . . of closed balls such that λk(G \
⋃
n Sn) = 0 and

0 < diamSn < ε.

Lemma 1.2. If A ∈ B(Rk), then λk(A) ≤ ck(diamA)k.
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Proof of theorem 1.2. Let C = [0, 1]k be the unit cube in Rk. We need to prove that K :=

Hk(C) = 1. Let ε > 0. By lemma 1.1, we can cover the interior of C with a sequence of

disjoint closed balls S1, S2, . . . such that diamSn < ε and

Hk
ε(S \

⋃
n Sn) ≤ Hk(C \

⋃
n Sn) = Kλk(C \

⋃
n Sn) = 0.

Because ck = Vk/2
k, we have

Hk
ε(C) = Hk

ε(
⋃
n Sn) ≤ ck

∑
n(diamSn)k

= ck
∑

n
1
ck
λk(Sn) ≤ λk(C).

This is true for every ε > 0, so Hk(C) ≤ 1.

If C ⊂
⋃
nBn, then by lemma 1.2 we have 1 ≤

∑
n λ

k(Bn) ≤
∑

n ck(diamBn)k, so

Hk(C) ≥ 1. �

Corolary 1.1. If A ⊂ Rm and B ⊂ Rk is an isometric copy of A, then Hm(B) = Hm(A) =

λm(A).

1.2 Area Formula

This section is based mainly on Section 2.1 in Diaconis et al.’s [10] paper. For a discussion

at length on these topics, see, for example, the book by Federer [13].

Given the k-dimensional Hausdorff measure, we would now like to use it on an ambient

space. With this goal in mind, we present some definitions and results. The first ones that

we will need are those of a Lipschitz function and a rectifiable set.

Definition 1.1. A function f : Rk → Rd is Lipschitz if there is a positive constant c > 0

such that ‖f(x)− f(y)‖ ≤ c ‖x− y‖ for all x, y ∈ Rk (with ‖·‖ the usual Euclidean norm).

A set in Rd is rectifiable if it is the image of a bounded subset in Rk under a Lipschitz

function.

Remark. (Federer[13]) In (1.6), the coverings can be restricted to balls or cubes if A is

rectifiable.
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Df(x) will denote the matrix associated to the derivative of f at x in the typical sense,

when it exists. A theorem by Rademacher establishes the existence λk-almost everywhere

of Df(x) when f is a Lipschitz function. In this case we can define the i-th dimensional

Jacobian, which is denoted by Jif(x).

Definition 1.2. Let f : Rk → Rd, be differentiable at x ∈ Rd. We define the i-dimensional

Jacobian of f at x, Jif(x), as the maximum i-dimensional volume of the image of a i-

dimensional unit cube under Df(x); that is,

Jif(x) = max
C

vol(Df(x)(C)),

where C is a i-dimensional unit cube.

When i = k we have (Diaconis et al. [10])

Jkf(x) =
√
det(Df(x)TDf(x)).

We now present the area formula theorem. This theorem allows us to compute an integral

with respect to Hk of a function on a k-dimensional manifold by computing instead of an

integral with respect to the Lebesgue measure of a function over Rk.

Theorem 1.3 (Area Formula). Let f : Rk → Rd be Lipschitz, with k ≤ d. We define

N(f |A, y) = #{x ∈ A : f(x) = y}.

Then:

1. If A is λk-measurable, ∫
A

Jkf(x)λk(dx) =

∫
Rd

N(f |A, y)Hd(dy).

2. Furthermore, if g : Rk −→ R is any Borel function,∫
A

g(f(x))Jkf(x)λk(dx) =

∫
Rd

g(y)N(f |A, y)Hk(dy)

=

∫
Rd

∑
x∈f−1(y)

g(x)Hk(dy).
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We will be interested in taking f : A → Rd a parametrization of a manifold. However,

the theorem requires the function to be Lipschitz over all Rk. The following theorem allows

us to use the Area Formula more generally without any issue. The proof can be read, for

example, in [13].

Theorem 1.4 (Kirszbraun). If A ⊂ Rk and f : A→ Rd is Lipschitz, then there is a Lipschitz

function g : Rk → Rd such that g|A = f and both have the same Liptschitz constant.

1.3 Uniformity

The term uniform can be found throughout the literature of topological data analysis. The

purpose of this section is to define with precision the meanings this term can take. These

definitions will be used in Section 4. In [6] this topic is discussed in more detail.

Usually, the first notion of uniform distribution is that of a probability measure on the

power set of a finite set {a1, . . . , ak}: that is, P(ai) = 1/k for i = 1, . . . , k.

The next natural notion of this concept is the uniform measure on an interval [a, b]. The

uniform distribution (probability) on B([a, b]) is that which to every set A ∈ B(R) assigns

the probability

P[A] =
λ(A ∩ [a, b])

b− a
.

An immediate extension of this case is that of the uniform distribution on a compact set

K ⊂ Rd, where the uniform distribution on K is defined as

P[A] =
λd(A ∩K)

λd(K)
=

∫
A

1K
λd(K)

dλd.

In the last example, the uniform distribution is obtained from a previously constructed

measure, which in this case is λd, and the new measure relies on the fact that 0 < µ(K) <∞.

With this idea in mind, we give a general definition of a uniform distribution.

Definition 1.3 ([6]). Let µ be a measure space on a metric space (M, ρ), and K ∈ B(M)

such that 0 < µ(K) < ∞. Let B(K) = B(M) ∩K. The probability measure µK on B(K)

defined by

µK(A) =
µ(A)

µ(K)
, A ∈ B(K).



CHAPTER 1. PRELIMINARIES ON PROBABILITY 13

is µ-uniform: that is, µK(A) = µK(B) if and only if µ(A) = µ(B). K is usually a compact

set and µ a Radon measure.

Using the Hausdorff measure on a manifold M, in Section 3.1 we will be able to define

the uniform distribution on a manifold.

A second notion of uniformity is for measures (not necessarily probability measures)

defined on metric spaces. A measure µ defined on a metric space (M,B(M)) is uniform if

for every ε > 0, µ(Bε(x1)) = µ(Bε(x2)) for all x1, x2 ∈ M; that is, all balls with the same

radius have the same measure.

One last notion of uniformity arises in the context of random vectors/matrices: the

uniform distribution is invariant under left orthogonal (or unitary) transformations in the

Stiefel manifold, which is defined as follows. Let Rd×p be the vector space of d× p matrices

with real entries and norm given by

‖S‖2 =
1

d
Tr(STS), S ∈ Rd×p.

Then, the Stiefel manifold Ldp is defined as

Ldp = {T ∈ Rd×p : T TT = Ip}.

For a brief discussion and references on this topic, see Section 3.3.1 of [6].

1.3.1 Uniformly Distributed Measure

In this section, we will consider measures defined on the Borel σ-algebra of a polish metric

space; that is, measures on (M,B(M)), where (M, ρ) is a metric space.

Definition 1.4. A measure defined over (M,B(M)) is a Radon Measure if it satisfies the

following two conditions:

• µ is Borel: this is, for every x ∈M there is r ∈ (0,∞) such that µ(Br(X)) <∞.

• µ is inner regular: for every A ∈ B(M),

µ(A) = sup{µ(K) : K ⊂ A,K is compact}.
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Probability measures on (M,B(M)) and Lebesgue-Stieltjes measures on (R,B(R)) are

examples of Radon measures.

Definition 1.5. The support of a Radon measure µ on (M,B(M)) is defined as the set

supp(µ) =
⋂

µ(Cc)=0,
C is closed

C

It is well-defined, as M is a closed subset, and its complement is a null set.

Definition 1.6. A Radon measure µ on (M,B(M)) is uniformly distributed if

µ(Br(x)) = µ(Br(y)), ∀x, y ∈ supp(µ), r ∈ (0,∞)

were Br(x) = {y ∈M : ρ(x, y) < r}.

Theorem 1.5 (Christensen). If µ1, µ2 are two uniformly distributed measures on (M,B(M)),

then there is a constant 0 < c <∞ such that µ1 = cµ2.

The previous theorem means that up to a multiplicative constant, the uniform measure

in a polish metric space is unique.

The Lebesgue measure and the counting measure are examples of uniformly distributed

measures.

Remark 1. Since a compact set K is bounded, the uniform distribution described on defini-

tion 1.3 is not a uniformly distributed measure.



Chapter 2

Stratified Spaces

There are topological spaces that are not manifolds but which can be separated into pieces

that are manifolds and fit together ‘nicely’. This is the basic idea behind a stratified space.

These spaces may or may not be subsets of Rd. In [16], for example, one of such spaces

is constructed with equivalence relations on a surface, and it is not immediately seen as a

subset of an Euclidean space (although they may be homeomorphic to one). For our purposes,

however, we will only consider topological spaces that are embeded in some Euclidean space

Rd.

The requirements on how the pieces that are manifolds need to fit together vary across the

literature where they appear. Hughes and Weinberger’s [18] paper gives an extensive review

on different requirements for a stratified space that have come up across related literature.

The study of these spaces has received special attention in areas like homology/cohomology

and topological data analysis (which is strongly based on the first). Bendich et al. [3], for

example, present a method for clustering data points into different strata. Bhattacharya et

al. in [4] present one version of the Central Limit Theorem for random objects supported on

a stratified space. In a recent paper titled “Challenges in Topological Object Data Analysis”

by Patrangenaru et al. [25], the objects of interest are “points on some manifold or stratified

space”.

In our context, we are interested in working with so called cs-spaces. This chapter is

mostly based on the definitions given in the lecture notes by Friedman [15], where the goal

is “to provide a single coherent exposition of the basic piecewise linear and singular chain

15
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intersection homology theory as it has come to exist today”. There, a succession of classes

of spaces is introduced, beginning with general filtered topological spaces and introducing

each time more requirements. We are interested in this development of the definition of a

cs-space because some of the preliminary spaces come up in some of the topological data

analysis-related literature, such as in [1].

In this chapter we aim to give a brief introduction to notions of stratified spaces needed

in Chapter 3. In Section 2.1, we give preliminaries and we then define stratified spaces and

cs-sets, and give a basic example.

2.1 Filtered Spaces

We assume all topological spaces to be Hausdorff. We begin with the definition of a filtered

topological space.

Definition 2.1. A filtered space is a Hausdorff topological subspace X together with a

sequence of closed subsets

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn = X,

for some integer n ≥ −1, which will be the formal dimension of X. The space X i is called

the i-skeleton, and it has formal dimension i.

Remarks.

• The smallest integer is always −1 and X−1 is always the empty set, so it will not be

mentioned explicitly.

• It is possible to have X i = X i−1.

• We will usually be working with X a subset of Rn. In these cases, each subspace in

the filtration must be a closed set in the topology of X, although some of them may

not be closed sets in the topology of Rn.

• For this class of spaces, i is the formal dimension of the i-skeleton. This formal dimen-

sion does not necessarily relate with other concepts of dimension.
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Definition 2.2. For a filtered space X of formal dimension n we define Xi = X i \ X i−1.

The connected components of Xi are called the strata of X of formal dimension i or formal

codimension n− i. The strata of all dimensions partition X.

The strata of formal dimension n are the regular strata and all the others are the singular

strata.

Example 2.1. Consider X = {(x, y) ∈ R2 : y > 0}∪Y , with Y = {(x, y) : x = 0} the vertical

axis. X is a filtered space with the filtration

∅ ⊂ X0 = {(x, y) ∈ R2 : x ≤ 0, y > 0} ∪ {(0, 0)}

⊂ X1 = X.

Note X0 is not a closed subset of R2, but it is a closed subset of X. X is also a filtered space

with the filtration given by ∅ ⊂ Y ⊂ X.

Example 2.2. Let X be a finite-dimensional simplicial complex. Its simplicial skeleta induce

a filtration, where the strata are the open simplices.

This example is important because one of our motivations is to work with datasets in

Topological Data Analysis, where triangulable spaces are of special importance.

To avoid some of the possible pathologies in how the strata can fit together, we introduce

the frontier condition.

2.2 Definition and Example

Definition 2.3. We say the filtered space X satisfies the frontier condition if for any two

strata S, T ,

S ∩ T̄ 6= ∅ ⇒ S ⊂ T̄ , (2.1)

where T̄ is the closure of T (in X).

Definition 2.4. A stratified space is a filtered space that satisfies the frontier condition.

Remark. If S, T are strata of a stratified space X, we will write S ≺ T if S ⊂ T̄ . We have

that ≺ is a partial order. We also have that the closure of any stratum is a union of strata

of lower dimension: T̄ =
⋃
S≺T S.
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At this point, we introduce the definition of a manifold because the next type of spaces

will have manifolds as strata.

Definition 2.5. A (topological) n-manifold M is a space that is locally homeomorphic to

Rn; that is, there exists a covering U = {Uα} of M along with homeomorphisms

φα : Uα → Rn.

Definition 2.6. A manifold stratified space is a stratified space if every i-dimensional stra-

tum is a (possibly empty) i-manifold.

Remark. It can be easily verified that a finite dimensional simplicial complex X filtered by

its simplicial skeleta satisfies the frontier condition (it actually follows from the definition).

We also have that the strata are the open simplices, so X is a manifold stratified space.

For our purposes, the definition of a manifold stratified space is enough. However, even

though they have a nice structure, it is still a general setting and more requirements are

needed for the results. Thus, we present two more definitions that are commonly used in

the TDA-related literature.

First, we recall the definition of the cone of a topological space X.

Definition 2.7. The (closed) cone C̄X of a compact topological space X is defined as the

quotient space (X × [0, 1])/(X × {0}). Intuitively speaking, it is obtained from collapsing

one end of the cylinders X × [0, 1] into a point. The open cone CX is the topological space

obtained from the quotient

X × [0, 1)
/
X × {0} .

Alternatively, it may be seen as the space obtained from removing ‘the other end’ from

the closed cone: CX = C̄X \ (X × {1}).

Definition 2.8. A filtered space X of formal dimension n is locally cone-like if for each i

and x ∈ Xi there is a neighborhood U of x ∈ Xi, a neighborhood N of x in X, a (possibly

empty) compact filtered space L, and a homeomorphism h : U × cL→ N such that

h(U × C(Lk)) = X i+k+1 ∩N.



CHAPTER 2. STRATIFIED SPACES 19

L is called a link of x and N is called a distinguished neighborhood of x.

A cs-set is a locally cone-like filtered space whose i-dimensional strata are i-dimensional

manifolds. In this case, the previous requirement is equivalent to the following: for every

x ∈ Xi, there is a neighborhood N of x and a filtration-preserving homeomorphism N ∼=

Ri × CL, where L is a compact (n− i− 1)-dimensional stratified space.

The definition of a cs-set is used, for example, in Bendich et al. [3]. We next give an

example of a cs-set.

Example 2.3. Consider the space X ⊂ R3 consisting of a 2-sphere and a disc in its equator,

both of which are punctured by a closed curve as shown:

Figure 2.1: Example 2.3

We will denote the sphere by Γ2, the disc by Γ1, the equator by β, the closed curve by α,

and the intersection points of α by p, q, r as shown. We propose the following filtration:

X2 = X ⊇ X1 := α ∪ β ⊇ X0 := {p, q, r} ⊇= ∅.

Now let us see that this filtration meets the required condition.

(a) X0 = {p, q, r}. We see that if x ∈ S0, x has an open neighborhood homeomorphic to

R0 × CLx ∼= CLx, where Lx is a space consisting of a circle and two external points (it

can be easily verified that this is a stratified space of dimension 2− 0− 1 = 1).
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(b) X1 = (α ∪ β) \ {p, q, r}. If x ∈ X1 lies in β, then x has an open neighborhood homeo-

morphic to R1×CLx, where Lx is a space consisting of three points (which is a stratified

space of dimension 2− 1− 1 = 0).

(c) If x ∈ X1 lies in α, then x has an open neighborhood that is homeomorphic to R1×CLx,

where Lx is the empty set (recall that the cone of the empty set consists of only one

point).

(d) We have that X2 = Γ1 ∪ Γ2 \ (α ∪ β), which is a manifold consisting of three connected

components where each component is homeomorphic to an open disc. Thus, every x ∈ X2

has an open neighborhood homeomorphic to R2 × C∅.
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Chapter 3

Simulation Methods

In this chapter, we will deal with simulation techniques on manifolds and stratified spaces.

Section 3.1 is based on Diaconis et al. [10], and we recall a method by Marsaglia [21] to sim-

ulate from the uniform distribution on the 2-sphere, and an extension of this result. Section

3.2 introduces two general methods to simulate point cloud data on parametrized manifolds:

the first considering independent parameters, and the second with models for dependence

using copulas of multivariate distributions and the circular law in random matrices theory.

In Section 3.3, we provide simulation methods on stratified spaces.

3.1 Uniform distribution on a parametrized manifold

In this section, we present an algorithm to simulate Hk-uniformly distributed points on a

particular on a k-dimensional parametrized manifold embedded in Rd (k < d). The content

presented in this section is based on Diaconis et al.’s [10] paper, where only the example of

the torus is presented.

The Hausdorff measure allows us to define the concept of volume for a wider class of sets,

and the area formula∫
A

g(f(x))Jkf(x)λk(dx) =

∫
Rd

g(y)N(f |A, y)Hk(dy) (3.1)

relates this measure with the Lebesgue measure on Rk. Thus, we can get a sample with

a particular distribution with respect to the Hausdorff measure from a distribution on the

22



CHAPTER 3. SIMULATION METHODS 23

domain. In the context of this work, f is a parametrization of a manifold M and A is a

Lebesgue measurable subset in the domain of f . Note that for y 6∈ f(A), N(f |A, y) = 0,

so the right-hand integral of (3.1) is calculated just on M. Hence, the goal is to get a

sample of points from the density Jmf/ vol(M) (on the domain of f); noting that by making

g ≡ 1/ vol(M), we obtain from the area formula

∫
A

1

vol(M)
Jkf(x)λk(dx) =

∫
Rd

1

vol(M)
N(f |A, y)Hk(dy).

In the examples presented later N(f |A, y) is equal to 1 or 0, Hk-a.s., and therefore the

right-hand integral is equal to the Hk-uniform measure of f(A) on M.

Given that the density function Jkf/ vol(M) may not be a known distribution, the

acceptance-rejection (A-R) method is useful to get the desired samples. This method (and

how to use it in this context) is discussed in detail in Appendix A. The domain is usually

of the form D =
∏k

i=1[ai, bi]; so to apply the A-R method, we may take g as the λk-uniform

distribution over D.

There are times at which the domain may take a more general form. In this case, it is

also possible to use the A-R method to get a sample from the uniform distribution on the

parametrization’s domain: get a uniform sample from a k-dimensional rectangle (a set of the

form of D in the previous paragraph) and then reject those points outside of the domain of

f .

Example 3.1. The 2-torus T2 embedded in R3 can be parametrized using

x = (R + r cos(θ)) cos(φ),

y = (R + r cos(θ)) sin(φ),

z = r sin(θ),

for 0 ≤ θ, φ < 2π, where R is the distance from the center of the torus to the center of the

tube (major radius) and r is the radius of the tube (minor radius), and R > r > 0.

A quick calculation yields

J2
2f(θ, φ) = r2(R + r cos(θ))2,
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so

1 + (r/R) cos(θ)

4π2
(3.2)

is the density on [0, 2π)× [0, 2π) which induces the H2-uniform measure on T2 via the area

formula. Note that (3.2) can be written as the product of the uniform density on [0, 2π) and

a density on [0, 2π) which depends only of θ:

1

2π

1 + (r/R) cos(θ)

2π
.

Therefore, sampling from the density J2f/ vol(T2) is equivalent to sampling two independent

random variables on [0, 2π) from the mentioned densities. For the case of the density (1 +

(r/R) cos(θ))/(2π), we can use the acceptance-rejection method. The following image shows

the contrast between sampling from the H2-uniform distribution on the torus and sampling

from the λ2-uniform distribution on [0, 2π)× [0, 2π) (and mapping those points to the torus).

Using the second method, the sample is concentrated at the central part of the torus.
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Figure 3.1: Top: Sample of size 500 from the H2-uniform measure on the torus. Bottom:

sample using the λ2-uniform distribution.

3.1.1 Uniform Distribution on the Sphere

For the particular case of the uniform distribution on the n-sphere, there is a simple algorithm

that was introduced by Marsaglia [21] and Muller [23].

If X is a 3-dimensional random vector with the trivariate standard distribution (mean

(0, 0, 0)T and the identity matrix as covariance matrix), then X/ ‖X‖ will have uniform dis-

tribution on the unitary sphere embeded in R3. For sampling from the uniform distribution

on the sphere centered on a ∈ R3 with radius r > 0, it suffices to take a + rX/ ‖X‖.

Figure 3.2: sample from the uniform distribution on the 2-sphere



CHAPTER 3. SIMULATION METHODS 26

This result extends immediately to dimensions greater than two: if X has multivariate

normal distribution with mean 0 ∈ Rk and the identity (of size k × k) as covariance matrix,

then X/ ‖X‖ is Hk−1-uniformly distributed on the (k − 1)-sphere.

These ideas are extended in Pérez-Angulo [26] to simulate PCD on the sphere and the

torus, with a large class of distributions other than the uniform distribution.

3.2 Distributions Induced on a Manifold Using the

Parametrization

In the previous section, we studied the notion of uniform distribution on a manifold and a

method to sample from this distribution was presented. Now, we show some distributions

on manifolds induced by distributions on the domain of a parametrization.

In the following sections, we will deal with a manifoldM parametrized by g with domain

A. Given a distribution F on A, under certain assumptions, F ◦ g−1 induces a a distribution

on M.

The distributions on A will be distinguished according to the election of the parameters.

If each parameter is chosen independently of others, then we will say that we are in the

independent case, otherwise we will say that we are in the dependent case.

3.2.1 Independent Case

In this case, a distribution function is specified for each parameter and the sample is generated

according to the product measure. In the first example, each parameter is chosen from the

uniform distribution. This method is very simple and natural.

Uniform distribution on the parameters

A simple and natural method for simulating points on a parametrized manifold is to simulate

a random vector X = (x1, . . . , xk) with uniform distribution on A, the domain of g, and map

the points to M. In many cases, A =
∏k

i=1[ai, bi] and so choosing a point in A according to

the uniform distribution on A, is equivalent to choosing a point, for each i, uniformly and
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independently on [ai, bi]. For more general domains, the algorithm of acceptance-rejection

can be used.

One consequence of the area formula is that the density of the uniform distribution gives

a density proportional to 1/Jkf on the manifold. Hence, the measure of a region onM will

be inversely proportional to the Jacobian.

The method described in this section is used in many applications to simulate points

on manifolds; expecting that for a sufficiently large sample, the manifold will be covered

uniformly. But, as will be seen later, this method does not always give these results. In fact,

this method gives these results if and only if the Jacobian of the parametrization is constant.

Distribution with Other Margin Distributions

A more general simulation scenario can be established as follows. Given F1, . . . , Fk real

distribution functions, a point Xi is simulated according to Fi for each i and the vector

(X1, . . . , Xk) is mapped to M. This method can be implemented in a simple way and only

depends on the ability to simulate points according to a real distribution. This method is

not as flexible as may be desired, but some regions of high concentration of points can be of

interest.

This simulation can lead to examples of manifolds that are covered “slowly”. In other

words, there are examples where it is necessary to simulate a large number of points to

obtain a point in some specific regions. Taking as margins the semicircle distribution, gives

one such example.

3.2.2 Dependent Case

The first method in this section is based on Girko’s circular law. For the second method, the

theory of copulas is used. This theory enables to simulate random vectors with some kind

of correlation and specified margins.
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Distribution Induced by the Circular Law

We obtain a sample in the parameters that is not induced by a product measure; now the

parameters are correlated to each other. In this section, Girko’s circular law theorem is used.

This theorem, roughly speaking, states that the eigenvalues of a n× n random matrix with

i.i.d. entries, mean 0 and variance 1/n have as limiting distribution the uniform distribution

on the complex disc. The points obtained are not independent and some ‘repulsion’ can be

observed between them. Moreover, due to this repulsion, the points mapped to the manifolds

exemplified are ‘nearer’ to the Hk-uniform distributed points. In the following paragraphs,

we give a brief exposition of the circular law, which is based on [7]. After presenting the

main result on the circular law, a method for inducing a sample in the parameters is shown.

For a matrix A ∈Mn(C), the empirical measure of its eigenvalues is defined as

µA =
n∑
k=1

1

n
δλk(A),

where λk(A) denotes the k-th eigenvalue ordered decreasingly by their norm.

For a random complex variable Z, the variance of Z is V ar(Z) = E(|Z|2) − |E(Z)|2.

Given a random complex variable Z with variance 1 and mean 0, for each n let M ∈Mn(C)

the random matrix such that 1 ≤ i, j ≤ n, Mij are i.i.d. random variables distributed as Z.

We are now ready to state Girko’s circular law. In the theorem, the convergence is the

weak convergence of probability measures with respect to bounded continuous functions.

Theorem 3.1. µn−1/2M → C1 as n→∞, where C1 is the uniform law on the unitary complex

disc C, with density

z 7→ 1

π
1{z∈C||z|≤1}. (3.3)

So, we obtain the following algorithm

• Simulate an n× n matrix M with i.i.d. entries (2n)−1/2(N1 + iN2), being N1, N2 i.i.d.

random normal variables.

• Compute the eigenvalues of M .
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• Accept the points in
[
−2−1/2, 2−1/2

]
×
[
−2−1/2, 2−1/2

]
.

• Map the points linearly to [0, 2π]× [0, 2π].

Because the area of the square taken in consideration is 2, we obtain that the number of

sampled points is approximately the 200/π ≈ 63% of the total number of points generated

by taking the eigenvalues. Hence, if the goal is to obtain n points, then the generation of

nπ/2 points is necessary.

The following example shows the difference between two point clouds consisting on 200

points: one of them was simulated according to the uniform distribution on [0, 2π] and

the other one according to the method presented previously. Due to repulsion between the

eigenvalues of the simulated matrix, repulsion between the points is observed.

Figure 3.3: Comparison between sample from uniform distribution (left) and sample with

repulsion between points (right)
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Figure 3.4: 500 points sampled from the uniform distribution on [0, 2π]2 and mapped to the

torus (left) vs. 500 points sampled with repulsion and mapped to the torus.

Distributions Obtained Using the Theory of Copulas

As before, the real distribution functions F1, . . . , Fk are given. The goal is to simulate point

clouds where the components are correlated and the i-th component has Fi as distribution.

In the following paragraphs, some notions of this theory are discussed to use them for our

purpose. An extensive treatment of this topic can be seen in [20].

Definition 3.1. Let k ≥ 2. A k-dimensional copula is a k-multivariate distribution on [0, 1]k

such that their univariate margins are uniformly distributed on [0, 1].

The following theorems show how to simulate points with some multivariate distribution

with margins specified, having certain dependence between them.

Theorem 3.2 (Sklar). Let F be a k-multivariate distribution function with univariate mar-

gins F1, . . . , Fk. For each j, let Aj the range of Fj, i.e. Aj = Fj(R). Then there exists a

copula C such that for all (x1, . . . , xk) ∈ Rk,

F (x1, . . . , xk) = C(F (x1), . . . , Fk(xk)). (3.4)

Such C is uniquely determined on A1× · · · ×Ak; thus, when F1, . . . , Fk are continuous, C is

unique.

Theorem 3.3. If F1, . . . , Fk are univariate distribution functions and C is any k-copula,

then the function F : Rd → [0, 1] defined by 3.4 is a k-multivariate distribution function with

margins F1, . . . , Fk.

From the previous result, if F is a given k-variate distribution function with continuous

margins, then a copula C can be obtained by

C(u1, u2, . . . , uk) = F (F−11 (u1), . . . , F
−1
k (ud)).

Then, we have the following algorithm to simulate (U1, . . . , Uk) with distribution C:
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• Sample (X1, . . . , Xk) from F .

• Evaluate each component in its corresponding margin:

(U1, . . . , Uk) = (F1(X1), . . . , Fk(Xk)).

We illustrate this with a particular example of a Gaussian copula, and we use it to sample

on a manifold.

Example 3.2. Let Σ be a k×k symmetric and positive-definite matrix with real entries, such

that Σii = 1 for i = 1, . . . , k. Let Σ = LLT be its Cholesky decomposition (where L is a

lower triangular matrix).

Note that if Z = (Z1, . . . , Zk) ∼ Nk(0, Ik) (which we know how to simulate), then

X = LZ ∼ Nk(0, LLT ) ∼ Nk(0,Σ).

As Σii = 1 for i = 1, . . . , k, we have that X1, . . . , Xk are all marginally distributed as

Gaussian standard random variables, and Cov(Xi, Xj) = Σij. If Φ is the univariate standard

Gaussian distribution function, then from the previous results we have that

(U1, . . . , Uk) = (Φ(X1), . . . ,Φ(Xk))

such that each Ui has the uniform distribution on [0, 1] as its margin distribution.

If we take k = 2, then for this example Σ has the form

Σ =

1 ρ

ρ 1,


with ρ ∈ (−1, 1) (if ρ /∈ (−1, 1) Σ is not positive definite). By varying ρ we control the

dependence between X1 and X2; if ρ = 0 they are independent.
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Figure 3.5: samples of size n = 200.

By rescaling the sample adequately, we can get a sample on a parametrized manifold,

such as the torus:
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3.3 Simulation on Stratified Spaces

A stratified space is essentially piece-wise a manifold, so the techniques used for simula-

tion until now can be used for stratified spaces. In this section, we look into cases worth

mentioning.

3.3.1 Uniform Distribution on a Stratified Space

Let X ⊂ Rd be a k-dimensional manifold stratified space (k ≤ d), with filtration

X = Xk ⊃ . . . ⊃ X0 ⊃ X−1 = ∅.

We assume that 0 < Hk(X) < ∞, and that Xk has a finite number of components. Let

Γ1, . . . ,Γl be the connected components of Xk. Because by definition Xk is a k-manifold, so

are Γ1, . . . ,Γl. We can then apply the previous techniques to each Γi. Suppose we are able

to sample from a random variable Yi with uniform distribution on Γi, for i = 1, . . . , l.
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Consider the following procedure. Let vi = Hk(Γi) the k-dimensional Hausdorff measure

of each Γi. Note thatHk(X) =
∑l

i=1 vi. Sample an index α from {1, . . . , l}, with probabilities

for each index j given by vj/Hk(X). Next, make W = Yα.

Because Xk−1 is a (k − 1)-manifold, it has Hk-measure equal to zero, so

Hk(X) = Hk(X \Xk−1) +Hk(Xk−1) = Hk(Xk).

Then, by the total probability law we have

P[W ∈ A] = P[W ∈ A ∩Xk] =
l∑

i=1

P[W ∈ A ∩Xk|α = i]P[α = i]

=
l∑

i=1

P[Yi ∈ A ∩ Γi]
vi

Hk(X)

=
l∑

i=1

Hk(Γi ∩ A)

Hk(Γi)

Hk(Γi)

Hk(X)

=
l∑

i=1

Hk(Γi ∩ A)

Hk(X)
=
Hk(A ∩Xk)

Hk(X)
=
Hk(A)

Hk(X)
.

Thus, the uniform distribution over X is Hk-uniform.

It is worth noting that {Γi} does not to be the partition on connected components of Xk.

For instance, in the example 2.3, one could take Γ1 equal to the sphere and Γ2 equal to

the disc through the equator. In this case Γ1 is the union of two connected components of

X2 and a subset of X1, which has H2 measure equal to 0.

Remark 2. The support of the probability measure constructed here is not necessarily equal

to X: the curve that pinches the sphere and the disc is not contained in the support.

Example 3.3. A simple and illustrative example is the polar rose, a parametric curve defined

by

x(θ) = cos(kθ) cos(θ), (3.5)

y(θ) = cos(kθ) sin(θ). (3.6)

This is a parametric curve for every real k > 0, but we will consider only integer values for

k: it has 2k ‘petals’ when k is even, and k ‘petals’ when k is odd.
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Figure 3.6: examples of the polar rose for k = 2 (4 petals) and k = 5 (5 petals).

Note that if k is even, the entire graph is obtained as an image under (3.5) and (3.6) of

any interval of length 2π, whereas if k is odd, then it is obtained with any interval of length

π. In particular, we can consider [0, π] as the domain of x(θ) and y(θ) for k odd, and [0, 2π]

for k even.

If X ⊂ R2 is the entire graph, then it is easily verified that with X0 = {(0, 0)}, X1 = X,

then the polar rose is a 1-dimensional manifold stratified space because the only point that

does not satisfies the definition of a 1-manifold is the origin.

The components of X1 are the single petals. The length (this is, the H1 measure) of

every petal is the same, and the preimage of a single petal is an interval of length π/k (for

k even and odd).

Because every petal is a parametrized 1-manifold and the preimage of {(0, 0)} is a set of

Lebesgue measure 0, it is equivalent (for this case) to use the method described in section

3.1. For k = 3, the Jacobian has the following shape:
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In the figure above, the plot on the left shows an example of a sample of size 500 using

this method. The plot on the right shows an example of 500 points sampled from the uniform

distribution on [0, π] mapped using the parametrization: note that the outside of the petals

have more concentration of points than the inside.

3.3.2 Special Cases: X̄k ( X

As said in the previous section, example 2.3 presents some issues for simulating on all the

space. Suppose that we have a probability measure on a k-dimensional stratified space X

that is absolutely continuous with respect to Hk, then Xi for i ≤ k are null sets for that
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probability measure. Therefore, if the closure of Xk is not equal to X, then other methods

will be required to sample all of the space.

Both of the models presented in this section are briefly explained in [3].

Simulation by Thickening X

The first method proposed is to sample on a thickened version of X. For a fixed ε > 0,

sample from the set

Xε = {x ∈ Rd : ρ(x,X) < ε},

where Rd is the ambient space and ρ is the Euclidean distance on Rd.

Although one does not properly sample from the space X, this method is relevant in

TDA-related contexts because it may be seen as sampling with noise.

In the general case, one can sample using the acceptance-rejection method. However, in

that case we must be able to calculate the distance to X, which is not always easy to do. One

strategy is to calculate the distance to every maximal stratum and then take the minimum

of those distances. One difficulty is that even for sets in low dimensions, numerical methods

could be needed for calculating ρ(x,X). Another difficulty that can arise is that there could

be a high number of rejections if ε is too small.

Example 3.4. Consider the subspace X ⊂ R2 consisting of the unitary circle along with two

perpendicular diameters. Using the acceptance-rejection method, we simulate 500 samples

from X thickened by ε = 0.1. To apply the acceptance-rejection method, we sample from

the uniform distribution on [−1 − ε, 1 + ε]2, and reject a point if it is at a distance greater

than or equal to 0.1. For the example shown below, a sample of size 1238 was needed for

obtaining 500 acceptances.
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Mixture Model

We say that a stratum T of a manifold stratified space is maximal if it is not a subset of the

closure of any other stratum. In this method, we focus on sampling from the maximal strata.

In this case, X̄k is a proper subset of X, so there are maximal strata of lower dimension.

Let Si be the collection of maximal strata of dimension i, for i ∈ {0, . . . , k}. The strategy

is as follows. Given non-negative weights a0, . . . , ak such that
∑
ai = 1 and probability

measures Pi on Si, sample an index t with probability P[t = i] = ai. Next, sample W from

the probability Pi.

Remarks.

• If Si = ∅ for some i, set ai = 0 and leave Pi undefined because it makes no sense to

define a probability measure on the empty set.

• Si is a collection of i-manifolds, so Pi can be a probability measure corresponding to

one of the methods presented in Sections 4.1 and 4.2.

• Depending on the purpose of the simulation, we can also include non-maximal strata

in the mixture model.

Example 3.5. Consider the space from example 2.3. Using the same notation, the maximal

strata are the sphere minus the equator (Γ1), the disc (Γ2) and the curve α. For this case,

we consider P1 the uniform measure on α and P2 the uniform measure on X2 = Γ1 ∪ Γ2.
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Sampling from P1 can be achieved using the method described in Section 3.3.1. By setting

a1, the weigh for P1, equal to 0.1, an example of a point cloud of size 500 is

If the weigh for P1 is too high, then there will be “too many” points in α compared to the

number of points in X2 (where “too many” is in a sense not to be formally defined here).

See for example, the next point cloud, which also has size 500.



Chapter 4

Examples with Calculation of

Persistent Homology

In this chapter, we empirically analyze the persistent homology obtained from the Vietoris-

Rips filtration on PCD using three spaces: the polar rose, the Klein bottle and example 2.3.

The last example is relevant because, in contrast to the first two, it has maximal strata of a

lower dimension and, therefore, the mixture model is used for simulation. For the polar rose

and the Klein bottle, we analyze aspects on convergence when the size of the point cloud

increases, aided by the stability theorem and a concentration inequality proposed by Fasy

et al. (2014). In the third example we study how the persistent homology changes when

varying the weighs in the mixture model. For this chapter, we assume the reader is familiar

with basic notions of Topological Data Analysis, such as Vietoris-Rips filtration, persistence

diagrams, Hausdorff distance and Bottleneck distance. Otherwise, in [12], for example, there

is a quick review of concepts and some relevant results used here. In [11], there is a more

systematic introduction to Topological Data Analysis.

Everything was coded in R and the persistence intervals were calculated using code pro-

vided by Francisco Valente [27].

39



CHAPTER 4. EXAMPLES WITH CALCULATION OF PERSISTENT HOMOLOGY 40

4.1 Analysis of Convergence

4.1.1 Polar Rose

In this section, we analyze how the persistence barcode shows the three 1-cycles in the polar

rose with three petals for different values of n, the sample size.

We use both the H1-uniform distribution on the rose and the λ1-uniform distribution

on [0, π]. The support of both distributions is the entire rose and persistence barcodes

describe what is expected, although, as we will illustrate, there are some variations among

the barcodes.

When n = 100, the simulations frequently show three long persistence intervals for 1-

dimensional components, as the bottom-right-hand plot in the figure below shows. However,

as the size is small, the case of the top-right plot occurs often; that is, it is not clear that

there are three 1-dimensional cycles.
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Figure 4.1: Samples of size 100 and their corresponding persistence barcodes.
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In this particular example, the sample from the H1-uniform distribution but for low

sample sizes this may happen with both distributions.

Given that what we are doing is of a random nature, for n = 250 we might also get not

well-behaved case
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s as before, but less often. For this size, the following behavior is the most representative:
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Because we get more “uniformly”-distributed samples in the geometrical sense with the

H1-distribution, the three large 1-cycles have persistence intervals of similar length (top-

right-hand plot), compared to the second sample, which presents more variation.

As empirical evidence of this behavior, for 200 samples of size 250 from both distributions,

we stored the length of the three largest persistence intervals of 1-cycles; that is, we get 600

persistence intervals for each distribution. For each sample, we also store the standard

deviation of the set of the three largest persistence interval lengths; that is, we get two sets

of 200 values. The histograms of the corresponding values follow. They suggest that intervals

obtained with the λ1-uniform distribution are shorter and present larger variation.



CHAPTER 4. EXAMPLES WITH CALCULATION OF PERSISTENT HOMOLOGY 43

Interval length

vec

F
re

qu
en

cy

0.05 0.10 0.15 0.20 0.25 0.30

0
50

10
0

15
0 H1 −  uniform

λ1 −  uniform

Std. dev.

esede

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

60

H1 −  uniform

λ1 −  uniform

It is important to mention that we do not intend to state that simulating with theH1-uniform

distribution is “better” because the best method will depend solely on the purpose of the

simulation. The goal of this section is to illustrate differences between two distributions with

the same support from the point of view of persistent homology.

For large sample sizes, such as n = 750, there is little difference between them because

the connected portions of the polar rose without a point are each time smaller with higher

probability:
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4.1.2 Klein Bottle

In this section, we consider the inmersion of the Klein bottle in R3, with the following

parametrization found in [14]:

x =

6 cos(u)(1 + sin(u)) + 4(1− 1
2

cos(u)) cos(u) cos(v) if 0 ≤ u ≤ π,

6 cos(u)(1 + sin(u)) + 4(1− 1
2

cos(u)) cos(v + π) if π < u ≤ 2π,

y =

16 sin(u) + 4(1− 1
2

cos(u)) sin(u) cos(v) if 0 ≤ u ≤ π,

16 sin(u) if π < u ≤ 2π,

z = 4(1− 1

2
cos(u)) sin(v),

for (u, v) ∈ [0, 2π]2 \R, with

R :=

{
(u, v) :

(
u− 3.66

0.19

)2

+

(
v − π
0.38

)2

< 1

}
.

R is an approximation to the preimage under the parametrization of the region, as shown in

red.

This embedding of the Klein bottle is a 2-dimensional manifold stratified space, with empty

0-dimensional stratum and a 1-dimensional stratum equal to the curve where it intersects

itself.

We now make an empirical analysis of convergence based on the results given by Fasy et

al. [12].

For a closed subsetA of Rn, we define the distance function toA as dA(x) = infy∈A ‖x− y‖.

Recall the definition of the Hausdorff distance:

Definition 4.1. The Hausdorff distance H(K,K ′) between to closed subsets K,K ′ of Rn is

defined as
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H(K,K ′) = max

(
sup
y∈K′

( inf
x∈K
||x− y||), sup

x∈K
( inf
y∈K′
||x− y||)

)
.

For a function f , we denote (when it is defined) by dgm(f) the persistence diagram

obtained from the filtration by sublevel sets of f , {f−1((−∞, α])}, and by W∞ the bottleneck

distance between diagrams.

Theorem 4.1 (Stability theorem). Let X be a topological space homeomorphic to a finite

simplicial complex and f, g : X → R be continuous functions. Then

W∞(dgm(f), dgm(g)) ≤ ‖f − g‖∞ ,

The Hausdorff distance between two closed sets is related to the induced distance function

as follows:

H(A,B) = ||dA − dB||∞.

Thus, if Sn = {X1, . . . , Xn} is a sample from a probability distribution P with support on a

manifold M, then from the stability theorem we have

W∞(dgm(dSn), dgm(dM)) ≤ H(Sn,M).

We are interested on finding out how P(H(Sn,M) > t) behaves with respect to n and

t > 0. The following functions are defined in [12]:

ρ(x, t) =
P (Bx (t/2))

td
, ρ(t) = inf

x∈M
ρ(x, t). (4.1)

The motivation for defining those functions is to quantify how small the probability of a

radius t on M can be.

A useful result provided in [12] follows:

Theorem 4.2. For every t > 0

P (W∞(dgm(dSn), dgm(dM)) > t) ≤ P(H(Sn,M) > t) ≤ 2d

ρ (t/2) td
exp

(
−nρ(t)td

)
.
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From theorem 4.2, we are able to give a lower bound on the number of points needed for

P(H(Sn,m) > t) ≤ α, with α > 0:

n =
log
(

2d

ρ(t/2)tdα

)
ρ(t)td

.

If ρ has a small value, then the number of points must be large enough to accomplish the

desired inequality.

The previous result is proven when M is a manifold but we aim to provide empirical

insight of this result applied when M is a stratified space, such as the Klein bottle. ρ can

be hard to calculate explicitly, so we will compare distributions by comparing the Hausdorff

distance between them. This is justified by the fact that the Hausdorff distance between

closed subsets satisfies the triangle inequality, so the Hausdorff distance between samples is

bounded above by the sum of their distances to M.

For the H2-uniform distribution on a manifold M, we expect ρ to be bounded away from

0, so as n increases the Hausdorff distance between the sample and M effectively converges

in probability to 0 (from theorem 4.2). As mentioned, in this case M is not a manifold but

the whole space is the closure of the 2-dimensional stratum, so there is also convergence to 0.

Note that this does not necessarily happen if M is a stratified manifold space with singular

maximal strata, such as in example 2.3.

For the first example, we calculate H(Sn, S
′
n), where Sn is a sample of size n of the

H2-uniform distribution on M, and S ′n is a sample of size n obtained from the λ2-uniform

distribution on the domain of the Klein bottle parametrization.
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Figure 4.2: Boxplots of Hausdorff distance between samples from H1-uniform distribution

and distribution induced from the λ2-uniform on the domain. The sample sizes on the left

plot are n× 1, 000; on the right, n× 10, 000. There is empirical convergence.

If we add Gaussian noise to the sample, then this convergence is no longer observed

because the support of the distribution changes.

Figure 4.3: Hausdorff distance for samples with Gaussian noise with σ2 = 0.5 for the left

plot, and σ2 = 1 for the right plot. Convergence is not clear. Sample size is n× 10, 000.

We now present cases where ρ is expected to have values close to 0.

For the next example we take one sample again with the H2-uniform measure on M.

The second sample is to be taken from the product distribution on [0, 2π]2, with uniform
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distribution on one parameter and the beta distribution B(α = 5, β = 3) on the other. It is

not clear if it converges; if it does, it is slow.

Figure 4.4: Sample size = n× 10, 000.

Figure 4.5: The colors in the Klein bottle correspond to the value of the density in the

preimage of those regions: blue regions have higher values and black ones have lower values.

The black region has a low probability measure, which might explain why the convergence

is slow (if it does at all).

We now sample both parameters independently from B(α = 1.5, β = 1.5) (semicircle

distribution) for the second point cloud. The plot suggests there is a convergence.
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Figure 4.6: Sample size = n× 10, 000.

Figure 4.7: Although there is a region with lower probability (the black portion), the Haus-

dorff distance measurements suggests there is a convergence to 0.

In the next example, the second point cloud is simulated by sampling each parameter

from the arcsine distribution (B(0.5, 0.5)). The plot suggests convergence to 0, which is

expected from the fact that in this case the density on the parameters is bounded away from

0.
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Figure 4.8: Sample size = n× 10, 000.

Figure 4.9: Even though the density on the parameters take low values on the preimage of

the black region, the bottle is satisfactorily covered with the sample.

4.2 Change of Persistent Homology in Mixture Models

In this last example, we illustrate how the homology changes when varying the weighs in

a mixture model described in Section 3.3.2. With the same notation as in example 3.5, we

take a sample of size 700 and vary the weight a1.

Taking a1 = 0.1 we have a (visually) “balanced” sample; that is, there is a reasonable

number of points in the curve α, and a reasonable amount of points in X2 = Γ1 ∪ Γ2.
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Figure 4.10: Sample of size 700 for P[X ∈ α] = 0.1.

This balance between the number of points in a singular stratum is also reflected in the

persistence diagram, which detects two 2-cycles, three 1-cycles and one connected component

that has a larger lifetime than the other components of its kind.
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If a1 is much smaller, say, 0.01, then we get too few points on α and this is reflected in

the 1-cycles detected. Because we still have a large sample on X2, the expected 2-cycles are

still present.
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Figure 4.11: Sample and persistence diagram for a1 = 0.001.

Meanwhile, if we increase the value of a1, then the sample quickly tends to be concentrated

on the curve α. For example, take a1 = 0.5. We notice that the lifetime of one 1-cycle

increases because it is born earlier than before, whereas the lifetime of the 2-cycles decreases

as they are born later.
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Figure 4.12: Sample and persistence diagram for a1 = 0.5.

This behavior is more dramatic when a1 is even larger; for example, a1 = 0.8
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Figure 4.13: Sample and persistence diagram for a1 = 0.8.



Appendix A

Acceptance-Rejection Method

In this appendix, we present relevant aspects of the acceptance-rejection method for sam-

pling. First, Section A.1 describes the method in its general version, as presented by [9]. In

the case of sampling from manifolds, there are some relevant considerations that we mention

in Section A.2.

A.1 The General Case

The acceptance-rejection method provides a method to sample from a given probability

distribution using samples from another distribution. This method is commonly used in

contexts different to sampling from manifolds.

In this section, we will describe the mathematical aspects of this method when both

probability distributions have density function (this method can also be used with discrete

probability distributions).

We wish to sample from a probability distribution Pf on Rd that has density f : Rd → R,

and we have a generator of (pseudo)random numbers from the distribution Pg on Rd that

has density g : Rd → R. The densities f, g are such that there exists c with cg(x) ≥ f(x) for

all x ∈ Rm (integrating both sides over Rm we can see that if there is such c, then c ≥ 1).

LetX1, X2, . . . be a sequence of i.i.d. random variables with distribution Pg, and U1, U2, . . .

a sequence of i.i.d. random variables with uniform distribution on [0, 1], with both sequences

independent from each other.
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Let Y be the first Xi such that Uicg(Xi) ≤ f(Xi), then Y has distribution Pf . To prove

this, the following theorems are used; they are stated and proved, for example, in Devroye

[9].

Theorem A.1. Let X be a random vector with density f and U be an independent random

variable with uniform distribution on [0, 1].

• (X, cUf(X)) is λm+1-uniformly distributed on A = {(x, u) : x ∈ Rd, 0 ≤ u ≤ cf(x)},

where c > 0 is an arbitrary constant.

• If (X,U) is a random vector uniformly distributed on A, then X has density f on Rd.

Theorem A.2. Let X1, X2, . . . be a sequence of i.i.d. random vectors in Rd and A ⊂ Rd

be a Borel set such that P(X1 ∈ A) = p > 0. Let Y be the first Xi in A. Then, Y has a

distribution determined by

P(Y ∈ B) =
P(X1 ∈ A ∩B)

p
, B ∈ B(Rd).

In particular, if X1 is uniformly distributed in A0 ⊃ A, then Y is uniformly distributed in

A.

Now we shall see that Y is distributed as Pf . By the first part of theorem A.1, (X, cUg(X)) ∈

Rd+1 has uniform distribution on the area under cg. Then, by theorem A.2, (Y, cUg(Y )) has

uniform distribution in the area under f , and by the second part of theorem A.1, Y has

density f .

Therefore, with the next algorithm (Devroye [9]) we can simulate a random variable with

distribution Pf :

In practice, it is desirable to have a low number of rejections. Note that

P(f(X) ≥ cUg(X)) =

∫
Rd

P
(
U ≤ f(x)

cg(x)

)
dx

=

∫
Rd

f(x)

cg(x)
dx =

1

c

∫
Rd

f(x)dx =
1

c
.

If N is the number of iterations needed to get Y , then we have

P(N = i) = (1− 1/c)i−1 1/c. (A.1)
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Algorithm 1 Acceptance-rejection

Require: n ≥ 0, c such that cg ≥ f

Ensure: Y pseudorandom distributed as Pf
repeat

X ← pseudorandom from distribution Pg
U ← pseudorandom from unif distribution on [0, 1]

until cUg(X) ≤ f(X)

Y ← X

Thus, the expected number of iterations is 1/(1/c) = c, and lower values of c will yield faster

algorithms.

Remark. In (A.1), N is a geometric random variable with success probability 1/c. If the

goal is to get a sample Y1, . . . , Yn of size n, then the number of iterations required will be

N1 + . . . + Nn, where Ni is the number of iterations required for getting Yi. As N1, . . . , Nn

are independent, N1 + . . . + Nn is a negative binomial random variable, and its expected

value is nc.

A.2 The Manifold Case

The densities obtained from the parametrization of a manifold can differ greatly from other

known distributions, so it may be difficult to get samples from them by other methods.

Therefore, we describe how to use a version of the acceptance-rejection method in the context

of sampling from manifolds.

Let f, g be density functions such that we know how to sample from g, and we wish to

sample from f . Suppose that there are constants p, q > 0 (not necessarily known) such that

we know pg(x) and qf(x) for every x ∈ Rd (or in some subset of interest), and such that

pg(x) ≥ qf(x) for all x ∈ Rd.

By integrating both sides, we get p > q, so c := p/q ≥ 1. Then,

p

q
g(x) = cg(x) ≥ f(x).

so we can use pg, qf for sampling with the acceptance-rejection method.
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Let us recall what we have in our context. We wish to sample from the uniform dis-

tribution over a manifold M parametrized by φ with domain A ⊂ Rk. We already know

that the density from which we wish to sample is f := Jkφ/ vol(M). We (must) know how

to calculate Jkφ(x) = vol(M)f(x); that is, we know how to calculate f times a (maybe

unknown) constant. Let m be a constant such that m ≥ Jkφ(x) for all x ∈ A. There is a

constant p such that m = pg(x), x ∈ A, where g is the density for the uniform distribution

on A.

The following version of acceptance-rejection can then be used to simulate a random

variable with density f :

Algorithm 2 Modified acceptance-rejection

Require: n ≥ 0, m such that m ≥ Jkφ(x)

Ensure: Y pseudorandom with density Jkφ/ vol(M)

repeat

X ← pseudorandom from unif distribution on A

U ← pseudorandom from unif distribution on [0, 1]

until mU ≤ Jkφ(X)

Y ← X

Once again, in our context, Jkφ = vol(M)f and m = pg, where g is the uniform distribu-

tion over A (which has constant density g with support A). In many cases, A (the domain of

a parametrization) is, for example, a k-dimensional rectangle, so sampling from the uniform

distribution on A is easy.

Remark. Knowing vol(M) is only necessary when calculating the expected number of itera-

tions needed to generate Y . The density for the uniform distribution over A is the constant

function (overA) g(x) = 1/ vol(A). So, ifm = pg(x) = p/ vol(A), then we have p = m vol(A).

As shown earlier, the expected number of iterations needed for the first acceptance is

c =
p

q
= m

vol(A)

vol(M)
.

Therefore, it is desirable to have tighter bounds of the Jacobian to reduce the number of

rejections in the previous algorithm.
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