Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000000	β -symbols 000000	Spectral formulas

Moment maps on the unit ball and commuting Toeplitz operators

Raul Quiroga-Barranco

CIMAT, Guanajuato, Mexico

Seminario de Operadores de Toeplitz Cinvestav, September 29th, 2020

Quiroga-Barranco

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000000	β -symbols	Spectral formulas 00000		
1	Toeplitz operators on the unit ball							
2	Maximal Abelian subgroups on the unit ball							
3	Kähler	manifolds						

- 4 Symplectic geometry
- 5 Moment maps on the unit ball
- 6 β -symbols
- 7 Spectral integral formulas

Toeplitz ●00	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000000	β -symbols	Spectral formulas 00000
1	Toeplit	z operators o	on the unit ball			
2	Maxim	al Abelian su	bgroups on the	unit ball		
3	Kähler manifolds					
4	Symple	ectic geometry				
5	Mome	nt maps on th	ne unit ball			

6 β -symbols

7 Spectral integral formulas

Toeplitz
0 • 0MASG
0000Kähler manifolds
0000Symplectic geometry
000000Moment maps
000000β-symbols
000000Spectral formulas
00000

For $\lambda > -1$, on the unit ball \mathbb{B}^n and the Siegel domain D_n we have the weighted measures

$$\mathrm{d} v_{\lambda}(z) = c_{\lambda} (1 - |z|^2)^{\lambda} \, \mathrm{d} v(z), \quad \mathrm{d} v_{\lambda}(z) = \frac{c_{\lambda}}{4} (\mathrm{Im}(z_n) - |z'|^2)^{\lambda} \, \mathrm{d} v(z).$$

The corresponding weighted Bergman spaces and their kernels are

$$\begin{split} \mathcal{A}_{\lambda}^{2}(\mathbb{B}^{n}) &= L^{2}(\mathbb{B}^{n}, v_{\lambda}) \cap \operatorname{Hol}(\mathbb{B}^{n}) \quad \mathcal{A}_{\lambda}^{2}(D_{n}) = L^{2}(D_{n}, v_{\lambda}) \cap \operatorname{Hol}(D_{n}) \\ \mathcal{K}_{\mathbb{B}^{n}, \lambda}(z, w) &= \frac{1}{(1 - z \cdot \overline{w})^{\lambda + n + 1}} \quad \mathcal{K}_{D_{n}, \lambda}(z, w) = \frac{1}{\left(\frac{z_{n} - \overline{w}_{n}}{2i} - z' \cdot \overline{w}'\right)^{\lambda + n + 1}} \end{split}$$

We will use D to denote either \mathbb{B}^n or D_n .

Toeplitz 00●	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000000	β -symbols 000000	Spectral formulas

The Toeplitz operator $T_a^{(\lambda)}$ with symbol *a* is defined by

$$T_a^{(\lambda)}: \mathcal{A}_{\lambda}^2(D) o \mathcal{A}_{\lambda}^2(D)$$

 $T_a^{(\lambda)}(f)(z) = \int_D f(w) \mathcal{K}_{D,\lambda}(z,w) \,\mathrm{d}v_{\lambda}(z).$

A very important and interesting problem: find and study commutative C^* -algebras generated by Toeplitz operators. Main strategy: find "nice" spaces of special symbols.

	MASG	Kähler manifolds		Moment maps		Spectral formulas
000	0000	0000	000000	0000000	000000	00000

1 Toeplitz operators on the unit ball

- 2 Maximal Abelian subgroups on the unit ball
- 3 Kähler manifolds
- 4 Symplectic geometry
- 5 Moment maps on the unit ball
- 6 β -symbols
- 7 Spectral integral formulas

Some of the first nicest collections of special symbols are given by the maximal Abelian subgroups (MASG) of biholomorphisms on D. **Quasi-elliptic, E(n)**: \mathbb{T}^n -action on \mathbb{B}^n

$$t\cdot z=(t_1z_1,\ldots,t_nz_n).$$

Quasi-parabolic, P(n): $\mathbb{T}^{n-1} \times \mathbb{R}$ -action on D_n

$$(t',h)\cdot z=(t'z',z_n+h).$$

Quasi-hyperbolic, H(n): $\mathbb{T}^{n-1} \times \mathbb{R}_+$ -action on D_n

$$(t',r)\cdot z=(r^{\frac{1}{2}}t'z',rz_n).$$

Nilpotent, N(n): \mathbb{R}^n -action on D_n

$$(b,h) \cdot z = (z'+b, z_n+h+2iz' \cdot b+i|b|^2).$$

Quasi-nilpotent, N(n,k): $\mathbb{T}^k \times \mathbb{R}^{n-k}$ -action on D_n

$$(t, b, h) \cdot z = (tz_{(1)}, z_{(2)} + b, z_n + h + 2iz_{(2)} \cdot b + i|b|^2).$$

Quiroga-Barranco

Toeplitz

MASG

We will denote by $L^{\infty}(D)^G$ the space of essentially bounded *G*-invariant symbols on *D*. The group *G* is some subgroup of biholomorphisms of *D*.

Theorem (MASG Commutativity Theorem)

Let G be a MASG of the group of biholomorphisms of D. Then, the C*-algebra $\mathcal{T}^{(\lambda)}(L^{\infty}(D)^G)$ is commutative for every $\lambda > -1$. Furthermore, there is a unitary map $R : \mathcal{A}^2_{\lambda}(D) \to L^2(X)$ such that for every $a \in L^{\infty}(D)^G$

$$RT^{(\lambda)}_{a}R^{*}=\gamma_{a,\lambda}I$$

a multiplication operator where

 $\gamma_{a,\lambda}(x) = nice integral formula for a.$

Toeplitz

MASG

Toeplitz 000	MASG ०००●	Kähler manifolds 0000	Symplectic geometry 0000000	Moment maps 0000000	eta-symbols 000000	Spectral formulas 00000

We have learned a few things from this theorem.

- Groups and Lie theory are important.
- The assignment $G \mapsto \mathcal{T}^{(\lambda)}(L^{\infty}(D)^G)$ yields commutative C^* -algebras for $G \in$ family of MASG.
- If *H* is a connected Abelian subgroup of biholomorphisms but not a MASG, then $\mathcal{T}^{(\lambda)}(L^{\infty}(D)^{H})$ is not commutative.

Question: Is it possible to assign commutative C^* -algebras to connected Abelian subgroups of biholomorphisms? The subgroups are not necessarily MASG.

Toeplitz 000	MASG 0000	Kähler manifolds ●000	Symplectic geometry	Moment maps 0000000	β -symbols	Spectral formulas

1 Toeplitz operators on the unit ball

2 Maximal Abelian subgroups on the unit ball

3 Kähler manifolds

- 4 Symplectic geometry
- 5 Moment maps on the unit ball

6 β -symbols

7 Spectral integral formulas

 Toeplitz
 MASG
 Kähler manifolds
 Symplectic geometry
 Moment maps
 β-symbols
 Spectral formulas

 000
 0000
 000000
 000000
 000000
 000000
 000000
 000000

A Hermitian metric on a complex manifold M is a Riemannian metric g such that

$$g(J(\cdot), J(\cdot)) = g(\cdot, \cdot).$$

A Kähler manifold (M, g) is a complex manifold M with a Hermitian metric g such that the 2-form $\omega = g(J(\cdot), \cdot)$ is closed. The form ω is called the symplectic form of M. The Hermitian metric g can be complexified to a sesquilinear tensor g and in this case the symplectic form is given by

$$\omega = -2\mathrm{Im}(g).$$

Toeplitz 000	MASG 0000	Kähler manifolds 00●0	Symplectic geometry	Moment maps 0000000	β -symbols	Spectral formulas 00000

Our main example (the only one we will need) is given by D. The Kähler structure of \mathbb{B}^n is given by

$$egin{aligned} g_{\mathbb{B}^n} &= \sum_{j,k=1}^n rac{(1-|z|^2)\delta_{jk}+\overline{z}_j z_k}{(1-|z|^2)^2}\,\mathsf{d} z_j\otimes\mathsf{d}\overline{z}_k\ \omega_{\mathbb{B}^n} &= i\sum_{j,k=1}^n rac{(1-|z|^2)\delta_{jk}+\overline{z}_j z_k}{(1-|z|^2)^2}\,\mathsf{d} z_j\wedge\mathsf{d}\overline{z}_k. \end{aligned}$$

Quiroga-Barranco

 Toeplitz
 MASG
 Kähler manifolds
 Symplectic geometry
 Moment maps
 β-symbols
 Spectral formulas

 000
 000●
 0000000
 0000000
 000000
 000000

The Kähler structure on D_n is given by

$$g_{D_n} = \frac{1}{(\mathrm{Im}(z_n) - |z'|^2)^2} \bigg((\mathrm{Im}(z_n) - |z'|^2) \sum_{j=1}^{n-1} \mathrm{d} z_j \otimes \mathrm{d} \overline{z}_j + \frac{1}{4} \, \mathrm{d} z_n \otimes \mathrm{d} \overline{z}_n \\ + \sum_{j,k=1}^{n-1} \overline{z}_j z_k \, \mathrm{d} z_j \otimes \mathrm{d} \overline{z}_k + \frac{1}{2i} \sum_{j=1}^{n-1} (\overline{z}_j \, \mathrm{d} z_j \otimes \mathrm{d} \overline{z}_n - z_j \, \mathrm{d} z_n \otimes \mathrm{d} \overline{z}_j) \bigg),$$

$$\omega_{D_n} = \frac{i}{(\mathrm{Im}(z_n) - |z'|^2)^2} \left((\mathrm{Im}(z_n) - |z'|^2) \sum_{j=1}^{n-1} \mathrm{d} z_j \wedge \mathrm{d} \overline{z}_j + \frac{1}{4} \, \mathrm{d} z_n \wedge \mathrm{d} \overline{z}_n \right)$$

$$+\sum_{j,k=1}^{n-1}\overline{z}_j z_k \, \mathrm{d} z_j \wedge \mathrm{d} \overline{z}_k + \frac{1}{2i} \sum_{j=1}^{n-1} (\overline{z}_j \, \mathrm{d} z_j \wedge \mathrm{d} \overline{z}_n - z_j \, \mathrm{d} z_n \wedge \mathrm{d} \overline{z}_j) \bigg).$$

Quiroga-Barranco

CIMAT

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry ●000000	Moment maps 0000000	β -symbols	Spectral formulas

1 Toeplitz operators on the unit ball

- 2 Maximal Abelian subgroups on the unit ball
- 3 Kähler manifolds
- 4 Symplectic geometry
- 5 Moment maps on the unit ball
- 6 β -symbols
- 7 Spectral integral formulas

 Toeplitz
 MASG
 Kähler manifolds
 Symplectic geometry
 Moment maps
 β-symbols
 Spectral formulas

 000
 0000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 <

A symplectic manifold (M, ω) is a manifold M together with a non-degenerate closed 2-form ω . Example: Every Kähler manifold is symplectic. On a symplectic manifold M, if $f : M \to \mathbb{R}$ is a smooth function, then the Hamiltonian vector field of f is the smooth vector field X_f such that

$$\mathrm{d}f=\omega(X_f,\cdot).$$

Compare with the Riemannian case: On a Riemannian manifold (M, g), if $f : M \to \mathbb{R}$ is a smooth function, then the gradient of f is the smooth vector field ∇f such that

$$\mathsf{d} f = g(\nabla f, \cdot).$$

Conversely, a smooth vector field X on a symplectic manifold M is called Hamiltonian if there is a smooth function $f: M \to \mathbb{R}$ such that

Symplectic geometry

$$\mathsf{d}f = \omega(X, \cdot),$$

i.e. the 1-form $\omega(X, \cdot)$ is exact.

The form $\omega(X, \cdot)$ is not always closed, but for a vector field X the following are equivalent.

- $\omega(X, \cdot)$ is closed.
- $L_X \omega = 0.$
- The local flow of X preserves ω, i.e. acts by symplectomorphisms.

We will denote by $\mathcal{X}(M, \omega)$ the Lie algebra of all vector fields on M satisfying these conditions. The elements of $\mathcal{X}(M, \omega)$ are called symplectic vector fields.

Toeplitz

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000000	β -symbols	Spectral formulas

For f, g smooth functions on the symplectic manifold M we define their Poisson brackets by

$$\{f,g\} = \omega(X_f,X_g).$$

Then, $(C^{\infty}(M), \{\cdot, \cdot\})$ is Lie algebra and the map

$$C^{\infty}(M) o \mathcal{X}(M,\omega)$$

 $f \mapsto X_f$

is an anti-homomorphism of Lie algebras: $[X_f, X_g] = -X_{\{f,g\}}$.

Let H be a connected Lie group acting by symplectomorphisms on (M, ω) :

Symplectic geometry

$$\omega(\mathsf{d}h(\cdot),\mathsf{d}h(\cdot)) = \omega(\cdot,\cdot),$$

for all $h \in H$.

For every $X \in \mathfrak{h}$ we consider the vector field X^{\sharp} on M given by

$$X_z^{\sharp} = rac{\mathsf{d}}{\mathsf{d}s}\Big|_{s=0}\exp(sX)z.$$

In particular, $X^{\sharp} \in \mathcal{X}(M, \omega)$. It is easy to see that the map

$$\mathfrak{h} o \mathcal{X}(M,\omega)$$

 $X \mapsto X^{\sharp}$

is an anti-homomorphism of Lie algebras.

Quiroga-Barranco

Toeplitz
000MASG
0000Kähler manifolds
0000Symplectic geometry
000000Moment maps
000000β-symbols
000000Spectral formulas
00000

The previous discussion leads us to consider the diagram

$$\mathfrak{h} \xrightarrow{\mu} \mathcal{X} \stackrel{f}{\underset{X \mapsto X^{\sharp}}{\overset{\mu}{\longrightarrow}}} \mathcal{X}(M, \omega)$$

where we want consider the existence of μ : $\mathfrak{h} \longrightarrow C^{\infty}(M)$ so that this diagram commutes. In other words

$$X_{\mu(X)} = X^{\sharp}$$

for all $X \in \mathfrak{h}$. Such a map is equivalent to maps

- $M \times \mathfrak{h} \to \mathbb{R}$,
- $M \to \mathfrak{h}^*$, where \mathfrak{h}^* is the vector space dual of \mathfrak{h} .

It is customary and convenient to use the last realization.

Quiroga-Barranco

Toeplitz	MASG	Kähler manifolds	Symplectic geometry	Moment maps	β -symbols	Spectral formulas
000	0000	0000	000000●	0000000	000000	

Definition

If *H* is a Lie group acting by symplectomorphisms on (M, ω) , then a moment map for the *H*-action is a smooth map $\mu : M \to \mathfrak{h}^*$ such that

1 For every $X \in \mathfrak{h}$, the smooth function $\mu_X : M \to \mathbb{R}$ defined by

$$\mu_X(z) = \langle \mu(z), X \rangle$$

has Hamiltonian vector field given X^{\sharp} : $X^{\sharp} = X_{\mu_X}$.

2 For every $h \in H$ we have $\mu \circ h = Ad^*(h) \circ \mu$.

If H is Abelian, the second condition is just H-invariance:

$$\mu \circ \mathbf{h} = \mu$$

for all $h \in H$.

Quiroga-Barranco

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps ●000000	β -symbols 000000	Spectral formulas

1 Toeplitz operators on the unit ball

- 2 Maximal Abelian subgroups on the unit ball
- 3 Kähler manifolds
- 4 Symplectic geometry
- 5 Moment maps on the unit ball

6 β -symbols

7 Spectral integral formulas

Toeplitz	MASG	Kähler manifolds	Symplectic geometry	Moment maps	eta-symbols	Spectral formulas
000	0000	0000		○●○○○○○	000000	00000

We are interested in the connected Abelian groups of biholomorphisms of D.

If G is such a MASG, then $\mathfrak{g} = \mathbb{R}^n$ and so we have a natural identification $\mathfrak{g}^* = \mathbb{R}^n$.

If *H* is a connected Abelian group of biholomorphisms, up to conjugacy, we can assume $H \subset G$, where *G* is some MASG. Hence, $\mathfrak{h} \subset \mathbb{R}^n$ and so $\mathfrak{h}^* = \mathfrak{h}$.

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 00●0000	β -symbols	Spectral formulas

The moment maps for the MASG are the following.

$$\begin{split} \mathsf{E}(\mathsf{n}): & \mu(z) = -\frac{1}{1 - |z|^2} (|z_1|^2, \dots, |z_n|^2), \\ \mathsf{P}(\mathsf{n}): & \mu(z) = -\frac{1}{2(\mathrm{Im}(z_n) - |z'|^2)} (2|z_1|^2, \dots, 2|z_{n-1}|^2, 1), \\ \mathsf{H}(\mathsf{n}): & \mu(z) = -\frac{1}{2(\mathrm{Im}(z_n) - |z'|^2)} (2|z_1|^2, \dots, 2|z_{n-1}|^2, \mathrm{Re}(z_n)), \\ \mathsf{N}(\mathsf{n}): & \mu(z) = -\frac{1}{2(\mathrm{Im}(z_n) - |z'|^2)} (-4\mathrm{Im}(z'), 1), \\ \mathsf{N}(\mathsf{n},\mathsf{k}): & \mu(z) = -\frac{1}{2(\mathrm{Im}(z_n) - |z'|^2)} (2|z_1|^2, \dots, 2|z_k|^2, -4\mathrm{Im}(z_{(2)}), 1). \end{split}$$

Quiroga-Barranco

CIMAT

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 000●000	β -symbols	Spectral formulas

Corollary (Q-Sanchez-Nungaray)

Let G be a MASG and $\mu^{G} : D \to \mathbb{R}^{n}$ its moment map, then the following conditions are equivalent for a symbol $a \in L^{\infty}(D)$.

- **1** The function a is G-invariant.
- **2** There exists a function $f : \mu^{G}(D) \to \mathbb{C}$ such that the diagram

commutes.

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000●00	β -symbols	Spectral formulas

Definition

Let *H* be a connected Abelian group of biholomorphisms of *D* and let $\mu^H : D \to \mathfrak{h}$ be a moment map function for the *H*-action. A symbol $a \in L^{\infty}(D)$ is called a moment map function or a μ^H -function if there is a function *f* such that $a = f \circ \mu^H$. The space of such symbols is denoted by $L^{\infty}(D)^{\mu^H}$.

Corollary (Q-Sanchez-Nungaray)

For a MASG G of biholomorphisms of D

$$L^{\infty}(D)^{G} = L^{\infty}(D)^{\mu^{G}}.$$

Quiroga-Barranco

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 00000●0	β -symbols	Spectral formulas

Theorem (Q-Sanchez-Nungaray)

If H is a connected Abelian group of biholomorphisms of D, then for every $\lambda > -1$ the C^{*}-algebra $\mathcal{T}^{(\lambda)}(L^{\infty}(D)^{\mu^{H}})$ is commutative.

Idea of the proof.

If H is contained in the MASG G, then μ^{H} is G-invariant, and so we have

$${\mathcal T}^{(\lambda)}(L^\infty(D)^{\mu^H})\subset {\mathcal T}^{(\lambda)}(L^\infty(D)^{\mathcal G}).$$

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 000000●	β -symbols	Spectral formulas

Proposition (Q-Sanchez-Nungaray)

The assignment

$$H\mapsto \mathcal{T}^{(\lambda)}(L^{\infty}(D)^{\mu^{H}})$$

maps connected Abelian groups of biholomorphisms of D into commutative C^* -algebras. This assignment preserves inclusions.

Compare the previous result with the fact that $H_1 \subset H_2$ implies

$$\mathcal{T}^{(\lambda)}(L^{\infty}(D)^{H_2}) \subset \mathcal{T}^{(\lambda)}(L^{\infty}(D)^{H_1}).$$

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry 0000000	Moment maps 0000000	β-symbols ●00000	Spectral formulas 00000
1	Toeplit	z operators o	on the unit ball			

- 2 Maximal Abelian subgroups on the unit ball
- 3 Kähler manifolds
- 4 Symplectic geometry
- 5 Moment maps on the unit ball

6 β -symbols

7 Spectral integral formulas

We can describe specific types of symbols by describing explicitly the moment maps of connected Abelian groups. Some general facts:

• Every connected Abelian group *H* of biholomorphisms of *D* is contained in a MASG *G*.

 β -symbols

There is a one-to-one correspondence between the connected subgroups of a MASG *G* and subspaces \mathfrak{h} of \mathbb{R}^n given by

$$\mathfrak{h}\mapsto \exp(\mathfrak{h})$$

where exp is the exponential map of G.

• To introduce coordinates, consider linearly independent sets $\beta \subset \mathbb{R}^n$. Hence, there is a correspondence (onto only)

$$\beta \mapsto \exp(\mathbb{R}\langle \beta \rangle)$$

where $\mathbb{R}\langle\beta\rangle$ denotes the subspace generated by β .

Quiroga-Barranco

Toeplitz

Toeplitz	MASG	Kähler manifolds	Symplectic geometry	Moment maps	β-symbols	Spectral formulas
000	0000	0000		0000000	00●000	00000

Proposition

Let G be a MASG of biholomorphisms of D and H a connected Abelian subgroup of G. Let $\beta = \{v_1, \ldots, v_m\}$ be an orthogonal basis of the Lie algebra \mathfrak{h} of H. Then, the moment map μ^H for the H-action on D is given by

$$\mu^{H}(z) = \sum_{j=1}^{m} \frac{\langle \mu^{G}(z), v_{j} \rangle}{\langle v_{j}, v_{j} \rangle} v_{j}.$$

Quiroga-Barranco

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000000	β-symbols 000●00	Spectral formulas

Corollary

If $\beta = \{v_1, \dots, v_m\}$ is an arbitrary basis of \mathfrak{h} , then the moment map functions are precisely those of the form $a(z) = f(a_1(z), \dots, a_m(z))$, where

$$a_j(z) = \langle \mu^{G}(z), v_j
angle$$

for j = 1, ..., m.

Definition

The symbols from the Corollary are called β -symbols. The essentially bounded β -symbols are denoted by $L^{\infty}(D)_{\beta}$.

Corresponding to the choice of G we have β -quasi-elliptic, β -quasi-parabolic, β -quasi-hyperbolic, β -nilpotent and β -quasi-nilpotent symbols.

Quiroga-Barranco

Every currently known family of symbols whose Toeplitz operators generate commutative C^* -algebras on every weighted Bergman space of D is a set of β -symbols for some β . For example, quasi-radial symbols corresponding to a partition $k \in \mathbb{N}^m$ of n are precisely the β -quasi-elliptic symbols for β that consists of the rows of the matrix

 β -symbols

$$egin{aligned} \mathcal{A}(eta) = egin{pmatrix} 1_{k_1} & 0 & \cdots & 0 \ 0 & 1_{k_2} & \cdots & 0 \ dots & dots & dots & dots & dots \ dots & dots & dots & dots \ dots & dots & dots & dots \ 0 & 0 & \cdots & 1_{k_m} \end{pmatrix}, \end{aligned}$$

where $1_{k_j} = (0, \dots, 0, 1, \dots, 1, 0, \dots, 0)$ with entries 1 exactly at indices corresponding to k_j .

Similar constructions recover many other special symbols.

Toeplitz

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000000	β-symbols 00000●	Spectral formulas

For each of the five types of MASG there is a linearly independent set $\beta \subset \mathbb{R}^n$ such that the β -symbols cannot be realized by the currently known special symbols in the literature.

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry 0000000	Moment maps 0000000	β -symbols	Spectral formulas
1 Toeplitz operators on the unit ball						
2	Maxim	al Abelian su	bgroups on the	unit ball		

- 3 Kähler manifolds
- 4 Symplectic geometry
- 5 Moment maps on the unit ball

6 β -symbols

7 Spectral integral formulas

The use of moment map and their induced coordinates can be used to simplify the known spectral integral formulas for the MASGs.

Theorem (Q-Sanchez-Nungaray)

For every $\lambda > -1$ there exists a unitary map $R : \mathcal{A}^2_{\lambda}(\mathbb{B}^n) \to \ell^2(\mathbb{N}^n)$ such that for every essentially bounded quasi-elliptic symbol $a : \mathbb{B}^n \to \mathbb{C}$ of the form $a(z) = f(-\mu^{\mathbb{T}^n}(z))$ we have $RT^{(\lambda)}_a R^* = \gamma_{a,\lambda} I$, a multiplication operator, where $\gamma_{a,\lambda}$ is given by

$$\gamma_{\boldsymbol{a},\lambda}(\boldsymbol{p}) = \frac{\Gamma(\lambda+|\boldsymbol{p}|+n+1)}{\boldsymbol{p}!\Gamma(\lambda+1)} \int_{\mathbb{R}^n_+} \frac{f(\boldsymbol{u})\boldsymbol{u}^{\boldsymbol{p}}}{(1+|\boldsymbol{u}|)^{\lambda+|\boldsymbol{p}|+n+1}} \, \mathsf{d}\boldsymbol{u},$$

for every $p \in \mathbb{N}^n$.

Corollary (Q-Sanchez-Nungaray)

Let $\beta = \{v_1, \ldots, v_m\} \subset \mathbb{R}^n$ be a linearly independent set. Then, for every $\lambda > -1$ there exists a unitary map $R : \mathcal{A}^2_{\lambda}(\mathbb{B}^n) \to \ell^2(\mathbb{N}^n)$ such that for every essentially bounded β -quasi-elliptic symbol $a : \mathbb{B}^n \to \mathbb{C}$ of the form $a(z) = f(-A(\beta)\mu^{\mathbb{T}^n}(z)^{\top})$ we have $RT_a^{(\lambda)}R^* = \gamma_{a,\lambda}I$, a multiplication operator, where $\gamma_{a,\lambda}$ is given by

$$\gamma_{\boldsymbol{a},\lambda}(\boldsymbol{p}) = \frac{\boldsymbol{\Gamma}(\lambda + |\boldsymbol{p}| + n + 1)}{\boldsymbol{p}!\boldsymbol{\Gamma}(\lambda + 1)} \int_{\mathbb{R}^n_+} \frac{f(\boldsymbol{A}(\beta)\boldsymbol{u}^\top)\boldsymbol{u}^{\boldsymbol{p}}}{(1 + |\boldsymbol{u}|)^{\lambda + |\boldsymbol{p}| + n + 1}} \, \mathsf{d}\boldsymbol{u},$$

for every $p \in \mathbb{N}^n$. Here $A(\beta)$ denotes the matrix whose rows are the elements of β .

Toeplitz MASG Kähler manifolds Symplectic geometry Moment maps β-symbols Spectral formulas 000 0000 000000 000000 000000 000000

Theorem (Q-Sanchez-Nungaray)

For every weight $\lambda > -1$ there exists a unitary transformation $R : \mathcal{A}^2_{\lambda}(D_n) \to L^2(\mathbb{R}^{n-1} \times \mathbb{R}_+)$ such that for every essentially bounded nilpotent symbol $a : D_n \to \mathbb{C}$ of the form $a(z) = f(-\mu^{\mathbb{R}^n}(z))$ we have $RT^{(\lambda)}_a R^* = \gamma_{a,\lambda} I$, a multiplication operator, where $\gamma_{a,\lambda}$ is given by

$$\gamma_{a,\lambda}(y',\xi) = \frac{\xi^{\lambda+\frac{n+1}{2}}}{2^{n-1}\pi^{\frac{n-1}{2}}\Gamma(\lambda+1)} \int_{\mathbb{R}^{n-1}\times\mathbb{R}_+} \frac{f(u)e^{-\frac{\xi}{u_n}-\left|-\frac{\sqrt{\xi}u'}{2u_n}+y'\right|^2} du' du_n}{u_n^{\lambda+n+1}},$$

for every $y' \in \mathbb{R}^{n-1}$ and $\xi \in \mathbb{R}_+$.

For general β -nilpotent symbols it is enough to replace f(u) with $f(A(\beta)u^{\top})$.

Quiroga-Barranco

Toeplitz 000	MASG 0000	Kähler manifolds 0000	Symplectic geometry	Moment maps 0000000	β -symbols	Spectral formulas 0000●

References

Quiroga-Barranco, Raul and Sanchez-Nungaray, Armando: Moment maps of Abelian groups and commuting Toeplitz operators acting on the unit ball. arxiv preprint: http://arxiv.org/abs/2009.12448