Grupos de Lie y Geometría Diferencial: Parte 1 Geometrías Elementales y Grupos Ortogonales

Raúl Quiroga Barranco

CIMAT, Guanajuato

Escuela Temática de Geometría y Topología 2025 8–11 de abril de 2025

- Geometrías Elementales
- 2 Isometrías, Geodésicas y Grupos Ortogonales
- Transporte Paralelo
- Curvatura

- Geometrías Elementales
 - El espacio \mathbb{R}^n
 - La esfera Sⁿ
 - El espacio hiperbólico Hⁿ
- Isometrías, Geodésicas y Grupos Ortogonales
- Transporte Paralelo
- 4 Curvatura

Geometrías Elementales

- \diamond El espacio euclideano \mathbb{R}^n sirve de modelo para toda objeto geométrico.
- Una variedad n-dimensional es un espacio localmente homeomorfo/difeomorfo a \mathbb{R}^n .
- \diamond El producto interno natural de \mathbb{R}^n dado por

$$\langle x,y\rangle = \sum_{j=1}^n x_j y_j,$$

define la geometría euclideana.

- Las curvas más cortas entre dos puntos son los segmentos de recta.
- \diamond Dada una recta L y un punto p fuera de L, existe una única recta paralela a L que pasa por p.

- ⋄ La esfera *n*-dimensional es $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}.$
- ⋄ Localmente, S^n es la gráfica de una función suave $U \subset \mathbb{R}^n \to \mathbb{R}$. Por tanto, es una variedad n-dimensional.
- \diamond El espacio tangente a S^n en uno de sus puntos p es dado por $T_pS^n=\left(\mathbb{R}p\right)^\perp.$
- ⋄ La esfera S^n hereda de \mathbb{R}^{n+1} el producto interno en sus espacios tangentes.
- Las curvas localmente más cortas en Sⁿ son los círculos máximos

$$C = S^n \cap P$$
, $P \subset \mathbb{R}^{n+1}$ plano que pasa por el origen.

Las llamamos geodésicas.

 Cualesquiera dos geodésicas se intersectan. No existen paralelas entre las geodésicas. \diamond Un modelo del espacio hiperbólico se obtiene de \mathbb{R}^{n+1} con el producto interno

$$\langle x,y\rangle_{n,1}=\sum_{j=1}^n x_jy_j-x_{n+1}y_{n+1}.$$

Notación: $\mathbb{R}^{n,1} = (\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle_{n,1}).$

 \diamond El espacio hiperbólico H^n es una componente conexa de la esfera de radio al cuadrado -1 en $\mathbb{R}^{n,1}$

$$H^n = \{ p \in \mathbb{R}^{n,1} : \langle p, p \rangle_{n,1} = -1, \ x_{n+1} > 0 \}.$$

- \diamond H^n es la gráfica de una función suave $\mathbb{R}^n \to \mathbb{R}$. Por tanto, H^n es una variedad.
- \diamond El espacio tangente a H^n en uno de sus puntos p es dado por $T_nH^n=(\mathbb{R}p)^{\perp_{n,1}}$, complemento ortogonal respecto a $\langle\cdot,\cdot\rangle_{n,1}$.

El espacio hiperbólico Hⁿ

- ⋄ El producto interno $\langle \cdot, \cdot \rangle_{n,1}$ restringido a los espacios tangentes de H^n es definido positivo.
- En Hⁿ podemos medir ángulos y longitudes.
- Las curvas más cortas en Hⁿ son las hipérbolas máximas

$$L = H^n \cap P$$
, $P \subset \mathbb{R}^{n,1}$ plano que pasa por el origen.

Las llamamos geodésicas.

⋄ Si $L \subset H^n$ es una geodésica y p es un punto fuera de L, entonces existe una infinidad de geodésicas paralelas a L que pasan por p.

- Geometrías Elementales
- 2 Isometrías, Geodésicas y Grupos Ortogonales
 - Movimientos rígidos de \mathbb{R}^n
 - ullet El grupo $\mathrm{O}(n+1)$ y la esfera S^n
 - El grupo O(n,1) y el espacio hiperbólico H^n
- Transporte Paralelo
- 4 Curvatura

- Denotamos
 - $O(n) = \{ A \in M_n(\mathbb{R}) : A^\top A = I_n \},$
 - $SO(n) = \{A \in O(n) : \det(A) = 1\}.$
- ⋄ Los difeomorfismos de \mathbb{R}^n que preservan ángulos y longitudes de curvas se llaman isometrías. Estas son dadas por el grupo $O(n) \ltimes \mathbb{R}^n$ actuando sobre \mathbb{R}^n por

$$(A, v) \cdot p = Ap + v.$$

El producto es semidirecto.

- ⋄ Decimos que el grupo de isometrías de \mathbb{R}^n es dado por $O(n) \ltimes \mathbb{R}^n$.
- \diamond Las isometrías de \mathbb{R}^n preservan rectas.
- ⋄ El subgrupo de isometrías que fijan al origen 0 es O(n).
- ⋄ Las rectas en \mathbb{R}^n se parametrizan como $t \mapsto p_0 + tv_0$. Por tanto, son órbitas de los subgrupos

$$\{(I_n, tv_0) : t \in \mathbb{R}\} \subset O(n) \ltimes \mathbb{R}^n$$

que son complementarios a O(n).

- \diamond El grupo O(n+1) preserva $\langle \cdot, \cdot \rangle$ y por tanto a la esfera S^n .
- ⋄ Los difeomorfismos de S^n que preservan ángulos y longitudes de curvas son dados por O(n + 1) actuando sobre S^n por

$$A \cdot p = Ap$$
.

El grupo de isometrías de S^n es dado por O(n+1).

- \diamond Las isometrías de S^n preservan geodésicas.
- ⋄ El subgrupo de isometrías que fija al polo norte e_{n+1} es O(n).
- \diamond Las geodésicas de S^n se parametrizan como

$$t \mapsto \cos(t)p_0 + \sin(t)v_0$$
,

donde $p_0 \in S^n$ y p_0, v_0 es ortonormal. Por tanto, son órbitas de subgrupos de la forma

$$egin{pmatrix} \cos(t) & -\sin(t) & 0 \ \sin(t) & \cos(t) & 0 \ 0 & 0 & I_{n-2} \end{pmatrix}, \quad t \in \mathbb{R},$$

respecto de una base ortonormal (p_0, v_0, \dots) .

Denotamos

$$I_{n,1} = \begin{pmatrix} I_n & 0 \\ 0 & -1 \end{pmatrix},$$

de modo que $\langle x,y\rangle_{n,1}=x^{\top}I_{n,1}y$.

- \diamond Para $\mathbb{R}^{n,1}$ consideramos
 - $O(n,1) = \{A \in M_{n+1}(\mathbb{R}) : A^{\top} I_{n,1} A = I_{n,1} \},$
 - $O_{+}(n,1) = \{ A \in O(n,1) : (Ae_{n+1})_{n+1} > 0 \},$
 - ▶ $SO_0(n,1) = \{A \in O_+(n,1) : det(A) = 1\}.$
- ⋄ Los difeomorfismos de H^n que preservan ángulos y longitudes de curvas vienen de $O_+(n,1)$ actuando sobre H^n por

$$A \cdot p = Ap$$
.

El grupo de isometrías de H^n es dado por $O_+(n, 1)$.

- \diamond Las isometrías de H^n preservan geodésicas.
- ⋄ El subgrupo de isometrías que fijan al vértice e_{n+1} es O(n).
- Las geodésicas de Hⁿ se parametrizan como

$$t \mapsto \cosh(t)p_0 + \sinh(t)v_0$$
,

donde $p_0 \in H^n$ y p_0, v_0 es ortonormal para $\langle \cdot, \cdot \rangle_{n,1}$. Por tanto, son órbitas de subgrupos de la forma

$$egin{pmatrix} \cosh(t) & \sinh(t) & 0 \ \sinh(t) & \cosh(t) & 0 \ 0 & 0 & I_{n-2} \end{pmatrix}, \quad t \in \mathbb{R},$$

respecto de una base ortonormal (p_0, v_0, \dots) para $\langle \cdot, \cdot \rangle_{n,1}$.

- Geometrías Elementales
- 2 Isometrías, Geodésicas y Grupos Ortogonales
- Transporte Paralelo
 - Distinguiendo las geometrías elementales
 - Transporte paralelo en variedades Riemannianas
 - Transporte paralelo en S^n
 - Transporte paralelo en H^n
- 4 Curvatura

Distinguiendo las geometrías elementales

- ⋄ ¿Cómo distinguimos geométricamente entre \mathbb{R}^n , S^n y H^n ?
- El comportamiento de las geodésicas los distingue.
- En estos casos, las geodésicas se obtienen aplicando isometrías. Podemos usar isometrías para desplazar vectores y planos tangentes.
- Otra alternativa es la una noción de transporte paralelo.

Transporte paralelo en variedades Riemannianas

- \diamond En \mathbb{R}^n tenemos una noción natural de mover paralelamente un vector. Esto corresponde a campos vectoriales constantes, lo cual ocurre cuando la derivada es constante.
- \diamond Sea M una subvariedad de \mathbb{R}^n , dado un campo vectorial $t\mapsto X_t$ a lo largo de una curva $\gamma:I\to M$ definimos su derivada en M mediante el siguiente proceso
 - ▶ derivamos $t \mapsto X_t$ como función a valores en \mathbb{R}^n : $\frac{\mathrm{d}}{\mathrm{d}t}X_t$,
 ▶ proyectamos $\frac{\mathrm{d}}{\mathrm{d}t}X_t$ en los espacios tangentes a M: $\frac{\nabla}{\mathrm{d}t}X_t$.
- $\diamond \frac{\nabla}{dt} X_t$ es conocido como la *derivada covariante de X en M*.
- \diamond El campo vectorial X a lo largo de una curva γ se dice $\emph{paralelo}$ a lo largo de γ cuando se cumple $\frac{\nabla}{dt}X_t\equiv 0$.
- \diamond En \mathbb{R}^n un campo vectorial es paralelo si y sólo si es constante.

- \diamond Los espacios tangentes a S^n cambian de dirección en \mathbb{R}^{n+1} .
- \diamond En general, un campo vectorial constante no es tangente a S^n .
- ⋄ La geodésica $\gamma(t) = \cos(t)p_0 + \sin(t)v_0$ tiene campo vectorial de velocidad $\gamma'(t) = -\sin(t)p_0 + \cos(t)v_0$, tangente a S^n .
- \diamond La aceleración de γ en \mathbb{R}^{n+1} es

$$\gamma''(t) = -\cos(t)p_0 - \sin(t)v_0,$$

que se mantiene perpendicular a S^n .

- \diamond La derivada covariante de γ' es $\ddot{\gamma} = \frac{\nabla}{\Delta t} \gamma' \equiv 0$.
- \diamond Si $u_0 \perp \{p_0, v_0\}$, entonces $X_t \equiv u_0$ es tangente a S^n a lo largo de la geodésica γ . Además, se cumple $\frac{\nabla}{dt}X \equiv 0$.
- \diamond Esto define el transporte paralelo a lo largo de γ .

⋄ La geodésica $\gamma(t) = \cos(t)p_0 + \sin(t)v_0$ es la órbita de p_0 respecto del grupo de matrices

$$A(t) = egin{pmatrix} \cos(t) & -\sin(t) & 0 \ \sin(t) & \cos(t) & 0 \ 0 & 0 & I_{n-2} \end{pmatrix}, \quad t \in \mathbb{R}.$$

- ⇒ Cada A(t) es lineal y, por tanto, igual a su diferencial.
- De lo cual calculamos
 - \rightarrow d $A(t)_{p_0}(v_0) = A(t)v_0 = \gamma'(t),$
 - $dA(t)_{p_0}(u_0) = A(t)u_0 = u_0 = X_t, (u_0 \perp \{p_0, v_0\}).$
- El transporte paralelo a lo largo de geodésicas es dado por isometrías.

- \diamond El espacio H^n se comporta similarmente a la esfera S^n .
- \diamond En general, un campo constante no es tangente a H^n .
- \diamond La geodésica $\gamma(t) = \cosh(t)p_0 + \sinh(t)v_0$ satisface

$$\gamma'(t) = \sinh(t)p_0 + \cosh(t)v_0,$$

$$\gamma''(t) = \cosh(t)p_0 + \sinh(t)v_0.$$

que son tangente y perpendicular (jen $\mathbb{R}^{n,1}$!) a H^n , respectivamente.

- $\diamond~$ La derivada covariante de γ' es $\ddot{\gamma}=rac{\nabla}{\mathrm{d}t}\gamma'\equiv0.$
- \diamond Si $u_0 \perp_{n,1} \{p_0, v_0\}$, entonces el campo constante $X_t \equiv u_0$ es paralelo.
- \diamond Esto define el transporte paralelo a lo largo de γ .

Transporte paralelo en Hⁿ

⋄ La geodésica $\gamma(t) = \cosh(t)p_0 + \sinh(t)v_0$ es la órbita de p_0 respecto del grupo de matrices

$$A(t) = egin{pmatrix} \cosh(t) & \sinh(t) & 0 \ \sinh(t) & \cosh(t) & 0 \ 0 & 0 & I_{n-2} \end{pmatrix}, \quad t \in \mathbb{R}.$$

- Como antes calculamos
 - $ightharpoonup dA(t)_{p_0}(v_0) = A(t)v_0 = \gamma'(t),$
 - $dA(t)_{p_0}(u_0) = A(t)u_0 = u_0 = X_t, (u_0 \perp_{n,1} \{p_0, v_0\}).$
- El transporte paralelo a lo largo de geodésicas es dado por isometrías.

- Geometrías Elementales
- 2 Isometrías, Geodésicas y Grupos Ortogonales
- Transporte Paralelo
- 4 Curvatura
 - Curvatura a través de geodésicas
 - Curvatura de Sⁿ
 - Curvatura de Hⁿ
 - Espacios simétricos y grupos de Lie

Curvatura a través de geodésicas

- ⋄ ¿Cómo medir la discrepancia entre \mathbb{R}^n y los espacios S^n y H^n ?
- A lo largo de geodésicas por pedazos
 - ightharpoonup el transporte paralelo en \mathbb{R}^n es el mapeo identidad,
 - ightharpoonup el transporte paralelo para ambos S^n y H^n rota vectores.
- \diamond Para cada $p_0 \in S^n$ y $T \in SO(T_{p_0}S^n)$, existe una curva cerrada $\gamma : [0,1] \to S^n$ con $\gamma(0) = \gamma(1) = p_0$ en S^n tal que el transporte paralelo a lo largo de γ de p_0 a p_0 es dado por T.
- \diamond La misma propiedad se cumple en H^n .
- Por otro lado, las geodésicas que emergen de un punto dado
 - \triangleright se separan linealmente en \mathbb{R}^n ,
 - \triangleright se aproximan en S^n ,
 - \triangleright se alejan de manera no lineal en H^n .

Curvatura a través de geodésicas

 \diamond En \mathbb{R}^n consideramos la variación geodésica de la recta $t\mapsto p_0+tv_0$ dada por

$$\varphi(t,s)=p_0+t(v_0+su_0).$$

 La separación entre las rectas se mide a través del campo de Jacobi

$$J(t) = \frac{\partial \varphi}{\partial s}(t,0) = tu_0.$$

- \diamond Dado que J es lineal en la perturbación u_0 , encontramos que las rectas en \mathbb{R}^n se separan linealmente.
- $J'' = \ddot{J} \equiv 0$ nos dice que \mathbb{R}^n tiene curvatura cero/nula.

Curvatura a través de geodésicas

- Sea M una variedad Riemanniana, por lo cual podemos considerar geodésicas.
- ⋄ Dada una geodésica $\gamma: I \to M$ tal que $\gamma(0) = p_0$ y $\gamma'(0) = v_0$, una variación geodésica es una función $\varphi: I \times (-r, r) \to M$ tal que
 - $\qquad \varphi(t,0) = \gamma(t),$
 - ▶ para cada s, la curva $t \mapsto \varphi(t,s)$ es una geodésica tal que $\varphi(0,s) = p_0$.
- \diamond El campo de Jacobi a lo largo de γ asociado a arphi se define por

$$J(t) = \frac{\partial \varphi}{\partial s}(t,0),$$

donde $t \in I$.

⋄ El campo de Jacobi J permite medir la curvatura de M a lo largo de γ en las direcciones tangentes $\gamma'(t)$ y J(t).

- \diamond Dado un campo de Jacobi J a lo largo de la geodésica γ , la segunda derivada covariante \ddot{J} mide la curvatura.
- \diamond La curvatura de M es el único tensor R que a cada punto $p \in M$ asigna un operador lineal

$$R_p: \wedge^2 T_p M \to \operatorname{End}(T_p M),$$

tal que

- ▶ $\ddot{J} + R(J, \gamma')\gamma' = 0$, para todo campo de Jacobi J a lo largo de una geodésica γ ,
- R satisface las siguientes simetrías
 - $\odot R(u,v) = -R(v,u)$
 - \odot R(u, v) es anti-simétrico,
 - $\bigcirc \langle R(u,v)x,y\rangle = \langle R(x,y)u,v\rangle.$

- ⋄ Sean $p_0 \in S^n$ y $v_0, u_0 \in T_{p_0}S^n$ un par ortonormal.
- ⋄ Para la geodésica $\gamma(t) = \cos(t)p_0 + \sin(t)v_0$ consideramos la variación geodésica

$$\varphi(t,s) = \cos(t)p_0 + \sin(t)\frac{v_0 + su_0}{\sqrt{1+s^2}}.$$

El campo de Jacobi y sus derivadas covariantes son

$$J(t) = \sin(t)u_0, \quad \dot{J}(t) = -\cos(t)u_0, \quad \ddot{J}(t) = -\sin(t)u_0.$$

- Periódicamente, las geodésicas se acercan y se alejan.
- \diamond El tensor de curvatura R de S^n es

$$R_{p}(u, v)w = \langle w, v \rangle u - \langle w, u \rangle v,$$

para $p \in S^n$ y $u, v, w \in T_p S^n$.

Curvatura de Sⁿ

⋄ Para obtener un valor numérico a partir de R, definimos la curvatura seccional $K(\Pi)$ de una variedad Riemanniana M en el plano tangente Π generado por dos vectores $u, v \in T_pM$ por

$$K(\Pi) = K(u, v) = \frac{\langle R(u, v)v, u \rangle}{\operatorname{Area}(P)},$$

donde P es el paralelogramo generado por u, v.

 Normalizamos por el área para obtener un número que depende solamente del plano P. Curvatura de Sⁿ

 \diamond Si $v_0, u_0 \in T_{p_0}S^n$ es un par ortonormal, entonces

$$K(v_0, u_0) = 1.$$

- Recordamos que el área de un paralelogramo es el determinante de la matriz de productos internos de sus aristas.
- \diamond La esfera tiene curvatura constante S^n .
- ⋄ Similarmente rS^n (la esfera de radio r > 0) tiene curvatura $\frac{1}{r^2}$.

Curvatura de Hⁿ

Geometrías Elementales

- ⋄ Sean $p_0 \in H^n$ y $v_0, u_0 \in T_{p_0}H^n$ un par ortonormal.
- ⋄ Para la geodésica $\gamma(t) = \cosh(t)p_0 + \sinh(t)v_0$ consideramos la variación geodésica

$$\varphi(t,s) = \cosh(t)p_0 + \sinh(t)\frac{v_0 + su_0}{\sqrt{1+s^2}}.$$

El campo de Jacobi y sus derivadas covariantes son

$$J(t) = \sinh(t)u_0, \quad \dot{J}(t) = \cosh(t)u_0, \quad \ddot{J}(t) = \sinh(t)u_0.$$

- Las geodésicas se separan con crecimiento exponencial.
- \diamond El tensor de curvatura R de H^n es

$$R_p(u, v)w = -\langle w, v \rangle_{n,1}u + \langle w, u \rangle_{n,1}v,$$

para $p \in H^n$ y $u, v, w \in T_pH^n$.

⋄ La curvatura seccional de H^n es constante -1.

Es fácil verificar que el tensor de curvatura R, para ambos Sⁿ
 y Hⁿ satisface la siguiente condición

$$R_{Ap}(Au, Av)Aw = A(R_p(u, v)w),$$

para cualquier A en el grupo ortogonal del correspondiente espacio tangente.

 Para Sⁿ y Hⁿ el transporte paralelo a lo largo de geodésicas es dado por isometrías. Por tanto, R es invariante bajo transporte paralelo y entonces

$$\frac{\nabla}{\mathrm{d}t}R\equiv0,$$

a lo largo de cualquier curva.

♦ Los espacios \mathbb{R}^n , S^n y H^n definen geometrías con tensor de curvatura paralelo.

Espacios simétricos y grupos de Lie

- Problema: Determinar todas las variedades Riemannianas cuyo tensor de curvatura es paralelo.
- Solución: Teoría de Cartan de espacios Riemannianos simétricos y teoría de Killing de grupos de Lie semisimples.